diff options
Diffstat (limited to 'kernel/rcu/tasks.h')
-rw-r--r-- | kernel/rcu/tasks.h | 1710 |
1 files changed, 1372 insertions, 338 deletions
diff --git a/kernel/rcu/tasks.h b/kernel/rcu/tasks.h index 36607551f966..59314da5eb60 100644 --- a/kernel/rcu/tasks.h +++ b/kernel/rcu/tasks.h @@ -6,6 +6,7 @@ */ #ifdef CONFIG_TASKS_RCU_GENERIC +#include "rcu_segcblist.h" //////////////////////////////////////////////////////////////////////// // @@ -13,51 +14,97 @@ struct rcu_tasks; typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); -typedef void (*pregp_func_t)(void); +typedef void (*pregp_func_t)(struct list_head *hop); typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); typedef void (*postscan_func_t)(struct list_head *hop); typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); typedef void (*postgp_func_t)(struct rcu_tasks *rtp); /** - * Definition for a Tasks-RCU-like mechanism. - * @cbs_head: Head of callback list. - * @cbs_tail: Tail pointer for callback list. - * @cbs_wq: Wait queue allowning new callback to get kthread's attention. - * @cbs_lock: Lock protecting callback list. - * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. + * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. + * @cblist: Callback list. + * @lock: Lock protecting per-CPU callback list. + * @rtp_jiffies: Jiffies counter value for statistics. + * @lazy_timer: Timer to unlazify callbacks. + * @urgent_gp: Number of additional non-lazy grace periods. + * @rtp_n_lock_retries: Rough lock-contention statistic. + * @rtp_work: Work queue for invoking callbacks. + * @rtp_irq_work: IRQ work queue for deferred wakeups. + * @barrier_q_head: RCU callback for barrier operation. + * @rtp_blkd_tasks: List of tasks blocked as readers. + * @rtp_exit_list: List of tasks in the latter portion of do_exit(). + * @cpu: CPU number corresponding to this entry. + * @index: Index of this CPU in rtpcp_array of the rcu_tasks structure. + * @rtpp: Pointer to the rcu_tasks structure. + */ +struct rcu_tasks_percpu { + struct rcu_segcblist cblist; + raw_spinlock_t __private lock; + unsigned long rtp_jiffies; + unsigned long rtp_n_lock_retries; + struct timer_list lazy_timer; + unsigned int urgent_gp; + struct work_struct rtp_work; + struct irq_work rtp_irq_work; + struct rcu_head barrier_q_head; + struct list_head rtp_blkd_tasks; + struct list_head rtp_exit_list; + int cpu; + int index; + struct rcu_tasks *rtpp; +}; + +/** + * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. + * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. + * @cbs_gbl_lock: Lock protecting callback list. + * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone. * @gp_func: This flavor's grace-period-wait function. * @gp_state: Grace period's most recent state transition (debugging). * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. * @init_fract: Initial backoff sleep interval. * @gp_jiffies: Time of last @gp_state transition. * @gp_start: Most recent grace-period start in jiffies. - * @n_gps: Number of grace periods completed since boot. + * @tasks_gp_seq: Number of grace periods completed since boot in upper bits. * @n_ipis: Number of IPIs sent to encourage grace periods to end. * @n_ipis_fails: Number of IPI-send failures. + * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. + * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy. * @pregp_func: This flavor's pre-grace-period function (optional). * @pertask_func: This flavor's per-task scan function (optional). * @postscan_func: This flavor's post-task scan function (optional). - * @holdout_func: This flavor's holdout-list scan function (optional). + * @holdouts_func: This flavor's holdout-list scan function (optional). * @postgp_func: This flavor's post-grace-period function (optional). * @call_func: This flavor's call_rcu()-equivalent function. + * @wait_state: Task state for synchronous grace-period waits (default TASK_UNINTERRUPTIBLE). + * @rtpcpu: This flavor's rcu_tasks_percpu structure. + * @rtpcp_array: Array of pointers to rcu_tasks_percpu structure of CPUs in cpu_possible_mask. + * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. + * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. + * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. + * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. + * @barrier_q_mutex: Serialize barrier operations. + * @barrier_q_count: Number of queues being waited on. + * @barrier_q_completion: Barrier wait/wakeup mechanism. + * @barrier_q_seq: Sequence number for barrier operations. + * @barrier_q_start: Most recent barrier start in jiffies. * @name: This flavor's textual name. * @kname: This flavor's kthread name. */ struct rcu_tasks { - struct rcu_head *cbs_head; - struct rcu_head **cbs_tail; - struct wait_queue_head cbs_wq; - raw_spinlock_t cbs_lock; + struct rcuwait cbs_wait; + raw_spinlock_t cbs_gbl_lock; + struct mutex tasks_gp_mutex; int gp_state; int gp_sleep; int init_fract; unsigned long gp_jiffies; unsigned long gp_start; - unsigned long n_gps; + unsigned long tasks_gp_seq; unsigned long n_ipis; unsigned long n_ipis_fails; struct task_struct *kthread_ptr; + unsigned long lazy_jiffies; rcu_tasks_gp_func_t gp_func; pregp_func_t pregp_func; pertask_func_t pertask_func; @@ -65,24 +112,54 @@ struct rcu_tasks { holdouts_func_t holdouts_func; postgp_func_t postgp_func; call_rcu_func_t call_func; + unsigned int wait_state; + struct rcu_tasks_percpu __percpu *rtpcpu; + struct rcu_tasks_percpu **rtpcp_array; + int percpu_enqueue_shift; + int percpu_enqueue_lim; + int percpu_dequeue_lim; + unsigned long percpu_dequeue_gpseq; + struct mutex barrier_q_mutex; + atomic_t barrier_q_count; + struct completion barrier_q_completion; + unsigned long barrier_q_seq; + unsigned long barrier_q_start; char *name; char *kname; }; -#define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ -static struct rcu_tasks rt_name = \ -{ \ - .cbs_tail = &rt_name.cbs_head, \ - .cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq), \ - .cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock), \ - .gp_func = gp, \ - .call_func = call, \ - .name = n, \ - .kname = #rt_name, \ +static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); + +#define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ +static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ + .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ + .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ +}; \ +static struct rcu_tasks rt_name = \ +{ \ + .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ + .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ + .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \ + .gp_func = gp, \ + .call_func = call, \ + .wait_state = TASK_UNINTERRUPTIBLE, \ + .rtpcpu = &rt_name ## __percpu, \ + .lazy_jiffies = DIV_ROUND_UP(HZ, 4), \ + .name = n, \ + .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ + .percpu_enqueue_lim = 1, \ + .percpu_dequeue_lim = 1, \ + .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ + .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ + .kname = #rt_name, \ } -/* Track exiting tasks in order to allow them to be waited for. */ -DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); +#ifdef CONFIG_TASKS_RCU + +/* Report delay of scan exiting tasklist in rcu_tasks_postscan(). */ +static void tasks_rcu_exit_srcu_stall(struct timer_list *unused); +static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall); +#endif /* Avoid IPIing CPUs early in the grace period. */ #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) @@ -90,9 +167,28 @@ static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; module_param(rcu_task_ipi_delay, int, 0644); /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ +#define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30) #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; module_param(rcu_task_stall_timeout, int, 0644); +#define RCU_TASK_STALL_INFO (HZ * 10) +static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; +module_param(rcu_task_stall_info, int, 0644); +static int rcu_task_stall_info_mult __read_mostly = 3; +module_param(rcu_task_stall_info_mult, int, 0444); + +static int rcu_task_enqueue_lim __read_mostly = -1; +module_param(rcu_task_enqueue_lim, int, 0444); + +static bool rcu_task_cb_adjust; +static int rcu_task_contend_lim __read_mostly = 100; +module_param(rcu_task_contend_lim, int, 0444); +static int rcu_task_collapse_lim __read_mostly = 10; +module_param(rcu_task_collapse_lim, int, 0444); +static int rcu_task_lazy_lim __read_mostly = 32; +module_param(rcu_task_lazy_lim, int, 0444); + +static int rcu_task_cpu_ids; /* RCU tasks grace-period state for debugging. */ #define RTGS_INIT 0 @@ -128,6 +224,8 @@ static const char * const rcu_tasks_gp_state_names[] = { // // Generic code. +static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); + /* Record grace-period phase and time. */ static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) { @@ -148,47 +246,404 @@ static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) } #endif /* #ifndef CONFIG_TINY_RCU */ +// Initialize per-CPU callback lists for the specified flavor of +// Tasks RCU. Do not enqueue callbacks before this function is invoked. +static void cblist_init_generic(struct rcu_tasks *rtp) +{ + int cpu; + int lim; + int shift; + int maxcpu; + int index = 0; + + if (rcu_task_enqueue_lim < 0) { + rcu_task_enqueue_lim = 1; + rcu_task_cb_adjust = true; + } else if (rcu_task_enqueue_lim == 0) { + rcu_task_enqueue_lim = 1; + } + lim = rcu_task_enqueue_lim; + + rtp->rtpcp_array = kcalloc(num_possible_cpus(), sizeof(struct rcu_tasks_percpu *), GFP_KERNEL); + BUG_ON(!rtp->rtpcp_array); + + for_each_possible_cpu(cpu) { + struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); + + WARN_ON_ONCE(!rtpcp); + if (cpu) + raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); + if (rcu_segcblist_empty(&rtpcp->cblist)) + rcu_segcblist_init(&rtpcp->cblist); + INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); + rtpcp->cpu = cpu; + rtpcp->rtpp = rtp; + rtpcp->index = index; + rtp->rtpcp_array[index] = rtpcp; + index++; + if (!rtpcp->rtp_blkd_tasks.next) + INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); + if (!rtpcp->rtp_exit_list.next) + INIT_LIST_HEAD(&rtpcp->rtp_exit_list); + rtpcp->barrier_q_head.next = &rtpcp->barrier_q_head; + maxcpu = cpu; + } + + rcu_task_cpu_ids = maxcpu + 1; + if (lim > rcu_task_cpu_ids) + lim = rcu_task_cpu_ids; + shift = ilog2(rcu_task_cpu_ids / lim); + if (((rcu_task_cpu_ids - 1) >> shift) >= lim) + shift++; + WRITE_ONCE(rtp->percpu_enqueue_shift, shift); + WRITE_ONCE(rtp->percpu_dequeue_lim, lim); + smp_store_release(&rtp->percpu_enqueue_lim, lim); + + pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d rcu_task_cpu_ids=%d.\n", + rtp->name, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), + rcu_task_cb_adjust, rcu_task_cpu_ids); +} + +// Compute wakeup time for lazy callback timer. +static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp) +{ + return jiffies + rtp->lazy_jiffies; +} + +// Timer handler that unlazifies lazy callbacks. +static void call_rcu_tasks_generic_timer(struct timer_list *tlp) +{ + unsigned long flags; + bool needwake = false; + struct rcu_tasks *rtp; + struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer); + + rtp = rtpcp->rtpp; + raw_spin_lock_irqsave_rcu_node(rtpcp, flags); + if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) { + if (!rtpcp->urgent_gp) + rtpcp->urgent_gp = 1; + needwake = true; + mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); + } + raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); + if (needwake) + rcuwait_wake_up(&rtp->cbs_wait); +} + +// IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). +static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) +{ + struct rcu_tasks *rtp; + struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); + + rtp = rtpcp->rtpp; + rcuwait_wake_up(&rtp->cbs_wait); +} + // Enqueue a callback for the specified flavor of Tasks RCU. static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, struct rcu_tasks *rtp) { + int chosen_cpu; unsigned long flags; + bool havekthread = smp_load_acquire(&rtp->kthread_ptr); + int ideal_cpu; + unsigned long j; + bool needadjust = false; bool needwake; + struct rcu_tasks_percpu *rtpcp; rhp->next = NULL; rhp->func = func; - raw_spin_lock_irqsave(&rtp->cbs_lock, flags); - needwake = !rtp->cbs_head; - WRITE_ONCE(*rtp->cbs_tail, rhp); - rtp->cbs_tail = &rhp->next; - raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); + local_irq_save(flags); + rcu_read_lock(); + ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); + chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); + WARN_ON_ONCE(chosen_cpu >= rcu_task_cpu_ids); + rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); + if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. + raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. + j = jiffies; + if (rtpcp->rtp_jiffies != j) { + rtpcp->rtp_jiffies = j; + rtpcp->rtp_n_lock_retries = 0; + } + if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && + READ_ONCE(rtp->percpu_enqueue_lim) != rcu_task_cpu_ids) + needadjust = true; // Defer adjustment to avoid deadlock. + } + // Queuing callbacks before initialization not yet supported. + if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist))) + rcu_segcblist_init(&rtpcp->cblist); + needwake = (func == wakeme_after_rcu) || + (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim); + if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) { + if (rtp->lazy_jiffies) + mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); + else + needwake = rcu_segcblist_empty(&rtpcp->cblist); + } + if (needwake) + rtpcp->urgent_gp = 3; + rcu_segcblist_enqueue(&rtpcp->cblist, rhp); + raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); + if (unlikely(needadjust)) { + raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); + if (rtp->percpu_enqueue_lim != rcu_task_cpu_ids) { + WRITE_ONCE(rtp->percpu_enqueue_shift, 0); + WRITE_ONCE(rtp->percpu_dequeue_lim, rcu_task_cpu_ids); + smp_store_release(&rtp->percpu_enqueue_lim, rcu_task_cpu_ids); + pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); + } + raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); + } + rcu_read_unlock(); /* We can't create the thread unless interrupts are enabled. */ if (needwake && READ_ONCE(rtp->kthread_ptr)) - wake_up(&rtp->cbs_wq); + irq_work_queue(&rtpcp->rtp_irq_work); } -// Wait for a grace period for the specified flavor of Tasks RCU. -static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) +// RCU callback function for rcu_barrier_tasks_generic(). +static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) { - /* Complain if the scheduler has not started. */ - RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, - "synchronize_rcu_tasks called too soon"); + struct rcu_tasks *rtp; + struct rcu_tasks_percpu *rtpcp; + + rhp->next = rhp; // Mark the callback as having been invoked. + rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); + rtp = rtpcp->rtpp; + if (atomic_dec_and_test(&rtp->barrier_q_count)) + complete(&rtp->barrier_q_completion); +} - /* Wait for the grace period. */ - wait_rcu_gp(rtp->call_func); +// Wait for all in-flight callbacks for the specified RCU Tasks flavor. +// Operates in a manner similar to rcu_barrier(). +static void __maybe_unused rcu_barrier_tasks_generic(struct rcu_tasks *rtp) +{ + int cpu; + unsigned long flags; + struct rcu_tasks_percpu *rtpcp; + unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); + + mutex_lock(&rtp->barrier_q_mutex); + if (rcu_seq_done(&rtp->barrier_q_seq, s)) { + smp_mb(); + mutex_unlock(&rtp->barrier_q_mutex); + return; + } + rtp->barrier_q_start = jiffies; + rcu_seq_start(&rtp->barrier_q_seq); + init_completion(&rtp->barrier_q_completion); + atomic_set(&rtp->barrier_q_count, 2); + for_each_possible_cpu(cpu) { + if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) + break; + rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); + rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; + raw_spin_lock_irqsave_rcu_node(rtpcp, flags); + if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) + atomic_inc(&rtp->barrier_q_count); + raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); + } + if (atomic_sub_and_test(2, &rtp->barrier_q_count)) + complete(&rtp->barrier_q_completion); + wait_for_completion(&rtp->barrier_q_completion); + rcu_seq_end(&rtp->barrier_q_seq); + mutex_unlock(&rtp->barrier_q_mutex); } -/* RCU-tasks kthread that detects grace periods and invokes callbacks. */ -static int __noreturn rcu_tasks_kthread(void *arg) +// Advance callbacks and indicate whether either a grace period or +// callback invocation is needed. +static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) { + int cpu; + int dequeue_limit; + unsigned long flags; + bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq); + long n; + long ncbs = 0; + long ncbsnz = 0; + int needgpcb = 0; + + dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim); + for (cpu = 0; cpu < dequeue_limit; cpu++) { + if (!cpu_possible(cpu)) + continue; + struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); + + /* Advance and accelerate any new callbacks. */ + if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) + continue; + raw_spin_lock_irqsave_rcu_node(rtpcp, flags); + // Should we shrink down to a single callback queue? + n = rcu_segcblist_n_cbs(&rtpcp->cblist); + if (n) { + ncbs += n; + if (cpu > 0) + ncbsnz += n; + } + rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); + (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); + if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) { + if (rtp->lazy_jiffies) + rtpcp->urgent_gp--; + needgpcb |= 0x3; + } else if (rcu_segcblist_empty(&rtpcp->cblist)) { + rtpcp->urgent_gp = 0; + } + if (rcu_segcblist_ready_cbs(&rtpcp->cblist)) + needgpcb |= 0x1; + raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); + } + + // Shrink down to a single callback queue if appropriate. + // This is done in two stages: (1) If there are no more than + // rcu_task_collapse_lim callbacks on CPU 0 and none on any other + // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, + // if there has not been an increase in callbacks, limit dequeuing + // to CPU 0. Note the matching RCU read-side critical section in + // call_rcu_tasks_generic(). + if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { + raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); + if (rtp->percpu_enqueue_lim > 1) { + WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(rcu_task_cpu_ids)); + smp_store_release(&rtp->percpu_enqueue_lim, 1); + rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); + gpdone = false; + pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); + } + raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); + } + if (rcu_task_cb_adjust && !ncbsnz && gpdone) { + raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); + if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { + WRITE_ONCE(rtp->percpu_dequeue_lim, 1); + pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); + } + if (rtp->percpu_dequeue_lim == 1) { + for (cpu = rtp->percpu_dequeue_lim; cpu < rcu_task_cpu_ids; cpu++) { + if (!cpu_possible(cpu)) + continue; + struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); + + WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); + } + } + raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); + } + + return needgpcb; +} + +// Advance callbacks and invoke any that are ready. +static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) +{ + int cpuwq; unsigned long flags; - struct rcu_head *list; - struct rcu_head *next; + int len; + int index; + struct rcu_head *rhp; + struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); + struct rcu_tasks_percpu *rtpcp_next; + + index = rtpcp->index * 2 + 1; + if (index < num_possible_cpus()) { + rtpcp_next = rtp->rtpcp_array[index]; + if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) { + cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND; + queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); + index++; + if (index < num_possible_cpus()) { + rtpcp_next = rtp->rtpcp_array[index]; + if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) { + cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND; + queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); + } + } + } + } + + if (rcu_segcblist_empty(&rtpcp->cblist)) + return; + raw_spin_lock_irqsave_rcu_node(rtpcp, flags); + rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); + rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); + raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); + len = rcl.len; + for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { + debug_rcu_head_callback(rhp); + local_bh_disable(); + rhp->func(rhp); + local_bh_enable(); + cond_resched(); + } + raw_spin_lock_irqsave_rcu_node(rtpcp, flags); + rcu_segcblist_add_len(&rtpcp->cblist, -len); + (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); + raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); +} + +// Workqueue flood to advance callbacks and invoke any that are ready. +static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) +{ + struct rcu_tasks *rtp; + struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); + + rtp = rtpcp->rtpp; + rcu_tasks_invoke_cbs(rtp, rtpcp); +} + +// Wait for one grace period. +static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot) +{ + int needgpcb; + + mutex_lock(&rtp->tasks_gp_mutex); + + // If there were none, wait a bit and start over. + if (unlikely(midboot)) { + needgpcb = 0x2; + } else { + mutex_unlock(&rtp->tasks_gp_mutex); + set_tasks_gp_state(rtp, RTGS_WAIT_CBS); + rcuwait_wait_event(&rtp->cbs_wait, + (needgpcb = rcu_tasks_need_gpcb(rtp)), + TASK_IDLE); + mutex_lock(&rtp->tasks_gp_mutex); + } + + if (needgpcb & 0x2) { + // Wait for one grace period. + set_tasks_gp_state(rtp, RTGS_WAIT_GP); + rtp->gp_start = jiffies; + rcu_seq_start(&rtp->tasks_gp_seq); + rtp->gp_func(rtp); + rcu_seq_end(&rtp->tasks_gp_seq); + } + + // Invoke callbacks. + set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); + rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); + mutex_unlock(&rtp->tasks_gp_mutex); +} + +// RCU-tasks kthread that detects grace periods and invokes callbacks. +static int __noreturn rcu_tasks_kthread(void *arg) +{ + int cpu; struct rcu_tasks *rtp = arg; + for_each_possible_cpu(cpu) { + struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); + + timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0); + rtpcp->urgent_gp = 1; + } + /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ - housekeeping_affine(current, HK_FLAG_RCU); - WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start! + housekeeping_affine(current, HK_TYPE_RCU); + smp_store_release(&rtp->kthread_ptr, current); // Let GPs start! /* * Each pass through the following loop makes one check for @@ -197,48 +652,29 @@ static int __noreturn rcu_tasks_kthread(void *arg) * This loop is terminated by the system going down. ;-) */ for (;;) { + // Wait for one grace period and invoke any callbacks + // that are ready. + rcu_tasks_one_gp(rtp, false); - /* Pick up any new callbacks. */ - raw_spin_lock_irqsave(&rtp->cbs_lock, flags); - smp_mb__after_spinlock(); // Order updates vs. GP. - list = rtp->cbs_head; - rtp->cbs_head = NULL; - rtp->cbs_tail = &rtp->cbs_head; - raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); - - /* If there were none, wait a bit and start over. */ - if (!list) { - wait_event_interruptible(rtp->cbs_wq, - READ_ONCE(rtp->cbs_head)); - if (!rtp->cbs_head) { - WARN_ON(signal_pending(current)); - set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS); - schedule_timeout_idle(HZ/10); - } - continue; - } - - // Wait for one grace period. - set_tasks_gp_state(rtp, RTGS_WAIT_GP); - rtp->gp_start = jiffies; - rtp->gp_func(rtp); - rtp->n_gps++; - - /* Invoke the callbacks. */ - set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); - while (list) { - next = list->next; - local_bh_disable(); - list->func(list); - local_bh_enable(); - list = next; - cond_resched(); - } - /* Paranoid sleep to keep this from entering a tight loop */ + // Paranoid sleep to keep this from entering a tight loop. schedule_timeout_idle(rtp->gp_sleep); + } +} - set_tasks_gp_state(rtp, RTGS_WAIT_CBS); +// Wait for a grace period for the specified flavor of Tasks RCU. +static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) +{ + /* Complain if the scheduler has not started. */ + if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, + "synchronize_%s() called too soon", rtp->name)) + return; + + // If the grace-period kthread is running, use it. + if (READ_ONCE(rtp->kthread_ptr)) { + wait_rcu_gp_state(rtp->wait_state, rtp->call_func); + return; } + rcu_tasks_one_gp(rtp, true); } /* Spawn RCU-tasks grace-period kthread. */ @@ -260,8 +696,15 @@ static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) static void __init rcu_tasks_bootup_oddness(void) { #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) + int rtsimc; + if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); + rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); + if (rtsimc != rcu_task_stall_info_mult) { + pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); + rcu_task_stall_info_mult = rtsimc; + } #endif /* #ifdef CONFIG_TASKS_RCU */ #ifdef CONFIG_TASKS_RCU pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); @@ -274,22 +717,87 @@ static void __init rcu_tasks_bootup_oddness(void) #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ } -#endif /* #ifndef CONFIG_TINY_RCU */ -#ifndef CONFIG_TINY_RCU /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) { - pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n", + int cpu; + bool havecbs = false; + bool haveurgent = false; + bool haveurgentcbs = false; + + for_each_possible_cpu(cpu) { + struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); + + if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) + havecbs = true; + if (data_race(rtpcp->urgent_gp)) + haveurgent = true; + if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp)) + haveurgentcbs = true; + if (havecbs && haveurgent && haveurgentcbs) + break; + } + pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n", rtp->kname, tasks_gp_state_getname(rtp), data_race(rtp->gp_state), jiffies - data_race(rtp->gp_jiffies), - data_race(rtp->n_gps), + data_race(rcu_seq_current(&rtp->tasks_gp_seq)), data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), ".k"[!!data_race(rtp->kthread_ptr)], - ".C"[!!data_race(rtp->cbs_head)], + ".C"[havecbs], + ".u"[haveurgent], + ".U"[haveurgentcbs], + rtp->lazy_jiffies, s); } + +/* Dump out more rcutorture-relevant state common to all RCU-tasks flavors. */ +static void rcu_tasks_torture_stats_print_generic(struct rcu_tasks *rtp, char *tt, + char *tf, char *tst) +{ + cpumask_var_t cm; + int cpu; + bool gotcb = false; + unsigned long j = jiffies; + + pr_alert("%s%s Tasks%s RCU g%ld gp_start %lu gp_jiffies %lu gp_state %d (%s).\n", + tt, tf, tst, data_race(rtp->tasks_gp_seq), + j - data_race(rtp->gp_start), j - data_race(rtp->gp_jiffies), + data_race(rtp->gp_state), tasks_gp_state_getname(rtp)); + pr_alert("\tEnqueue shift %d limit %d Dequeue limit %d gpseq %lu.\n", + data_race(rtp->percpu_enqueue_shift), + data_race(rtp->percpu_enqueue_lim), + data_race(rtp->percpu_dequeue_lim), + data_race(rtp->percpu_dequeue_gpseq)); + (void)zalloc_cpumask_var(&cm, GFP_KERNEL); + pr_alert("\tCallback counts:"); + for_each_possible_cpu(cpu) { + long n; + struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); + + if (cpumask_available(cm) && !rcu_barrier_cb_is_done(&rtpcp->barrier_q_head)) + cpumask_set_cpu(cpu, cm); + n = rcu_segcblist_n_cbs(&rtpcp->cblist); + if (!n) + continue; + pr_cont(" %d:%ld", cpu, n); + gotcb = true; + } + if (gotcb) + pr_cont(".\n"); + else + pr_cont(" (none).\n"); + pr_alert("\tBarrier seq %lu start %lu count %d holdout CPUs ", + data_race(rtp->barrier_q_seq), j - data_race(rtp->barrier_q_start), + atomic_read(&rtp->barrier_q_count)); + if (cpumask_available(cm) && !cpumask_empty(cm)) + pr_cont(" %*pbl.\n", cpumask_pr_args(cm)); + else + pr_cont("(none).\n"); + free_cpumask_var(cm); +} + #endif // #ifndef CONFIG_TINY_RCU static void exit_tasks_rcu_finish_trace(struct task_struct *t); @@ -303,13 +811,18 @@ static void exit_tasks_rcu_finish_trace(struct task_struct *t); /* Wait for one RCU-tasks grace period. */ static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) { - struct task_struct *g, *t; - unsigned long lastreport; - LIST_HEAD(holdouts); + struct task_struct *g; int fract; + LIST_HEAD(holdouts); + unsigned long j; + unsigned long lastinfo; + unsigned long lastreport; + bool reported = false; + int rtsi; + struct task_struct *t; set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); - rtp->pregp_func(); + rtp->pregp_func(&holdouts); /* * There were callbacks, so we need to wait for an RCU-tasks @@ -318,10 +831,12 @@ static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) * and make a list of them in holdouts. */ set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); - rcu_read_lock(); - for_each_process_thread(g, t) - rtp->pertask_func(t, &holdouts); - rcu_read_unlock(); + if (rtp->pertask_func) { + rcu_read_lock(); + for_each_process_thread(g, t) + rtp->pertask_func(t, &holdouts); + rcu_read_unlock(); + } set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); rtp->postscan_func(&holdouts); @@ -332,30 +847,50 @@ static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) * is empty, we are done. */ lastreport = jiffies; + lastinfo = lastreport; + rtsi = READ_ONCE(rcu_task_stall_info); // Start off with initial wait and slowly back off to 1 HZ wait. fract = rtp->init_fract; while (!list_empty(&holdouts)) { + ktime_t exp; bool firstreport; bool needreport; int rtst; - /* Slowly back off waiting for holdouts */ + // Slowly back off waiting for holdouts set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); - schedule_timeout_idle(fract); + if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { + schedule_timeout_idle(fract); + } else { + exp = jiffies_to_nsecs(fract); + __set_current_state(TASK_IDLE); + schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); + } if (fract < HZ) fract++; rtst = READ_ONCE(rcu_task_stall_timeout); needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); - if (needreport) + if (needreport) { lastreport = jiffies; + reported = true; + } firstreport = true; WARN_ON(signal_pending(current)); set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); rtp->holdouts_func(&holdouts, needreport, &firstreport); + + // Print pre-stall informational messages if needed. + j = jiffies; + if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { + lastinfo = j; + rtsi = rtsi * rcu_task_stall_info_mult; + pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n", + __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); + } } set_tasks_gp_state(rtp, RTGS_POST_GP); @@ -369,7 +904,7 @@ static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) //////////////////////////////////////////////////////////////////////// // // Simple variant of RCU whose quiescent states are voluntary context -// switch, cond_resched_rcu_qs(), user-space execution, and idle. +// switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. // As such, grace periods can take one good long time. There are no // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() // because this implementation is intended to get the system into a safe @@ -377,9 +912,53 @@ static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) // Finally, this implementation does not support high call_rcu_tasks() // rates from multiple CPUs. If this is required, per-CPU callback lists // will be needed. +// +// The implementation uses rcu_tasks_wait_gp(), which relies on function +// pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() +// function sets these function pointers up so that rcu_tasks_wait_gp() +// invokes these functions in this order: +// +// rcu_tasks_pregp_step(): +// Invokes synchronize_rcu() in order to wait for all in-flight +// t->on_rq and t->nvcsw transitions to complete. This works because +// all such transitions are carried out with interrupts disabled. +// rcu_tasks_pertask(), invoked on every non-idle task: +// For every runnable non-idle task other than the current one, use +// get_task_struct() to pin down that task, snapshot that task's +// number of voluntary context switches, and add that task to the +// holdout list. +// rcu_tasks_postscan(): +// Gather per-CPU lists of tasks in do_exit() to ensure that all +// tasks that were in the process of exiting (and which thus might +// not know to synchronize with this RCU Tasks grace period) have +// completed exiting. The synchronize_rcu() in rcu_tasks_postgp() +// will take care of any tasks stuck in the non-preemptible region +// of do_exit() following its call to exit_tasks_rcu_finish(). +// check_all_holdout_tasks(), repeatedly until holdout list is empty: +// Scans the holdout list, attempting to identify a quiescent state +// for each task on the list. If there is a quiescent state, the +// corresponding task is removed from the holdout list. +// rcu_tasks_postgp(): +// Invokes synchronize_rcu() in order to ensure that all prior +// t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks +// to have happened before the end of this RCU Tasks grace period. +// Again, this works because all such transitions are carried out +// with interrupts disabled. +// +// For each exiting task, the exit_tasks_rcu_start() and +// exit_tasks_rcu_finish() functions add and remove, respectively, the +// current task to a per-CPU list of tasks that rcu_tasks_postscan() must +// wait on. This is necessary because rcu_tasks_postscan() must wait on +// tasks that have already been removed from the global list of tasks. +// +// Pre-grace-period update-side code is ordered before the grace +// via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code +// is ordered before the grace period via synchronize_rcu() call in +// rcu_tasks_pregp_step() and by the scheduler's locks and interrupt +// disabling. /* Pre-grace-period preparation. */ -static void rcu_tasks_pregp_step(void) +static void rcu_tasks_pregp_step(struct list_head *hop) { /* * Wait for all pre-existing t->on_rq and t->nvcsw transitions @@ -397,10 +976,45 @@ static void rcu_tasks_pregp_step(void) synchronize_rcu(); } +/* Check for quiescent states since the pregp's synchronize_rcu() */ +static bool rcu_tasks_is_holdout(struct task_struct *t) +{ + int cpu; + + /* Has the task been seen voluntarily sleeping? */ + if (!READ_ONCE(t->on_rq)) + return false; + + /* + * t->on_rq && !t->se.sched_delayed *could* be considered sleeping but + * since it is a spurious state (it will transition into the + * traditional blocked state or get woken up without outside + * dependencies), not considering it such should only affect timing. + * + * Be conservative for now and not include it. + */ + + /* + * Idle tasks (or idle injection) within the idle loop are RCU-tasks + * quiescent states. But CPU boot code performed by the idle task + * isn't a quiescent state. + */ + if (is_idle_task(t)) + return false; + + cpu = task_cpu(t); + + /* Idle tasks on offline CPUs are RCU-tasks quiescent states. */ + if (t == idle_task(cpu) && !rcu_cpu_online(cpu)) + return false; + + return true; +} + /* Per-task initial processing. */ static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) { - if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) { + if (t != current && rcu_tasks_is_holdout(t)) { get_task_struct(t); t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); WRITE_ONCE(t->rcu_tasks_holdout, true); @@ -408,17 +1022,71 @@ static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) } } +void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); +DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); + /* Processing between scanning taskslist and draining the holdout list. */ static void rcu_tasks_postscan(struct list_head *hop) { + int cpu; + int rtsi = READ_ONCE(rcu_task_stall_info); + + if (!IS_ENABLED(CONFIG_TINY_RCU)) { + tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; + add_timer(&tasks_rcu_exit_srcu_stall_timer); + } + /* - * Wait for tasks that are in the process of exiting. This - * does only part of the job, ensuring that all tasks that were - * previously exiting reach the point where they have disabled - * preemption, allowing the later synchronize_rcu() to finish - * the job. + * Exiting tasks may escape the tasklist scan. Those are vulnerable + * until their final schedule() with TASK_DEAD state. To cope with + * this, divide the fragile exit path part in two intersecting + * read side critical sections: + * + * 1) A task_struct list addition before calling exit_notify(), + * which may remove the task from the tasklist, with the + * removal after the final preempt_disable() call in do_exit(). + * + * 2) An _RCU_ read side starting with the final preempt_disable() + * call in do_exit() and ending with the final call to schedule() + * with TASK_DEAD state. + * + * This handles the part 1). And postgp will handle part 2) with a + * call to synchronize_rcu(). */ - synchronize_srcu(&tasks_rcu_exit_srcu); + + for_each_possible_cpu(cpu) { + unsigned long j = jiffies + 1; + struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, cpu); + struct task_struct *t; + struct task_struct *t1; + struct list_head tmp; + + raw_spin_lock_irq_rcu_node(rtpcp); + list_for_each_entry_safe(t, t1, &rtpcp->rtp_exit_list, rcu_tasks_exit_list) { + if (list_empty(&t->rcu_tasks_holdout_list)) + rcu_tasks_pertask(t, hop); + + // RT kernels need frequent pauses, otherwise + // pause at least once per pair of jiffies. + if (!IS_ENABLED(CONFIG_PREEMPT_RT) && time_before(jiffies, j)) + continue; + + // Keep our place in the list while pausing. + // Nothing else traverses this list, so adding a + // bare list_head is OK. + list_add(&tmp, &t->rcu_tasks_exit_list); + raw_spin_unlock_irq_rcu_node(rtpcp); + cond_resched(); // For CONFIG_PREEMPT=n kernels + raw_spin_lock_irq_rcu_node(rtpcp); + t1 = list_entry(tmp.next, struct task_struct, rcu_tasks_exit_list); + list_del(&tmp); + j = jiffies + 1; + } + raw_spin_unlock_irq_rcu_node(rtpcp); + } + + if (!IS_ENABLED(CONFIG_TINY_RCU)) + del_timer_sync(&tasks_rcu_exit_srcu_stall_timer); } /* See if tasks are still holding out, complain if so. */ @@ -429,9 +1097,9 @@ static void check_holdout_task(struct task_struct *t, if (!READ_ONCE(t->rcu_tasks_holdout) || t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || - !READ_ONCE(t->on_rq) || + !rcu_tasks_is_holdout(t) || (IS_ENABLED(CONFIG_NO_HZ_FULL) && - !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { + !is_idle_task(t) && READ_ONCE(t->rcu_tasks_idle_cpu) >= 0)) { WRITE_ONCE(t->rcu_tasks_holdout, false); list_del_init(&t->rcu_tasks_holdout_list); put_task_struct(t); @@ -449,7 +1117,7 @@ static void check_holdout_task(struct task_struct *t, t, ".I"[is_idle_task(t)], "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, - t->rcu_tasks_idle_cpu, cpu); + data_race(t->rcu_tasks_idle_cpu), cpu); sched_show_task(t); } @@ -483,13 +1151,27 @@ static void rcu_tasks_postgp(struct rcu_tasks *rtp) * * In addition, this synchronize_rcu() waits for exiting tasks * to complete their final preempt_disable() region of execution, - * cleaning up after the synchronize_srcu() above. + * enforcing the whole region before tasklist removal until + * the final schedule() with TASK_DEAD state to be an RCU TASKS + * read side critical section. */ synchronize_rcu(); } -void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); -DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); +static void tasks_rcu_exit_srcu_stall(struct timer_list *unused) +{ +#ifndef CONFIG_TINY_RCU + int rtsi; + + rtsi = READ_ONCE(rcu_task_stall_info); + pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n", + __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq, + tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies); + pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n"); + tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; + add_timer(&tasks_rcu_exit_srcu_stall_timer); +#endif // #ifndef CONFIG_TINY_RCU +} /** * call_rcu_tasks() - Queue an RCU for invocation task-based grace period @@ -500,11 +1182,11 @@ DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); * period elapses, in other words after all currently executing RCU * read-side critical sections have completed. call_rcu_tasks() assumes * that the read-side critical sections end at a voluntary context - * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, + * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, * or transition to usermode execution. As such, there are no read-side * primitives analogous to rcu_read_lock() and rcu_read_unlock() because * this primitive is intended to determine that all tasks have passed - * through a safe state, not so much for data-strcuture synchronization. + * through a safe state, not so much for data-structure synchronization. * * See the description of call_rcu() for more detailed information on * memory ordering guarantees. @@ -547,20 +1229,25 @@ EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); */ void rcu_barrier_tasks(void) { - /* There is only one callback queue, so this is easy. ;-) */ - synchronize_rcu_tasks(); + rcu_barrier_tasks_generic(&rcu_tasks); } EXPORT_SYMBOL_GPL(rcu_barrier_tasks); +static int rcu_tasks_lazy_ms = -1; +module_param(rcu_tasks_lazy_ms, int, 0444); + static int __init rcu_spawn_tasks_kthread(void) { rcu_tasks.gp_sleep = HZ / 10; rcu_tasks.init_fract = HZ / 10; + if (rcu_tasks_lazy_ms >= 0) + rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms); rcu_tasks.pregp_func = rcu_tasks_pregp_step; rcu_tasks.pertask_func = rcu_tasks_pertask; rcu_tasks.postscan_func = rcu_tasks_postscan; rcu_tasks.holdouts_func = check_all_holdout_tasks; rcu_tasks.postgp_func = rcu_tasks_postgp; + rcu_tasks.wait_state = TASK_IDLE; rcu_spawn_tasks_kthread_generic(&rcu_tasks); return 0; } @@ -571,24 +1258,70 @@ void show_rcu_tasks_classic_gp_kthread(void) show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); } EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); + +void rcu_tasks_torture_stats_print(char *tt, char *tf) +{ + rcu_tasks_torture_stats_print_generic(&rcu_tasks, tt, tf, ""); +} +EXPORT_SYMBOL_GPL(rcu_tasks_torture_stats_print); #endif // !defined(CONFIG_TINY_RCU) -/* Do the srcu_read_lock() for the above synchronize_srcu(). */ -void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) +struct task_struct *get_rcu_tasks_gp_kthread(void) { - preempt_disable(); - current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); - preempt_enable(); + return rcu_tasks.kthread_ptr; } +EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread); -/* Do the srcu_read_unlock() for the above synchronize_srcu(). */ -void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) +void rcu_tasks_get_gp_data(int *flags, unsigned long *gp_seq) { + *flags = 0; + *gp_seq = rcu_seq_current(&rcu_tasks.tasks_gp_seq); +} +EXPORT_SYMBOL_GPL(rcu_tasks_get_gp_data); + +/* + * Protect against tasklist scan blind spot while the task is exiting and + * may be removed from the tasklist. Do this by adding the task to yet + * another list. + * + * Note that the task will remove itself from this list, so there is no + * need for get_task_struct(), except in the case where rcu_tasks_pertask() + * adds it to the holdout list, in which case rcu_tasks_pertask() supplies + * the needed get_task_struct(). + */ +void exit_tasks_rcu_start(void) +{ + unsigned long flags; + struct rcu_tasks_percpu *rtpcp; struct task_struct *t = current; + WARN_ON_ONCE(!list_empty(&t->rcu_tasks_exit_list)); preempt_disable(); - __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); + rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu); + t->rcu_tasks_exit_cpu = smp_processor_id(); + raw_spin_lock_irqsave_rcu_node(rtpcp, flags); + WARN_ON_ONCE(!rtpcp->rtp_exit_list.next); + list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list); + raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); preempt_enable(); +} + +/* + * Remove the task from the "yet another list" because do_exit() is now + * non-preemptible, allowing synchronize_rcu() to wait beyond this point. + */ +void exit_tasks_rcu_finish(void) +{ + unsigned long flags; + struct rcu_tasks_percpu *rtpcp; + struct task_struct *t = current; + + WARN_ON_ONCE(list_empty(&t->rcu_tasks_exit_list)); + rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, t->rcu_tasks_exit_cpu); + raw_spin_lock_irqsave_rcu_node(rtpcp, flags); + list_del_init(&t->rcu_tasks_exit_list); + raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); + exit_tasks_rcu_finish_trace(t); } @@ -601,12 +1334,16 @@ void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } //////////////////////////////////////////////////////////////////////// // -// "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of -// passing an empty function to schedule_on_each_cpu(). This approach -// provides an asynchronous call_rcu_tasks_rude() API and batching -// of concurrent calls to the synchronous synchronize_rcu_rude() API. -// This sends IPIs far and wide and induces otherwise unnecessary context -// switches on all online CPUs, whether idle or not. +// "Rude" variant of Tasks RCU, inspired by Steve Rostedt's +// trick of passing an empty function to schedule_on_each_cpu(). +// This approach provides batching of concurrent calls to the synchronous +// synchronize_rcu_tasks_rude() API. This invokes schedule_on_each_cpu() +// in order to send IPIs far and wide and induces otherwise unnecessary +// context switches on all online CPUs, whether idle or not. +// +// Callback handling is provided by the rcu_tasks_kthread() function. +// +// Ordering is provided by the scheduler's context-switch code. // Empty function to allow workqueues to force a context switch. static void rcu_tasks_be_rude(struct work_struct *work) @@ -620,11 +1357,11 @@ static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) schedule_on_each_cpu(rcu_tasks_be_rude); } -void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); +static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, "RCU Tasks Rude"); -/** +/* * call_rcu_tasks_rude() - Queue a callback rude task-based grace period * @rhp: structure to be used for queueing the RCU updates. * @func: actual callback function to be invoked after the grace period @@ -633,20 +1370,22 @@ DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, * period elapses, in other words after all currently executing RCU * read-side critical sections have completed. call_rcu_tasks_rude() * assumes that the read-side critical sections end at context switch, - * cond_resched_rcu_qs(), or transition to usermode execution. As such, - * there are no read-side primitives analogous to rcu_read_lock() and - * rcu_read_unlock() because this primitive is intended to determine - * that all tasks have passed through a safe state, not so much for - * data-strcuture synchronization. + * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as + * usermode execution is schedulable). As such, there are no read-side + * primitives analogous to rcu_read_lock() and rcu_read_unlock() because + * this primitive is intended to determine that all tasks have passed + * through a safe state, not so much for data-structure synchronization. * * See the description of call_rcu() for more detailed information on * memory ordering guarantees. + * + * This is no longer exported, and is instead reserved for use by + * synchronize_rcu_tasks_rude(). */ -void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) +static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) { call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); } -EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); /** * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period @@ -655,8 +1394,8 @@ EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); * grace period has elapsed, in other words after all currently * executing rcu-tasks read-side critical sections have elapsed. These * read-side critical sections are delimited by calls to schedule(), - * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory, - * anyway) cond_resched(). + * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable + * context), and (in theory, anyway) cond_resched(). * * This is a very specialized primitive, intended only for a few uses in * tracing and other situations requiring manipulation of function preambles @@ -668,23 +1407,11 @@ EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); */ void synchronize_rcu_tasks_rude(void) { - synchronize_rcu_tasks_generic(&rcu_tasks_rude); + if (!IS_ENABLED(CONFIG_ARCH_WANTS_NO_INSTR) || IS_ENABLED(CONFIG_FORCE_TASKS_RUDE_RCU)) + synchronize_rcu_tasks_generic(&rcu_tasks_rude); } EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); -/** - * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. - * - * Although the current implementation is guaranteed to wait, it is not - * obligated to, for example, if there are no pending callbacks. - */ -void rcu_barrier_tasks_rude(void) -{ - /* There is only one callback queue, so this is easy. ;-) */ - synchronize_rcu_tasks_rude(); -} -EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); - static int __init rcu_spawn_tasks_rude_kthread(void) { rcu_tasks_rude.gp_sleep = HZ / 10; @@ -698,7 +1425,27 @@ void show_rcu_tasks_rude_gp_kthread(void) show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); } EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); + +void rcu_tasks_rude_torture_stats_print(char *tt, char *tf) +{ + rcu_tasks_torture_stats_print_generic(&rcu_tasks_rude, tt, tf, ""); +} +EXPORT_SYMBOL_GPL(rcu_tasks_rude_torture_stats_print); #endif // !defined(CONFIG_TINY_RCU) + +struct task_struct *get_rcu_tasks_rude_gp_kthread(void) +{ + return rcu_tasks_rude.kthread_ptr; +} +EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread); + +void rcu_tasks_rude_get_gp_data(int *flags, unsigned long *gp_seq) +{ + *flags = 0; + *gp_seq = rcu_seq_current(&rcu_tasks_rude.tasks_gp_seq); +} +EXPORT_SYMBOL_GPL(rcu_tasks_rude_get_gp_data); + #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ //////////////////////////////////////////////////////////////////////// @@ -713,19 +1460,49 @@ EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); // 2. Protects code in the idle loop, exception entry/exit, and // CPU-hotplug code paths, similar to the capabilities of SRCU. // -// 3. Avoids expensive read-side instruction, having overhead similar +// 3. Avoids expensive read-side instructions, having overhead similar // to that of Preemptible RCU. // -// There are of course downsides. The grace-period code can send IPIs to -// CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. -// It is necessary to scan the full tasklist, much as for Tasks RCU. There -// is a single callback queue guarded by a single lock, again, much as for -// Tasks RCU. If needed, these downsides can be at least partially remedied. +// There are of course downsides. For example, the grace-period code +// can send IPIs to CPUs, even when those CPUs are in the idle loop or +// in nohz_full userspace. If needed, these downsides can be at least +// partially remedied. // // Perhaps most important, this variant of RCU does not affect the vanilla // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace // readers can operate from idle, offline, and exception entry/exit in no // way allows rcu_preempt and rcu_sched readers to also do so. +// +// The implementation uses rcu_tasks_wait_gp(), which relies on function +// pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() +// function sets these function pointers up so that rcu_tasks_wait_gp() +// invokes these functions in this order: +// +// rcu_tasks_trace_pregp_step(): +// Disables CPU hotplug, adds all currently executing tasks to the +// holdout list, then checks the state of all tasks that blocked +// or were preempted within their current RCU Tasks Trace read-side +// critical section, adding them to the holdout list if appropriate. +// Finally, this function re-enables CPU hotplug. +// The ->pertask_func() pointer is NULL, so there is no per-task processing. +// rcu_tasks_trace_postscan(): +// Invokes synchronize_rcu() to wait for late-stage exiting tasks +// to finish exiting. +// check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: +// Scans the holdout list, attempting to identify a quiescent state +// for each task on the list. If there is a quiescent state, the +// corresponding task is removed from the holdout list. Once this +// list is empty, the grace period has completed. +// rcu_tasks_trace_postgp(): +// Provides the needed full memory barrier and does debug checks. +// +// The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. +// +// Pre-grace-period update-side code is ordered before the grace period +// via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period +// read-side code is ordered before the grace period by atomic operations +// on .b.need_qs flag of each task involved in this process, or by scheduler +// context-switch ordering (for locked-down non-running readers). // The lockdep state must be outside of #ifdef to be useful. #ifdef CONFIG_DEBUG_LOCK_ALLOC @@ -737,9 +1514,6 @@ EXPORT_SYMBOL_GPL(rcu_trace_lock_map); #ifdef CONFIG_TASKS_TRACE_RCU -static atomic_t trc_n_readers_need_end; // Number of waited-for readers. -static DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks. - // Record outstanding IPIs to each CPU. No point in sending two... static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); @@ -748,44 +1522,97 @@ static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); static unsigned long n_heavy_reader_attempts; static unsigned long n_heavy_reader_updates; static unsigned long n_heavy_reader_ofl_updates; +static unsigned long n_trc_holdouts; void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, "RCU Tasks Trace"); +/* Load from ->trc_reader_special.b.need_qs with proper ordering. */ +static u8 rcu_ld_need_qs(struct task_struct *t) +{ + smp_mb(); // Enforce full grace-period ordering. + return smp_load_acquire(&t->trc_reader_special.b.need_qs); +} + +/* Store to ->trc_reader_special.b.need_qs with proper ordering. */ +static void rcu_st_need_qs(struct task_struct *t, u8 v) +{ + smp_store_release(&t->trc_reader_special.b.need_qs, v); + smp_mb(); // Enforce full grace-period ordering. +} + /* - * This irq_work handler allows rcu_read_unlock_trace() to be invoked - * while the scheduler locks are held. + * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for + * the four-byte operand-size restriction of some platforms. + * + * Returns the old value, which is often ignored. */ -static void rcu_read_unlock_iw(struct irq_work *iwp) +u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new) { - wake_up(&trc_wait); + return cmpxchg(&t->trc_reader_special.b.need_qs, old, new); } -static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw); +EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs); -/* If we are the last reader, wake up the grace-period kthread. */ -void rcu_read_unlock_trace_special(struct task_struct *t, int nesting) +/* + * If we are the last reader, signal the grace-period kthread. + * Also remove from the per-CPU list of blocked tasks. + */ +void rcu_read_unlock_trace_special(struct task_struct *t) { - int nq = t->trc_reader_special.b.need_qs; + unsigned long flags; + struct rcu_tasks_percpu *rtpcp; + union rcu_special trs; + + // Open-coded full-word version of rcu_ld_need_qs(). + smp_mb(); // Enforce full grace-period ordering. + trs = smp_load_acquire(&t->trc_reader_special); - if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && - t->trc_reader_special.b.need_mb) + if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb) smp_mb(); // Pairs with update-side barriers. // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. - if (nq) - WRITE_ONCE(t->trc_reader_special.b.need_qs, false); - WRITE_ONCE(t->trc_reader_nesting, nesting); - if (nq && atomic_dec_and_test(&trc_n_readers_need_end)) - irq_work_queue(&rcu_tasks_trace_iw); + if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) { + u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS, + TRC_NEED_QS_CHECKED); + + WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result); + } + if (trs.b.blocked) { + rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu); + raw_spin_lock_irqsave_rcu_node(rtpcp, flags); + list_del_init(&t->trc_blkd_node); + WRITE_ONCE(t->trc_reader_special.b.blocked, false); + raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); + } + WRITE_ONCE(t->trc_reader_nesting, 0); } EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); +/* Add a newly blocked reader task to its CPU's list. */ +void rcu_tasks_trace_qs_blkd(struct task_struct *t) +{ + unsigned long flags; + struct rcu_tasks_percpu *rtpcp; + + local_irq_save(flags); + rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu); + raw_spin_lock_rcu_node(rtpcp); // irqs already disabled + t->trc_blkd_cpu = smp_processor_id(); + if (!rtpcp->rtp_blkd_tasks.next) + INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); + list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); + WRITE_ONCE(t->trc_reader_special.b.blocked, true); + raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); +} +EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd); + /* Add a task to the holdout list, if it is not already on the list. */ static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) { if (list_empty(&t->trc_holdout_list)) { get_task_struct(t); list_add(&t->trc_holdout_list, bhp); + n_trc_holdouts++; } } @@ -795,98 +1622,91 @@ static void trc_del_holdout(struct task_struct *t) if (!list_empty(&t->trc_holdout_list)) { list_del_init(&t->trc_holdout_list); put_task_struct(t); + n_trc_holdouts--; } } /* IPI handler to check task state. */ static void trc_read_check_handler(void *t_in) { + int nesting; struct task_struct *t = current; struct task_struct *texp = t_in; // If the task is no longer running on this CPU, leave. - if (unlikely(texp != t)) { - if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) - wake_up(&trc_wait); + if (unlikely(texp != t)) goto reset_ipi; // Already on holdout list, so will check later. - } // If the task is not in a read-side critical section, and // if this is the last reader, awaken the grace-period kthread. - if (likely(!t->trc_reader_nesting)) { - if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) - wake_up(&trc_wait); - // Mark as checked after decrement to avoid false - // positives on the above WARN_ON_ONCE(). - WRITE_ONCE(t->trc_reader_checked, true); + nesting = READ_ONCE(t->trc_reader_nesting); + if (likely(!nesting)) { + rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); goto reset_ipi; } // If we are racing with an rcu_read_unlock_trace(), try again later. - if (unlikely(t->trc_reader_nesting < 0)) { - if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) - wake_up(&trc_wait); + if (unlikely(nesting < 0)) goto reset_ipi; - } - WRITE_ONCE(t->trc_reader_checked, true); - // Get here if the task is in a read-side critical section. Set - // its state so that it will awaken the grace-period kthread upon - // exit from that critical section. - WARN_ON_ONCE(t->trc_reader_special.b.need_qs); - WRITE_ONCE(t->trc_reader_special.b.need_qs, true); + // Get here if the task is in a read-side critical section. + // Set its state so that it will update state for the grace-period + // kthread upon exit from that critical section. + rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED); reset_ipi: // Allow future IPIs to be sent on CPU and for task. // Also order this IPI handler against any later manipulations of // the intended task. - smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ + smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ } /* Callback function for scheduler to check locked-down task. */ -static bool trc_inspect_reader(struct task_struct *t, void *arg) +static int trc_inspect_reader(struct task_struct *t, void *bhp_in) { + struct list_head *bhp = bhp_in; int cpu = task_cpu(t); - bool in_qs = false; + int nesting; bool ofl = cpu_is_offline(cpu); - if (task_curr(t)) { - WARN_ON_ONCE(ofl && !is_idle_task(t)); - + if (task_curr(t) && !ofl) { // If no chance of heavyweight readers, do it the hard way. - if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) - return false; + if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) + return -EINVAL; // If heavyweight readers are enabled on the remote task, // we can inspect its state despite its currently running. // However, we cannot safely change its state. n_heavy_reader_attempts++; - if (!ofl && // Check for "running" idle tasks on offline CPUs. - !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) - return false; // No quiescent state, do it the hard way. + // Check for "running" idle tasks on offline CPUs. + if (!rcu_watching_zero_in_eqs(cpu, &t->trc_reader_nesting)) + return -EINVAL; // No quiescent state, do it the hard way. n_heavy_reader_updates++; - if (ofl) - n_heavy_reader_ofl_updates++; - in_qs = true; + nesting = 0; } else { - in_qs = likely(!t->trc_reader_nesting); + // The task is not running, so C-language access is safe. + nesting = t->trc_reader_nesting; + WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t)))); + if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl) + n_heavy_reader_ofl_updates++; } - // Mark as checked. Because this is called from the grace-period - // kthread, also remove the task from the holdout list. - t->trc_reader_checked = true; - trc_del_holdout(t); - - if (in_qs) - return true; // Already in quiescent state, done!!! + // If not exiting a read-side critical section, mark as checked + // so that the grace-period kthread will remove it from the + // holdout list. + if (!nesting) { + rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); + return 0; // In QS, so done. + } + if (nesting < 0) + return -EINVAL; // Reader transitioning, try again later. // The task is in a read-side critical section, so set up its - // state so that it will awaken the grace-period kthread upon exit - // from that critical section. - atomic_inc(&trc_n_readers_need_end); // One more to wait on. - WARN_ON_ONCE(t->trc_reader_special.b.need_qs); - WRITE_ONCE(t->trc_reader_special.b.need_qs, true); - return true; + // state so that it will update state upon exit from that critical + // section. + if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED)) + trc_add_holdout(t, bhp); + return 0; } /* Attempt to extract the state for the specified task. */ @@ -901,20 +1721,25 @@ static void trc_wait_for_one_reader(struct task_struct *t, // The current task had better be in a quiescent state. if (t == current) { - t->trc_reader_checked = true; - trc_del_holdout(t); - WARN_ON_ONCE(t->trc_reader_nesting); + rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); + WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); return; } // Attempt to nail down the task for inspection. get_task_struct(t); - if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) { + if (!task_call_func(t, trc_inspect_reader, bhp)) { put_task_struct(t); return; } put_task_struct(t); + // If this task is not yet on the holdout list, then we are in + // an RCU read-side critical section. Otherwise, the invocation of + // trc_add_holdout() that added it to the list did the necessary + // get_task_struct(). Either way, the task cannot be freed out + // from under this code. + // If currently running, send an IPI, either way, add to list. trc_add_holdout(t, bhp); if (task_curr(t) && @@ -926,96 +1751,171 @@ static void trc_wait_for_one_reader(struct task_struct *t, if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) return; - atomic_inc(&trc_n_readers_need_end); per_cpu(trc_ipi_to_cpu, cpu) = true; t->trc_ipi_to_cpu = cpu; rcu_tasks_trace.n_ipis++; - if (smp_call_function_single(cpu, - trc_read_check_handler, t, 0)) { + if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { // Just in case there is some other reason for // failure than the target CPU being offline. + WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", + __func__, cpu); rcu_tasks_trace.n_ipis_fails++; per_cpu(trc_ipi_to_cpu, cpu) = false; - t->trc_ipi_to_cpu = cpu; - if (atomic_dec_and_test(&trc_n_readers_need_end)) { - WARN_ON_ONCE(1); - wake_up(&trc_wait); - } + t->trc_ipi_to_cpu = -1; } } } +/* + * Initialize for first-round processing for the specified task. + * Return false if task is NULL or already taken care of, true otherwise. + */ +static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself) +{ + // During early boot when there is only the one boot CPU, there + // is no idle task for the other CPUs. Also, the grace-period + // kthread is always in a quiescent state. In addition, just return + // if this task is already on the list. + if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list)) + return false; + + rcu_st_need_qs(t, 0); + t->trc_ipi_to_cpu = -1; + return true; +} + +/* Do first-round processing for the specified task. */ +static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop) +{ + if (rcu_tasks_trace_pertask_prep(t, true)) + trc_wait_for_one_reader(t, hop); +} + /* Initialize for a new RCU-tasks-trace grace period. */ -static void rcu_tasks_trace_pregp_step(void) +static void rcu_tasks_trace_pregp_step(struct list_head *hop) { + LIST_HEAD(blkd_tasks); int cpu; - - // Allow for fast-acting IPIs. - atomic_set(&trc_n_readers_need_end, 1); + unsigned long flags; + struct rcu_tasks_percpu *rtpcp; + struct task_struct *t; // There shouldn't be any old IPIs, but... for_each_possible_cpu(cpu) WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); - // Disable CPU hotplug across the tasklist scan. - // This also waits for all readers in CPU-hotplug code paths. + // Disable CPU hotplug across the CPU scan for the benefit of + // any IPIs that might be needed. This also waits for all readers + // in CPU-hotplug code paths. cpus_read_lock(); -} -/* Do first-round processing for the specified task. */ -static void rcu_tasks_trace_pertask(struct task_struct *t, - struct list_head *hop) -{ - // During early boot when there is only the one boot CPU, there - // is no idle task for the other CPUs. Just return. - if (unlikely(t == NULL)) - return; + // These rcu_tasks_trace_pertask_prep() calls are serialized to + // allow safe access to the hop list. + for_each_online_cpu(cpu) { + rcu_read_lock(); + // Note that cpu_curr_snapshot() picks up the target + // CPU's current task while its runqueue is locked with + // an smp_mb__after_spinlock(). This ensures that either + // the grace-period kthread will see that task's read-side + // critical section or the task will see the updater's pre-GP + // accesses. The trailing smp_mb() in cpu_curr_snapshot() + // does not currently play a role other than simplify + // that function's ordering semantics. If these simplified + // ordering semantics continue to be redundant, that smp_mb() + // might be removed. + t = cpu_curr_snapshot(cpu); + if (rcu_tasks_trace_pertask_prep(t, true)) + trc_add_holdout(t, hop); + rcu_read_unlock(); + cond_resched_tasks_rcu_qs(); + } - WRITE_ONCE(t->trc_reader_special.b.need_qs, false); - WRITE_ONCE(t->trc_reader_checked, false); - t->trc_ipi_to_cpu = -1; - trc_wait_for_one_reader(t, hop); + // Only after all running tasks have been accounted for is it + // safe to take care of the tasks that have blocked within their + // current RCU tasks trace read-side critical section. + for_each_possible_cpu(cpu) { + rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu); + raw_spin_lock_irqsave_rcu_node(rtpcp, flags); + list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks); + while (!list_empty(&blkd_tasks)) { + rcu_read_lock(); + t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node); + list_del_init(&t->trc_blkd_node); + list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); + raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); + rcu_tasks_trace_pertask(t, hop); + rcu_read_unlock(); + raw_spin_lock_irqsave_rcu_node(rtpcp, flags); + } + raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); + cond_resched_tasks_rcu_qs(); + } + + // Re-enable CPU hotplug now that the holdout list is populated. + cpus_read_unlock(); } /* - * Do intermediate processing between task and holdout scans and - * pick up the idle tasks. + * Do intermediate processing between task and holdout scans. */ static void rcu_tasks_trace_postscan(struct list_head *hop) { - int cpu; - - for_each_possible_cpu(cpu) - rcu_tasks_trace_pertask(idle_task(cpu), hop); - - // Re-enable CPU hotplug now that the tasklist scan has completed. - cpus_read_unlock(); - // Wait for late-stage exiting tasks to finish exiting. // These might have passed the call to exit_tasks_rcu_finish(). + + // If you remove the following line, update rcu_trace_implies_rcu_gp()!!! synchronize_rcu(); - // Any tasks that exit after this point will set ->trc_reader_checked. + // Any tasks that exit after this point will set + // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs. +} + +/* Communicate task state back to the RCU tasks trace stall warning request. */ +struct trc_stall_chk_rdr { + int nesting; + int ipi_to_cpu; + u8 needqs; +}; + +static int trc_check_slow_task(struct task_struct *t, void *arg) +{ + struct trc_stall_chk_rdr *trc_rdrp = arg; + + if (task_curr(t) && cpu_online(task_cpu(t))) + return false; // It is running, so decline to inspect it. + trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting); + trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu); + trc_rdrp->needqs = rcu_ld_need_qs(t); + return true; } /* Show the state of a task stalling the current RCU tasks trace GP. */ static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) { int cpu; + struct trc_stall_chk_rdr trc_rdr; + bool is_idle_tsk = is_idle_task(t); if (*firstreport) { pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); *firstreport = false; } - // FIXME: This should attempt to use try_invoke_on_nonrunning_task(). cpu = task_cpu(t); - pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n", - t->pid, - ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0], - ".i"[is_idle_task(t)], - ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)], - t->trc_reader_nesting, - " N"[!!t->trc_reader_special.b.need_qs], - cpu); + if (!task_call_func(t, trc_check_slow_task, &trc_rdr)) + pr_alert("P%d: %c%c\n", + t->pid, + ".I"[t->trc_ipi_to_cpu >= 0], + ".i"[is_idle_tsk]); + else + pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n", + t->pid, + ".I"[trc_rdr.ipi_to_cpu >= 0], + ".i"[is_idle_tsk], + ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], + ".B"[!!data_race(t->trc_reader_special.b.blocked)], + trc_rdr.nesting, + " !CN"[trc_rdr.needqs & 0x3], + " ?"[trc_rdr.needqs > 0x3], + cpu, cpu_online(cpu) ? "" : "(offline)"); sched_show_task(t); } @@ -1035,71 +1935,52 @@ static void check_all_holdout_tasks_trace(struct list_head *hop, { struct task_struct *g, *t; - // Disable CPU hotplug across the holdout list scan. + // Disable CPU hotplug across the holdout list scan for IPIs. cpus_read_lock(); list_for_each_entry_safe(t, g, hop, trc_holdout_list) { // If safe and needed, try to check the current task. if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && - !READ_ONCE(t->trc_reader_checked)) + !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED)) trc_wait_for_one_reader(t, hop); // If check succeeded, remove this task from the list. - if (READ_ONCE(t->trc_reader_checked)) + if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 && + rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED) trc_del_holdout(t); else if (needreport) show_stalled_task_trace(t, firstreport); + cond_resched_tasks_rcu_qs(); } // Re-enable CPU hotplug now that the holdout list scan has completed. cpus_read_unlock(); if (needreport) { - if (firstreport) + if (*firstreport) pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); show_stalled_ipi_trace(); } } +static void rcu_tasks_trace_empty_fn(void *unused) +{ +} + /* Wait for grace period to complete and provide ordering. */ static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) { - bool firstreport; - struct task_struct *g, *t; - LIST_HEAD(holdouts); - long ret; + int cpu; - // Remove the safety count. - smp_mb__before_atomic(); // Order vs. earlier atomics - atomic_dec(&trc_n_readers_need_end); - smp_mb__after_atomic(); // Order vs. later atomics + // Wait for any lingering IPI handlers to complete. Note that + // if a CPU has gone offline or transitioned to userspace in the + // meantime, all IPI handlers should have been drained beforehand. + // Yes, this assumes that CPUs process IPIs in order. If that ever + // changes, there will need to be a recheck and/or timed wait. + for_each_online_cpu(cpu) + if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))) + smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); - // Wait for readers. - set_tasks_gp_state(rtp, RTGS_WAIT_READERS); - for (;;) { - ret = wait_event_idle_exclusive_timeout( - trc_wait, - atomic_read(&trc_n_readers_need_end) == 0, - READ_ONCE(rcu_task_stall_timeout)); - if (ret) - break; // Count reached zero. - // Stall warning time, so make a list of the offenders. - rcu_read_lock(); - for_each_process_thread(g, t) - if (READ_ONCE(t->trc_reader_special.b.need_qs)) - trc_add_holdout(t, &holdouts); - rcu_read_unlock(); - firstreport = true; - list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) { - if (READ_ONCE(t->trc_reader_special.b.need_qs)) - show_stalled_task_trace(t, &firstreport); - trc_del_holdout(t); // Release task_struct reference. - } - if (firstreport) - pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n"); - show_stalled_ipi_trace(); - pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end)); - } smp_mb(); // Caller's code must be ordered after wakeup. // Pairs with pretty much every ordering primitive. } @@ -1107,11 +1988,14 @@ static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) /* Report any needed quiescent state for this exiting task. */ static void exit_tasks_rcu_finish_trace(struct task_struct *t) { - WRITE_ONCE(t->trc_reader_checked, true); - WARN_ON_ONCE(t->trc_reader_nesting); - WRITE_ONCE(t->trc_reader_nesting, 0); - if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs))) - rcu_read_unlock_trace_special(t, 0); + union rcu_special trs = READ_ONCE(t->trc_reader_special); + + rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); + WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); + if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked)) + rcu_read_unlock_trace_special(t); + else + WRITE_ONCE(t->trc_reader_nesting, 0); } /** @@ -1119,15 +2003,11 @@ static void exit_tasks_rcu_finish_trace(struct task_struct *t) * @rhp: structure to be used for queueing the RCU updates. * @func: actual callback function to be invoked after the grace period * - * The callback function will be invoked some time after a full grace - * period elapses, in other words after all currently executing RCU - * read-side critical sections have completed. call_rcu_tasks_trace() - * assumes that the read-side critical sections end at context switch, - * cond_resched_rcu_qs(), or transition to usermode execution. As such, - * there are no read-side primitives analogous to rcu_read_lock() and - * rcu_read_unlock() because this primitive is intended to determine - * that all tasks have passed through a safe state, not so much for - * data-strcuture synchronization. + * The callback function will be invoked some time after a trace rcu-tasks + * grace period elapses, in other words after all currently executing + * trace rcu-tasks read-side critical sections have completed. These + * read-side critical sections are delimited by calls to rcu_read_lock_trace() + * and rcu_read_unlock_trace(). * * See the description of call_rcu() for more detailed information on * memory ordering guarantees. @@ -1143,7 +2023,7 @@ EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); * * Control will return to the caller some time after a trace rcu-tasks * grace period has elapsed, in other words after all currently executing - * rcu-tasks read-side critical sections have elapsed. These read-side + * trace rcu-tasks read-side critical sections have elapsed. These read-side * critical sections are delimited by calls to rcu_read_lock_trace() * and rcu_read_unlock_trace(). * @@ -1170,11 +2050,13 @@ EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); */ void rcu_barrier_tasks_trace(void) { - /* There is only one callback queue, so this is easy. ;-) */ - synchronize_rcu_tasks_trace(); + rcu_barrier_tasks_generic(&rcu_tasks_trace); } EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); +int rcu_tasks_trace_lazy_ms = -1; +module_param(rcu_tasks_trace_lazy_ms, int, 0444); + static int __init rcu_spawn_tasks_trace_kthread(void) { if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { @@ -1188,8 +2070,9 @@ static int __init rcu_spawn_tasks_trace_kthread(void) if (rcu_tasks_trace.init_fract <= 0) rcu_tasks_trace.init_fract = 1; } + if (rcu_tasks_trace_lazy_ms >= 0) + rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms); rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; - rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask; rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; @@ -1202,15 +2085,35 @@ void show_rcu_tasks_trace_gp_kthread(void) { char buf[64]; - sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end), + snprintf(buf, sizeof(buf), "N%lu h:%lu/%lu/%lu", + data_race(n_trc_holdouts), data_race(n_heavy_reader_ofl_updates), data_race(n_heavy_reader_updates), data_race(n_heavy_reader_attempts)); show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); } EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); + +void rcu_tasks_trace_torture_stats_print(char *tt, char *tf) +{ + rcu_tasks_torture_stats_print_generic(&rcu_tasks_trace, tt, tf, ""); +} +EXPORT_SYMBOL_GPL(rcu_tasks_trace_torture_stats_print); #endif // !defined(CONFIG_TINY_RCU) +struct task_struct *get_rcu_tasks_trace_gp_kthread(void) +{ + return rcu_tasks_trace.kthread_ptr; +} +EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread); + +void rcu_tasks_trace_get_gp_data(int *flags, unsigned long *gp_seq) +{ + *flags = 0; + *gp_seq = rcu_seq_current(&rcu_tasks_trace.tasks_gp_seq); +} +EXPORT_SYMBOL_GPL(rcu_tasks_trace_get_gp_data); + #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ @@ -1224,6 +2127,135 @@ void show_rcu_tasks_gp_kthreads(void) } #endif /* #ifndef CONFIG_TINY_RCU */ +#ifdef CONFIG_PROVE_RCU +struct rcu_tasks_test_desc { + struct rcu_head rh; + const char *name; + bool notrun; + unsigned long runstart; +}; + +static struct rcu_tasks_test_desc tests[] = { + { + .name = "call_rcu_tasks()", + /* If not defined, the test is skipped. */ + .notrun = IS_ENABLED(CONFIG_TASKS_RCU), + }, + { + .name = "call_rcu_tasks_trace()", + /* If not defined, the test is skipped. */ + .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU) + } +}; + +#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) +static void test_rcu_tasks_callback(struct rcu_head *rhp) +{ + struct rcu_tasks_test_desc *rttd = + container_of(rhp, struct rcu_tasks_test_desc, rh); + + pr_info("Callback from %s invoked.\n", rttd->name); + + rttd->notrun = false; +} +#endif // #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) + +static void rcu_tasks_initiate_self_tests(void) +{ +#ifdef CONFIG_TASKS_RCU + pr_info("Running RCU Tasks wait API self tests\n"); + tests[0].runstart = jiffies; + synchronize_rcu_tasks(); + call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); +#endif + +#ifdef CONFIG_TASKS_RUDE_RCU + pr_info("Running RCU Tasks Rude wait API self tests\n"); + synchronize_rcu_tasks_rude(); +#endif + +#ifdef CONFIG_TASKS_TRACE_RCU + pr_info("Running RCU Tasks Trace wait API self tests\n"); + tests[1].runstart = jiffies; + synchronize_rcu_tasks_trace(); + call_rcu_tasks_trace(&tests[1].rh, test_rcu_tasks_callback); +#endif +} + +/* + * Return: 0 - test passed + * 1 - test failed, but have not timed out yet + * -1 - test failed and timed out + */ +static int rcu_tasks_verify_self_tests(void) +{ + int ret = 0; + int i; + unsigned long bst = rcu_task_stall_timeout; + + if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT) + bst = RCU_TASK_BOOT_STALL_TIMEOUT; + for (i = 0; i < ARRAY_SIZE(tests); i++) { + while (tests[i].notrun) { // still hanging. + if (time_after(jiffies, tests[i].runstart + bst)) { + pr_err("%s has failed boot-time tests.\n", tests[i].name); + ret = -1; + break; + } + ret = 1; + break; + } + } + WARN_ON(ret < 0); + + return ret; +} + +/* + * Repeat the rcu_tasks_verify_self_tests() call once every second until the + * test passes or has timed out. + */ +static struct delayed_work rcu_tasks_verify_work; +static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused) +{ + int ret = rcu_tasks_verify_self_tests(); + + if (ret <= 0) + return; + + /* Test fails but not timed out yet, reschedule another check */ + schedule_delayed_work(&rcu_tasks_verify_work, HZ); +} + +static int rcu_tasks_verify_schedule_work(void) +{ + INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn); + rcu_tasks_verify_work_fn(NULL); + return 0; +} +late_initcall(rcu_tasks_verify_schedule_work); +#else /* #ifdef CONFIG_PROVE_RCU */ +static void rcu_tasks_initiate_self_tests(void) { } +#endif /* #else #ifdef CONFIG_PROVE_RCU */ + +void __init tasks_cblist_init_generic(void) +{ + lockdep_assert_irqs_disabled(); + WARN_ON(num_online_cpus() > 1); + +#ifdef CONFIG_TASKS_RCU + cblist_init_generic(&rcu_tasks); +#endif + +#ifdef CONFIG_TASKS_RUDE_RCU + cblist_init_generic(&rcu_tasks_rude); +#endif + +#ifdef CONFIG_TASKS_TRACE_RCU + cblist_init_generic(&rcu_tasks_trace); +#endif +} + void __init rcu_init_tasks_generic(void) { #ifdef CONFIG_TASKS_RCU @@ -1237,9 +2269,11 @@ void __init rcu_init_tasks_generic(void) #ifdef CONFIG_TASKS_TRACE_RCU rcu_spawn_tasks_trace_kthread(); #endif + + // Run the self-tests. + rcu_tasks_initiate_self_tests(); } #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ static inline void rcu_tasks_bootup_oddness(void) {} -void show_rcu_tasks_gp_kthreads(void) {} #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ |