summaryrefslogtreecommitdiff
path: root/kernel/sched/core.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/core.c')
-rw-r--r--kernel/sched/core.c3038
1 files changed, 845 insertions, 2193 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 9116bcc90346..042351c7afce 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -2,9 +2,10 @@
/*
* kernel/sched/core.c
*
- * Core kernel scheduler code and related syscalls
+ * Core kernel CPU scheduler code
*
* Copyright (C) 1991-2002 Linus Torvalds
+ * Copyright (C) 1998-2024 Ingo Molnar, Red Hat
*/
#include <linux/highmem.h>
#include <linux/hrtimer_api.h>
@@ -108,7 +109,7 @@ EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
-EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
+EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
@@ -162,13 +163,19 @@ static inline int __task_prio(const struct task_struct *p)
if (p->sched_class == &stop_sched_class) /* trumps deadline */
return -2;
- if (rt_prio(p->prio)) /* includes deadline */
+ if (p->dl_server)
+ return -1; /* deadline */
+
+ if (rt_or_dl_prio(p->prio))
return p->prio; /* [-1, 99] */
if (p->sched_class == &idle_sched_class)
return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
- return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
+ if (task_on_scx(p))
+ return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
+
+ return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
}
/*
@@ -191,12 +198,33 @@ static inline bool prio_less(const struct task_struct *a,
if (-pb < -pa)
return false;
- if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
- return !dl_time_before(a->dl.deadline, b->dl.deadline);
+ if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
+ const struct sched_dl_entity *a_dl, *b_dl;
+
+ a_dl = &a->dl;
+ /*
+ * Since,'a' and 'b' can be CFS tasks served by DL server,
+ * __task_prio() can return -1 (for DL) even for those. In that
+ * case, get to the dl_server's DL entity.
+ */
+ if (a->dl_server)
+ a_dl = a->dl_server;
+
+ b_dl = &b->dl;
+ if (b->dl_server)
+ b_dl = b->dl_server;
+
+ return !dl_time_before(a_dl->deadline, b_dl->deadline);
+ }
if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
return cfs_prio_less(a, b, in_fi);
+#ifdef CONFIG_SCHED_CLASS_EXT
+ if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */
+ return scx_prio_less(a, b, in_fi);
+#endif
+
return false;
}
@@ -239,6 +267,9 @@ static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
void sched_core_enqueue(struct rq *rq, struct task_struct *p)
{
+ if (p->se.sched_delayed)
+ return;
+
rq->core->core_task_seq++;
if (!p->core_cookie)
@@ -249,6 +280,9 @@ void sched_core_enqueue(struct rq *rq, struct task_struct *p)
void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
{
+ if (p->se.sched_delayed)
+ return;
+
rq->core->core_task_seq++;
if (sched_core_enqueued(p)) {
@@ -514,6 +548,11 @@ sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
* ON_RQ_MIGRATING state is used for migration without holding both
* rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
*
+ * Additionally it is possible to be ->on_rq but still be considered not
+ * runnable when p->se.sched_delayed is true. These tasks are on the runqueue
+ * but will be dequeued as soon as they get picked again. See the
+ * task_is_runnable() helper.
+ *
* p->on_cpu <- { 0, 1 }:
*
* is set by prepare_task() and cleared by finish_task() such that it will be
@@ -701,40 +740,43 @@ static void update_rq_clock_task(struct rq *rq, s64 delta)
s64 __maybe_unused steal = 0, irq_delta = 0;
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
- irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
+ if (irqtime_enabled()) {
+ irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
- /*
- * Since irq_time is only updated on {soft,}irq_exit, we might run into
- * this case when a previous update_rq_clock() happened inside a
- * {soft,}irq region.
- *
- * When this happens, we stop ->clock_task and only update the
- * prev_irq_time stamp to account for the part that fit, so that a next
- * update will consume the rest. This ensures ->clock_task is
- * monotonic.
- *
- * It does however cause some slight miss-attribution of {soft,}irq
- * time, a more accurate solution would be to update the irq_time using
- * the current rq->clock timestamp, except that would require using
- * atomic ops.
- */
- if (irq_delta > delta)
- irq_delta = delta;
-
- rq->prev_irq_time += irq_delta;
- delta -= irq_delta;
- psi_account_irqtime(rq->curr, irq_delta);
- delayacct_irq(rq->curr, irq_delta);
+ /*
+ * Since irq_time is only updated on {soft,}irq_exit, we might run into
+ * this case when a previous update_rq_clock() happened inside a
+ * {soft,}IRQ region.
+ *
+ * When this happens, we stop ->clock_task and only update the
+ * prev_irq_time stamp to account for the part that fit, so that a next
+ * update will consume the rest. This ensures ->clock_task is
+ * monotonic.
+ *
+ * It does however cause some slight miss-attribution of {soft,}IRQ
+ * time, a more accurate solution would be to update the irq_time using
+ * the current rq->clock timestamp, except that would require using
+ * atomic ops.
+ */
+ if (irq_delta > delta)
+ irq_delta = delta;
+
+ rq->prev_irq_time += irq_delta;
+ delta -= irq_delta;
+ delayacct_irq(rq->curr, irq_delta);
+ }
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
if (static_key_false((&paravirt_steal_rq_enabled))) {
- steal = paravirt_steal_clock(cpu_of(rq));
+ u64 prev_steal;
+
+ steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
steal -= rq->prev_steal_time_rq;
if (unlikely(steal > delta))
steal = delta;
- rq->prev_steal_time_rq += steal;
+ rq->prev_steal_time_rq = prev_steal;
delta -= steal;
}
#endif
@@ -751,6 +793,7 @@ static void update_rq_clock_task(struct rq *rq, s64 delta)
void update_rq_clock(struct rq *rq)
{
s64 delta;
+ u64 clock;
lockdep_assert_rq_held(rq);
@@ -762,11 +805,14 @@ void update_rq_clock(struct rq *rq)
SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
rq->clock_update_flags |= RQCF_UPDATED;
#endif
+ clock = sched_clock_cpu(cpu_of(rq));
+ scx_rq_clock_update(rq, clock);
- delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
+ delta = clock - rq->clock;
if (delta < 0)
return;
rq->clock += delta;
+
update_rq_clock_task(rq, delta);
}
@@ -794,7 +840,7 @@ static enum hrtimer_restart hrtick(struct hrtimer *timer)
rq_lock(rq, &rf);
update_rq_clock(rq);
- rq->curr->sched_class->task_tick(rq, rq->curr, 1);
+ rq->donor->sched_class->task_tick(rq, rq->curr, 1);
rq_unlock(rq, &rf);
return HRTIMER_NORESTART;
@@ -826,7 +872,7 @@ static void __hrtick_start(void *arg)
/*
* Called to set the hrtick timer state.
*
- * called with rq->lock held and irqs disabled
+ * called with rq->lock held and IRQs disabled
*/
void hrtick_start(struct rq *rq, u64 delay)
{
@@ -850,7 +896,7 @@ void hrtick_start(struct rq *rq, u64 delay)
/*
* Called to set the hrtick timer state.
*
- * called with rq->lock held and irqs disabled
+ * called with rq->lock held and IRQs disabled
*/
void hrtick_start(struct rq *rq, u64 delay)
{
@@ -884,7 +930,7 @@ static inline void hrtick_rq_init(struct rq *rq)
#endif /* CONFIG_SCHED_HRTICK */
/*
- * cmpxchg based fetch_or, macro so it works for different integer types
+ * try_cmpxchg based fetch_or() macro so it works for different integer types:
*/
#define fetch_or(ptr, mask) \
({ \
@@ -903,10 +949,9 @@ static inline void hrtick_rq_init(struct rq *rq)
* this avoids any races wrt polling state changes and thereby avoids
* spurious IPIs.
*/
-static inline bool set_nr_and_not_polling(struct task_struct *p)
+static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
{
- struct thread_info *ti = task_thread_info(p);
- return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
+ return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
}
/*
@@ -931,9 +976,9 @@ static bool set_nr_if_polling(struct task_struct *p)
}
#else
-static inline bool set_nr_and_not_polling(struct task_struct *p)
+static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
{
- set_tsk_need_resched(p);
+ set_ti_thread_flag(ti, tif);
return true;
}
@@ -1018,9 +1063,10 @@ void wake_up_q(struct wake_q_head *head)
struct task_struct *task;
task = container_of(node, struct task_struct, wake_q);
- /* Task can safely be re-inserted now: */
node = node->next;
- task->wake_q.next = NULL;
+ /* pairs with cmpxchg_relaxed() in __wake_q_add() */
+ WRITE_ONCE(task->wake_q.next, NULL);
+ /* Task can safely be re-inserted now. */
/*
* wake_up_process() executes a full barrier, which pairs with
@@ -1038,28 +1084,70 @@ void wake_up_q(struct wake_q_head *head)
* might also involve a cross-CPU call to trigger the scheduler on
* the target CPU.
*/
-void resched_curr(struct rq *rq)
+static void __resched_curr(struct rq *rq, int tif)
{
struct task_struct *curr = rq->curr;
+ struct thread_info *cti = task_thread_info(curr);
int cpu;
lockdep_assert_rq_held(rq);
- if (test_tsk_need_resched(curr))
+ /*
+ * Always immediately preempt the idle task; no point in delaying doing
+ * actual work.
+ */
+ if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
+ tif = TIF_NEED_RESCHED;
+
+ if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
return;
cpu = cpu_of(rq);
if (cpu == smp_processor_id()) {
- set_tsk_need_resched(curr);
- set_preempt_need_resched();
+ set_ti_thread_flag(cti, tif);
+ if (tif == TIF_NEED_RESCHED)
+ set_preempt_need_resched();
return;
}
- if (set_nr_and_not_polling(curr))
- smp_send_reschedule(cpu);
- else
+ if (set_nr_and_not_polling(cti, tif)) {
+ if (tif == TIF_NEED_RESCHED)
+ smp_send_reschedule(cpu);
+ } else {
trace_sched_wake_idle_without_ipi(cpu);
+ }
+}
+
+void resched_curr(struct rq *rq)
+{
+ __resched_curr(rq, TIF_NEED_RESCHED);
+}
+
+#ifdef CONFIG_PREEMPT_DYNAMIC
+static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
+static __always_inline bool dynamic_preempt_lazy(void)
+{
+ return static_branch_unlikely(&sk_dynamic_preempt_lazy);
+}
+#else
+static __always_inline bool dynamic_preempt_lazy(void)
+{
+ return IS_ENABLED(CONFIG_PREEMPT_LAZY);
+}
+#endif
+
+static __always_inline int get_lazy_tif_bit(void)
+{
+ if (dynamic_preempt_lazy())
+ return TIF_NEED_RESCHED_LAZY;
+
+ return TIF_NEED_RESCHED;
+}
+
+void resched_curr_lazy(struct rq *rq)
+{
+ __resched_curr(rq, get_lazy_tif_bit());
}
void resched_cpu(int cpu)
@@ -1081,7 +1169,7 @@ void resched_cpu(int cpu)
*
* We don't do similar optimization for completely idle system, as
* selecting an idle CPU will add more delays to the timers than intended
- * (as that CPU's timer base may not be uptodate wrt jiffies etc).
+ * (as that CPU's timer base may not be up to date wrt jiffies etc).
*/
int get_nohz_timer_target(void)
{
@@ -1089,13 +1177,13 @@ int get_nohz_timer_target(void)
struct sched_domain *sd;
const struct cpumask *hk_mask;
- if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
+ if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) {
if (!idle_cpu(cpu))
return cpu;
default_cpu = cpu;
}
- hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
+ hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
guard(rcu)();
@@ -1110,7 +1198,7 @@ int get_nohz_timer_target(void)
}
if (default_cpu == -1)
- default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
+ default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE);
return default_cpu;
}
@@ -1141,7 +1229,7 @@ static void wake_up_idle_cpu(int cpu)
* nohz functions that would need to follow TIF_NR_POLLING
* clearing:
*
- * - On most archs, a simple fetch_or on ti::flags with a
+ * - On most architectures, a simple fetch_or on ti::flags with a
* "0" value would be enough to know if an IPI needs to be sent.
*
* - x86 needs to perform a last need_resched() check between
@@ -1154,7 +1242,7 @@ static void wake_up_idle_cpu(int cpu)
* and testing of the above solutions didn't appear to report
* much benefits.
*/
- if (set_nr_and_not_polling(rq->idle))
+ if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
smp_send_reschedule(cpu);
else
trace_sched_wake_idle_without_ipi(cpu);
@@ -1204,9 +1292,9 @@ static void nohz_csd_func(void *info)
WARN_ON(!(flags & NOHZ_KICK_MASK));
rq->idle_balance = idle_cpu(cpu);
- if (rq->idle_balance && !need_resched()) {
+ if (rq->idle_balance) {
rq->nohz_idle_balance = flags;
- raise_softirq_irqoff(SCHED_SOFTIRQ);
+ __raise_softirq_irqoff(SCHED_SOFTIRQ);
}
}
@@ -1255,11 +1343,14 @@ bool sched_can_stop_tick(struct rq *rq)
return true;
/*
- * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
- * if there's more than one we need the tick for involuntary
- * preemption.
+ * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
+ * left. For CFS, if there's more than one we need the tick for
+ * involuntary preemption. For SCX, ask.
*/
- if (rq->nr_running > 1)
+ if (scx_enabled() && !scx_can_stop_tick(rq))
+ return false;
+
+ if (rq->cfs.h_nr_queued > 1)
return false;
/*
@@ -1269,7 +1360,7 @@ bool sched_can_stop_tick(struct rq *rq)
* dequeued by migrating while the constrained task continues to run.
* E.g. going from 2->1 without going through pick_next_task().
*/
- if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
+ if (__need_bw_check(rq, rq->curr)) {
if (cfs_task_bw_constrained(rq->curr))
return false;
}
@@ -1324,30 +1415,27 @@ int tg_nop(struct task_group *tg, void *data)
}
#endif
-static void set_load_weight(struct task_struct *p, bool update_load)
+void set_load_weight(struct task_struct *p, bool update_load)
{
int prio = p->static_prio - MAX_RT_PRIO;
- struct load_weight *load = &p->se.load;
+ struct load_weight lw;
- /*
- * SCHED_IDLE tasks get minimal weight:
- */
if (task_has_idle_policy(p)) {
- load->weight = scale_load(WEIGHT_IDLEPRIO);
- load->inv_weight = WMULT_IDLEPRIO;
- return;
+ lw.weight = scale_load(WEIGHT_IDLEPRIO);
+ lw.inv_weight = WMULT_IDLEPRIO;
+ } else {
+ lw.weight = scale_load(sched_prio_to_weight[prio]);
+ lw.inv_weight = sched_prio_to_wmult[prio];
}
/*
* SCHED_OTHER tasks have to update their load when changing their
* weight
*/
- if (update_load && p->sched_class == &fair_sched_class) {
- reweight_task(p, prio);
- } else {
- load->weight = scale_load(sched_prio_to_weight[prio]);
- load->inv_weight = sched_prio_to_wmult[prio];
- }
+ if (update_load && p->sched_class->reweight_task)
+ p->sched_class->reweight_task(task_rq(p), p, &lw);
+ else
+ p->se.load = lw;
}
#ifdef CONFIG_UCLAMP_TASK
@@ -1361,7 +1449,7 @@ static void set_load_weight(struct task_struct *p, bool update_load)
* requests are serialized using a mutex to reduce the risk of conflicting
* updates or API abuses.
*/
-static DEFINE_MUTEX(uclamp_mutex);
+static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
/* Max allowed minimum utilization */
static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
@@ -1384,7 +1472,7 @@ static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY
* This knob will not override the system default sched_util_clamp_min defined
* above.
*/
-static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
+unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
/* All clamps are required to be less or equal than these values */
static struct uclamp_se uclamp_default[UCLAMP_CNT];
@@ -1409,32 +1497,6 @@ static struct uclamp_se uclamp_default[UCLAMP_CNT];
*/
DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
-/* Integer rounded range for each bucket */
-#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
-
-#define for_each_clamp_id(clamp_id) \
- for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
-
-static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
-{
- return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
-}
-
-static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
-{
- if (clamp_id == UCLAMP_MIN)
- return 0;
- return SCHED_CAPACITY_SCALE;
-}
-
-static inline void uclamp_se_set(struct uclamp_se *uc_se,
- unsigned int value, bool user_defined)
-{
- uc_se->value = value;
- uc_se->bucket_id = uclamp_bucket_id(value);
- uc_se->user_defined = user_defined;
-}
-
static inline unsigned int
uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
unsigned int clamp_value)
@@ -1676,7 +1738,7 @@ static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
rq_clamp = uclamp_rq_get(rq, clamp_id);
/*
* Defensive programming: this should never happen. If it happens,
- * e.g. due to future modification, warn and fixup the expected value.
+ * e.g. due to future modification, warn and fix up the expected value.
*/
SCHED_WARN_ON(bucket->value > rq_clamp);
if (bucket->value >= rq_clamp) {
@@ -1701,6 +1763,9 @@ static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
if (unlikely(!p->sched_class->uclamp_enabled))
return;
+ if (p->se.sched_delayed)
+ return;
+
for_each_clamp_id(clamp_id)
uclamp_rq_inc_id(rq, p, clamp_id);
@@ -1725,6 +1790,9 @@ static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
if (unlikely(!p->sched_class->uclamp_enabled))
return;
+ if (p->se.sched_delayed)
+ return;
+
for_each_clamp_id(clamp_id)
uclamp_rq_dec_id(rq, p, clamp_id);
}
@@ -1792,7 +1860,6 @@ static void cpu_util_update_eff(struct cgroup_subsys_state *css);
#endif
#ifdef CONFIG_SYSCTL
-#ifdef CONFIG_UCLAMP_TASK
#ifdef CONFIG_UCLAMP_TASK_GROUP
static void uclamp_update_root_tg(void)
{
@@ -1836,7 +1903,7 @@ static void uclamp_sync_util_min_rt_default(void)
uclamp_update_util_min_rt_default(p);
}
-static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
+static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
bool update_root_tg = false;
@@ -1898,108 +1965,6 @@ undo:
return result;
}
#endif
-#endif
-
-static int uclamp_validate(struct task_struct *p,
- const struct sched_attr *attr)
-{
- int util_min = p->uclamp_req[UCLAMP_MIN].value;
- int util_max = p->uclamp_req[UCLAMP_MAX].value;
-
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
- util_min = attr->sched_util_min;
-
- if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
- return -EINVAL;
- }
-
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
- util_max = attr->sched_util_max;
-
- if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
- return -EINVAL;
- }
-
- if (util_min != -1 && util_max != -1 && util_min > util_max)
- return -EINVAL;
-
- /*
- * We have valid uclamp attributes; make sure uclamp is enabled.
- *
- * We need to do that here, because enabling static branches is a
- * blocking operation which obviously cannot be done while holding
- * scheduler locks.
- */
- static_branch_enable(&sched_uclamp_used);
-
- return 0;
-}
-
-static bool uclamp_reset(const struct sched_attr *attr,
- enum uclamp_id clamp_id,
- struct uclamp_se *uc_se)
-{
- /* Reset on sched class change for a non user-defined clamp value. */
- if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
- !uc_se->user_defined)
- return true;
-
- /* Reset on sched_util_{min,max} == -1. */
- if (clamp_id == UCLAMP_MIN &&
- attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
- attr->sched_util_min == -1) {
- return true;
- }
-
- if (clamp_id == UCLAMP_MAX &&
- attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
- attr->sched_util_max == -1) {
- return true;
- }
-
- return false;
-}
-
-static void __setscheduler_uclamp(struct task_struct *p,
- const struct sched_attr *attr)
-{
- enum uclamp_id clamp_id;
-
- for_each_clamp_id(clamp_id) {
- struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
- unsigned int value;
-
- if (!uclamp_reset(attr, clamp_id, uc_se))
- continue;
-
- /*
- * RT by default have a 100% boost value that could be modified
- * at runtime.
- */
- if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
- value = sysctl_sched_uclamp_util_min_rt_default;
- else
- value = uclamp_none(clamp_id);
-
- uclamp_se_set(uc_se, value, false);
-
- }
-
- if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
- return;
-
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
- attr->sched_util_min != -1) {
- uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
- attr->sched_util_min, true);
- }
-
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
- attr->sched_util_max != -1) {
- uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
- attr->sched_util_max, true);
- }
-}
static void uclamp_fork(struct task_struct *p)
{
@@ -2065,16 +2030,9 @@ static void __init init_uclamp(void)
}
}
-#else /* CONFIG_UCLAMP_TASK */
+#else /* !CONFIG_UCLAMP_TASK */
static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
-static inline int uclamp_validate(struct task_struct *p,
- const struct sched_attr *attr)
-{
- return -EOPNOTSUPP;
-}
-static void __setscheduler_uclamp(struct task_struct *p,
- const struct sched_attr *attr) { }
static inline void uclamp_fork(struct task_struct *p) { }
static inline void uclamp_post_fork(struct task_struct *p) { }
static inline void init_uclamp(void) { }
@@ -2104,24 +2062,31 @@ unsigned long get_wchan(struct task_struct *p)
return ip;
}
-static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
+void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
{
if (!(flags & ENQUEUE_NOCLOCK))
update_rq_clock(rq);
- if (!(flags & ENQUEUE_RESTORE)) {
- sched_info_enqueue(rq, p);
- psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
- }
-
- uclamp_rq_inc(rq, p);
p->sched_class->enqueue_task(rq, p, flags);
+ /*
+ * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
+ * ->sched_delayed.
+ */
+ uclamp_rq_inc(rq, p);
+
+ psi_enqueue(p, flags);
+
+ if (!(flags & ENQUEUE_RESTORE))
+ sched_info_enqueue(rq, p);
if (sched_core_enabled(rq))
sched_core_enqueue(rq, p);
}
-static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
+/*
+ * Must only return false when DEQUEUE_SLEEP.
+ */
+inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
{
if (sched_core_enabled(rq))
sched_core_dequeue(rq, p, flags);
@@ -2129,13 +2094,17 @@ static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
if (!(flags & DEQUEUE_NOCLOCK))
update_rq_clock(rq);
- if (!(flags & DEQUEUE_SAVE)) {
+ if (!(flags & DEQUEUE_SAVE))
sched_info_dequeue(rq, p);
- psi_dequeue(p, flags & DEQUEUE_SLEEP);
- }
+ psi_dequeue(p, flags);
+
+ /*
+ * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
+ * and mark the task ->sched_delayed.
+ */
uclamp_rq_dec(rq, p);
- p->sched_class->dequeue_task(rq, p, flags);
+ return p->sched_class->dequeue_task(rq, p, flags);
}
void activate_task(struct rq *rq, struct task_struct *p, int flags)
@@ -2153,56 +2122,23 @@ void activate_task(struct rq *rq, struct task_struct *p, int flags)
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
{
- WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING);
- ASSERT_EXCLUSIVE_WRITER(p->on_rq);
-
- dequeue_task(rq, p, flags);
-}
-
-static inline int __normal_prio(int policy, int rt_prio, int nice)
-{
- int prio;
+ SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
- if (dl_policy(policy))
- prio = MAX_DL_PRIO - 1;
- else if (rt_policy(policy))
- prio = MAX_RT_PRIO - 1 - rt_prio;
- else
- prio = NICE_TO_PRIO(nice);
+ WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
+ ASSERT_EXCLUSIVE_WRITER(p->on_rq);
- return prio;
-}
+ /*
+ * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
+ * dequeue_task() and cleared *after* enqueue_task().
+ */
-/*
- * Calculate the expected normal priority: i.e. priority
- * without taking RT-inheritance into account. Might be
- * boosted by interactivity modifiers. Changes upon fork,
- * setprio syscalls, and whenever the interactivity
- * estimator recalculates.
- */
-static inline int normal_prio(struct task_struct *p)
-{
- return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
+ dequeue_task(rq, p, flags);
}
-/*
- * Calculate the current priority, i.e. the priority
- * taken into account by the scheduler. This value might
- * be boosted by RT tasks, or might be boosted by
- * interactivity modifiers. Will be RT if the task got
- * RT-boosted. If not then it returns p->normal_prio.
- */
-static int effective_prio(struct task_struct *p)
+static void block_task(struct rq *rq, struct task_struct *p, int flags)
{
- p->normal_prio = normal_prio(p);
- /*
- * If we are RT tasks or we were boosted to RT priority,
- * keep the priority unchanged. Otherwise, update priority
- * to the normal priority:
- */
- if (!rt_prio(p->prio))
- return p->normal_prio;
- return p->prio;
+ if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
+ __block_task(rq, p);
}
/**
@@ -2217,15 +2153,26 @@ inline int task_curr(const struct task_struct *p)
}
/*
+ * ->switching_to() is called with the pi_lock and rq_lock held and must not
+ * mess with locking.
+ */
+void check_class_changing(struct rq *rq, struct task_struct *p,
+ const struct sched_class *prev_class)
+{
+ if (prev_class != p->sched_class && p->sched_class->switching_to)
+ p->sched_class->switching_to(rq, p);
+}
+
+/*
* switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
* use the balance_callback list if you want balancing.
*
* this means any call to check_class_changed() must be followed by a call to
* balance_callback().
*/
-static inline void check_class_changed(struct rq *rq, struct task_struct *p,
- const struct sched_class *prev_class,
- int oldprio)
+void check_class_changed(struct rq *rq, struct task_struct *p,
+ const struct sched_class *prev_class,
+ int oldprio)
{
if (prev_class != p->sched_class) {
if (prev_class->switched_from)
@@ -2238,16 +2185,18 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p,
void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
{
- if (p->sched_class == rq->curr->sched_class)
- rq->curr->sched_class->wakeup_preempt(rq, p, flags);
- else if (sched_class_above(p->sched_class, rq->curr->sched_class))
+ struct task_struct *donor = rq->donor;
+
+ if (p->sched_class == donor->sched_class)
+ donor->sched_class->wakeup_preempt(rq, p, flags);
+ else if (sched_class_above(p->sched_class, donor->sched_class))
resched_curr(rq);
/*
* A queue event has occurred, and we're going to schedule. In
* this case, we can save a useless back to back clock update.
*/
- if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
+ if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
rq_clock_skip_update(rq);
}
@@ -2394,9 +2343,6 @@ unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state
static void
__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
-static int __set_cpus_allowed_ptr(struct task_struct *p,
- struct affinity_context *ctx);
-
static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
{
struct affinity_context ac = {
@@ -2411,7 +2357,7 @@ static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
return;
/*
- * Violates locking rules! see comment in __do_set_cpus_allowed().
+ * Violates locking rules! See comment in __do_set_cpus_allowed().
*/
__do_set_cpus_allowed(p, &ac);
}
@@ -2421,6 +2367,12 @@ void migrate_disable(void)
struct task_struct *p = current;
if (p->migration_disabled) {
+#ifdef CONFIG_DEBUG_PREEMPT
+ /*
+ *Warn about overflow half-way through the range.
+ */
+ WARN_ON_ONCE((s16)p->migration_disabled < 0);
+#endif
p->migration_disabled++;
return;
}
@@ -2439,14 +2391,20 @@ void migrate_enable(void)
.flags = SCA_MIGRATE_ENABLE,
};
+#ifdef CONFIG_DEBUG_PREEMPT
+ /*
+ * Check both overflow from migrate_disable() and superfluous
+ * migrate_enable().
+ */
+ if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
+ return;
+#endif
+
if (p->migration_disabled > 1) {
p->migration_disabled--;
return;
}
- if (WARN_ON_ONCE(!p->migration_disabled))
- return;
-
/*
* Ensure stop_task runs either before or after this, and that
* __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
@@ -2477,7 +2435,7 @@ static inline bool rq_has_pinned_tasks(struct rq *rq)
static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
{
/* When not in the task's cpumask, no point in looking further. */
- if (!cpumask_test_cpu(cpu, p->cpus_ptr))
+ if (!task_allowed_on_cpu(p, cpu))
return false;
/* migrate_disabled() must be allowed to finish. */
@@ -2486,7 +2444,7 @@ static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
/* Non kernel threads are not allowed during either online or offline. */
if (!(p->flags & PF_KTHREAD))
- return cpu_active(cpu) && task_cpu_possible(cpu, p);
+ return cpu_active(cpu);
/* KTHREAD_IS_PER_CPU is always allowed. */
if (kthread_is_per_cpu(p))
@@ -2578,7 +2536,7 @@ static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
}
/*
- * migration_cpu_stop - this will be executed by a highprio stopper thread
+ * migration_cpu_stop - this will be executed by a high-prio stopper thread
* and performs thread migration by bumping thread off CPU then
* 'pushing' onto another runqueue.
*/
@@ -2714,9 +2672,7 @@ int push_cpu_stop(void *arg)
// XXX validate p is still the highest prio task
if (task_rq(p) == rq) {
- deactivate_task(rq, p, 0);
- set_task_cpu(p, lowest_rq->cpu);
- activate_task(lowest_rq, p, 0);
+ move_queued_task_locked(rq, lowest_rq, p);
resched_curr(lowest_rq);
}
@@ -2776,7 +2732,7 @@ __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
lockdep_assert_held(&p->pi_lock);
queued = task_on_rq_queued(p);
- running = task_current(rq, p);
+ running = task_current_donor(rq, p);
if (queued) {
/*
@@ -2790,6 +2746,7 @@ __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
put_prev_task(rq, p);
p->sched_class->set_cpus_allowed(p, ctx);
+ mm_set_cpus_allowed(p->mm, ctx->new_mask);
if (queued)
enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
@@ -2823,16 +2780,6 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
}
-static cpumask_t *alloc_user_cpus_ptr(int node)
-{
- /*
- * See do_set_cpus_allowed() above for the rcu_head usage.
- */
- int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
-
- return kmalloc_node(size, GFP_KERNEL, node);
-}
-
int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
int node)
{
@@ -3201,8 +3148,7 @@ out:
* task must not exit() & deallocate itself prematurely. The
* call is not atomic; no spinlocks may be held.
*/
-static int __set_cpus_allowed_ptr(struct task_struct *p,
- struct affinity_context *ctx)
+int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
{
struct rq_flags rf;
struct rq *rq;
@@ -3321,9 +3267,6 @@ out_free_mask:
free_cpumask_var(new_mask);
}
-static int
-__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
-
/*
* Restore the affinity of a task @p which was previously restricted by a
* call to force_compatible_cpus_allowed_ptr().
@@ -3416,9 +3359,7 @@ static void __migrate_swap_task(struct task_struct *p, int cpu)
rq_pin_lock(src_rq, &srf);
rq_pin_lock(dst_rq, &drf);
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, cpu);
- activate_task(dst_rq, p, 0);
+ move_queued_task_locked(src_rq, dst_rq, p);
wakeup_preempt(dst_rq, p, 0);
rq_unpin_lock(dst_rq, &drf);
@@ -3602,7 +3543,7 @@ static int select_fallback_rq(int cpu, struct task_struct *p)
*
* More yuck to audit.
*/
- do_set_cpus_allowed(p, task_cpu_possible_mask(p));
+ do_set_cpus_allowed(p, task_cpu_fallback_mask(p));
state = fail;
break;
case fail:
@@ -3631,14 +3572,16 @@ out:
* The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
*/
static inline
-int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
+int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
{
lockdep_assert_held(&p->pi_lock);
- if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
- cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
- else
+ if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
+ cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
+ *wake_flags |= WF_RQ_SELECTED;
+ } else {
cpu = cpumask_any(p->cpus_ptr);
+ }
/*
* In order not to call set_task_cpu() on a blocking task we need
@@ -3703,12 +3646,6 @@ void sched_set_stop_task(int cpu, struct task_struct *stop)
#else /* CONFIG_SMP */
-static inline int __set_cpus_allowed_ptr(struct task_struct *p,
- struct affinity_context *ctx)
-{
- return set_cpus_allowed_ptr(p, ctx->new_mask);
-}
-
static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
static inline bool rq_has_pinned_tasks(struct rq *rq)
@@ -3716,11 +3653,6 @@ static inline bool rq_has_pinned_tasks(struct rq *rq)
return false;
}
-static inline cpumask_t *alloc_user_cpus_ptr(int node)
-{
- return NULL;
-}
-
#endif /* !CONFIG_SMP */
static void
@@ -3783,6 +3715,8 @@ ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
rq->nr_uninterruptible--;
#ifdef CONFIG_SMP
+ if (wake_flags & WF_RQ_SELECTED)
+ en_flags |= ENQUEUE_RQ_SELECTED;
if (wake_flags & WF_MIGRATED)
en_flags |= ENQUEUE_MIGRATED;
else
@@ -3820,8 +3754,6 @@ ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
rq->idle_stamp = 0;
}
#endif
-
- p->dl_server = NULL;
}
/*
@@ -3857,12 +3789,14 @@ static int ttwu_runnable(struct task_struct *p, int wake_flags)
rq = __task_rq_lock(p, &rf);
if (task_on_rq_queued(p)) {
+ update_rq_clock(rq);
+ if (p->se.sched_delayed)
+ enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
if (!task_on_cpu(rq, p)) {
/*
* When on_rq && !on_cpu the task is preempted, see if
* it should preempt the task that is current now.
*/
- update_rq_clock(rq);
wakeup_preempt(rq, p, wake_flags);
}
ttwu_do_wakeup(p);
@@ -3903,8 +3837,8 @@ void sched_ttwu_pending(void *arg)
* it is possible for select_idle_siblings() to stack a number
* of tasks on this CPU during that window.
*
- * It is ok to clear ttwu_pending when another task pending.
- * We will receive IPI after local irq enabled and then enqueue it.
+ * It is OK to clear ttwu_pending when another task pending.
+ * We will receive IPI after local IRQ enabled and then enqueue it.
* Since now nr_running > 0, idle_cpu() will always get correct result.
*/
WRITE_ONCE(rq->ttwu_pending, 0);
@@ -3955,6 +3889,17 @@ void wake_up_if_idle(int cpu)
}
}
+bool cpus_equal_capacity(int this_cpu, int that_cpu)
+{
+ if (!sched_asym_cpucap_active())
+ return true;
+
+ if (this_cpu == that_cpu)
+ return true;
+
+ return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
+}
+
bool cpus_share_cache(int this_cpu, int that_cpu)
{
if (this_cpu == that_cpu)
@@ -3978,6 +3923,15 @@ bool cpus_share_resources(int this_cpu, int that_cpu)
static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
{
/*
+ * The BPF scheduler may depend on select_task_rq() being invoked during
+ * wakeups. In addition, @p may end up executing on a different CPU
+ * regardless of what happens in the wakeup path making the ttwu_queue
+ * optimization less meaningful. Skip if on SCX.
+ */
+ if (task_on_scx(p))
+ return false;
+
+ /*
* Do not complicate things with the async wake_list while the CPU is
* in hotplug state.
*/
@@ -4224,6 +4178,8 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
guard(preempt)();
int cpu, success = 0;
+ wake_flags |= WF_TTWU;
+
if (p == current) {
/*
* We're waking current, this means 'p->on_rq' and 'task_cpu(p)
@@ -4231,11 +4187,16 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
* case the whole 'p->on_rq && ttwu_runnable()' case below
* without taking any locks.
*
+ * Specifically, given current runs ttwu() we must be before
+ * schedule()'s block_task(), as such this must not observe
+ * sched_delayed.
+ *
* In particular:
* - we rely on Program-Order guarantees for all the ordering,
* - we're serialized against set_special_state() by virtue of
* it disabling IRQs (this allows not taking ->pi_lock).
*/
+ SCHED_WARN_ON(p->se.sched_delayed);
if (!ttwu_state_match(p, state, &success))
goto out;
@@ -4351,7 +4312,7 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
*/
smp_cond_load_acquire(&p->on_cpu, !VAL);
- cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
+ cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
if (task_cpu(p) != cpu) {
if (p->in_iowait) {
delayacct_blkio_end(p);
@@ -4416,9 +4377,10 @@ static bool __task_needs_rq_lock(struct task_struct *p)
* @arg: Argument to function.
*
* Fix the task in it's current state by avoiding wakeups and or rq operations
- * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
- * to work out what the state is, if required. Given that @func can be invoked
- * with a runqueue lock held, it had better be quite lightweight.
+ * and call @func(@arg) on it. This function can use task_is_runnable() and
+ * task_curr() to work out what the state is, if required. Given that @func
+ * can be invoked with a runqueue lock held, it had better be quite
+ * lightweight.
*
* Returns:
* Whatever @func returns
@@ -4458,12 +4420,7 @@ int task_call_func(struct task_struct *p, task_call_f func, void *arg)
* @cpu: The CPU on which to snapshot the task.
*
* Returns the task_struct pointer of the task "currently" running on
- * the specified CPU. If the same task is running on that CPU throughout,
- * the return value will be a pointer to that task's task_struct structure.
- * If the CPU did any context switches even vaguely concurrently with the
- * execution of this function, the return value will be a pointer to the
- * task_struct structure of a randomly chosen task that was running on
- * that CPU somewhere around the time that this function was executing.
+ * the specified CPU.
*
* If the specified CPU was offline, the return value is whatever it
* is, perhaps a pointer to the task_struct structure of that CPU's idle
@@ -4477,11 +4434,16 @@ int task_call_func(struct task_struct *p, task_call_f func, void *arg)
*/
struct task_struct *cpu_curr_snapshot(int cpu)
{
+ struct rq *rq = cpu_rq(cpu);
struct task_struct *t;
+ struct rq_flags rf;
- smp_mb(); /* Pairing determined by caller's synchronization design. */
+ rq_lock_irqsave(rq, &rf);
+ smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
t = rcu_dereference(cpu_curr(cpu));
+ rq_unlock_irqrestore(rq, &rf);
smp_mb(); /* Pairing determined by caller's synchronization design. */
+
return t;
}
@@ -4511,7 +4473,8 @@ int wake_up_state(struct task_struct *p, unsigned int state)
* Perform scheduler related setup for a newly forked process p.
* p is forked by current.
*
- * __sched_fork() is basic setup used by init_idle() too:
+ * __sched_fork() is basic setup which is also used by sched_init() to
+ * initialize the boot CPU's idle task.
*/
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
{
@@ -4524,9 +4487,11 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
p->se.nr_migrations = 0;
p->se.vruntime = 0;
p->se.vlag = 0;
- p->se.slice = sysctl_sched_base_slice;
INIT_LIST_HEAD(&p->se.group_node);
+ /* A delayed task cannot be in clone(). */
+ SCHED_WARN_ON(p->se.sched_delayed);
+
#ifdef CONFIG_FAIR_GROUP_SCHED
p->se.cfs_rq = NULL;
#endif
@@ -4544,6 +4509,10 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
p->rt.on_rq = 0;
p->rt.on_list = 0;
+#ifdef CONFIG_SCHED_CLASS_EXT
+ init_scx_entity(&p->scx);
+#endif
+
#ifdef CONFIG_PREEMPT_NOTIFIERS
INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
@@ -4594,7 +4563,7 @@ static void reset_memory_tiering(void)
}
}
-static int sysctl_numa_balancing(struct ctl_table *table, int write,
+static int sysctl_numa_balancing(const struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
struct ctl_table t;
@@ -4663,7 +4632,7 @@ out:
__setup("schedstats=", setup_schedstats);
#ifdef CONFIG_PROC_SYSCTL
-static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
+static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
size_t *lenp, loff_t *ppos)
{
struct ctl_table t;
@@ -4686,7 +4655,7 @@ static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
#endif /* CONFIG_SCHEDSTATS */
#ifdef CONFIG_SYSCTL
-static struct ctl_table sched_core_sysctls[] = {
+static const struct ctl_table sched_core_sysctls[] = {
#ifdef CONFIG_SCHEDSTATS
{
.procname = "sched_schedstats",
@@ -4732,7 +4701,6 @@ static struct ctl_table sched_core_sysctls[] = {
.extra2 = SYSCTL_FOUR,
},
#endif /* CONFIG_NUMA_BALANCING */
- {}
};
static int __init sched_core_sysctl_init(void)
{
@@ -4775,6 +4743,8 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p)
p->prio = p->normal_prio = p->static_prio;
set_load_weight(p, false);
+ p->se.custom_slice = 0;
+ p->se.slice = sysctl_sched_base_slice;
/*
* We don't need the reset flag anymore after the fork. It has
@@ -4785,10 +4755,18 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p)
if (dl_prio(p->prio))
return -EAGAIN;
- else if (rt_prio(p->prio))
+
+ scx_pre_fork(p);
+
+ if (rt_prio(p->prio)) {
p->sched_class = &rt_sched_class;
- else
+#ifdef CONFIG_SCHED_CLASS_EXT
+ } else if (task_should_scx(p->policy)) {
+ p->sched_class = &ext_sched_class;
+#endif
+ } else {
p->sched_class = &fair_sched_class;
+ }
init_entity_runnable_average(&p->se);
@@ -4808,7 +4786,7 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p)
return 0;
}
-void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
+int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
{
unsigned long flags;
@@ -4835,11 +4813,19 @@ void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
if (p->sched_class->task_fork)
p->sched_class->task_fork(p);
raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+
+ return scx_fork(p);
+}
+
+void sched_cancel_fork(struct task_struct *p)
+{
+ scx_cancel_fork(p);
}
void sched_post_fork(struct task_struct *p)
{
uclamp_post_fork(p);
+ scx_post_fork(p);
}
unsigned long to_ratio(u64 period, u64 runtime)
@@ -4869,6 +4855,7 @@ void wake_up_new_task(struct task_struct *p)
{
struct rq_flags rf;
struct rq *rq;
+ int wake_flags = WF_FORK;
raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
WRITE_ONCE(p->__state, TASK_RUNNING);
@@ -4883,15 +4870,15 @@ void wake_up_new_task(struct task_struct *p)
*/
p->recent_used_cpu = task_cpu(p);
rseq_migrate(p);
- __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
+ __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
#endif
rq = __task_rq_lock(p, &rf);
update_rq_clock(rq);
post_init_entity_util_avg(p);
- activate_task(rq, p, ENQUEUE_NOCLOCK);
+ activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
trace_sched_wakeup_new(p);
- wakeup_preempt(rq, p, WF_FORK);
+ wakeup_preempt(rq, p, wake_flags);
#ifdef CONFIG_SMP
if (p->sched_class->task_woken) {
/*
@@ -5087,7 +5074,7 @@ __splice_balance_callbacks(struct rq *rq, bool split)
return head;
}
-static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
+struct balance_callback *splice_balance_callbacks(struct rq *rq)
{
return __splice_balance_callbacks(rq, true);
}
@@ -5097,7 +5084,7 @@ static void __balance_callbacks(struct rq *rq)
do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
}
-static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
+void balance_callbacks(struct rq *rq, struct balance_callback *head)
{
unsigned long flags;
@@ -5114,15 +5101,6 @@ static inline void __balance_callbacks(struct rq *rq)
{
}
-static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
-{
- return NULL;
-}
-
-static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
-{
-}
-
#endif
static inline void
@@ -5225,7 +5203,7 @@ prepare_task_switch(struct rq *rq, struct task_struct *prev,
*
* The context switch have flipped the stack from under us and restored the
* local variables which were saved when this task called schedule() in the
- * past. prev == current is still correct but we need to recalculate this_rq
+ * past. 'prev == current' is still correct but we need to recalculate this_rq
* because prev may have moved to another CPU.
*/
static struct rq *finish_task_switch(struct task_struct *prev)
@@ -5548,9 +5526,9 @@ EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
static inline void prefetch_curr_exec_start(struct task_struct *p)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
- struct sched_entity *curr = (&p->se)->cfs_rq->curr;
+ struct sched_entity *curr = p->se.cfs_rq->curr;
#else
- struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
+ struct sched_entity *curr = task_rq(p)->cfs.curr;
#endif
prefetch(curr);
prefetch(&curr->exec_start);
@@ -5571,7 +5549,7 @@ unsigned long long task_sched_runtime(struct task_struct *p)
/*
* 64-bit doesn't need locks to atomically read a 64-bit value.
* So we have a optimization chance when the task's delta_exec is 0.
- * Reading ->on_cpu is racy, but this is ok.
+ * Reading ->on_cpu is racy, but this is OK.
*
* If we race with it leaving CPU, we'll take a lock. So we're correct.
* If we race with it entering CPU, unaccounted time is 0. This is
@@ -5589,7 +5567,7 @@ unsigned long long task_sched_runtime(struct task_struct *p)
* project cycles that may never be accounted to this
* thread, breaking clock_gettime().
*/
- if (task_current(rq, p) && task_on_rq_queued(p)) {
+ if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
prefetch_curr_exec_start(p);
update_rq_clock(rq);
p->sched_class->update_curr(rq);
@@ -5653,31 +5631,40 @@ static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
* This function gets called by the timer code, with HZ frequency.
* We call it with interrupts disabled.
*/
-void scheduler_tick(void)
+void sched_tick(void)
{
int cpu = smp_processor_id();
struct rq *rq = cpu_rq(cpu);
- struct task_struct *curr = rq->curr;
+ /* accounting goes to the donor task */
+ struct task_struct *donor;
struct rq_flags rf;
- unsigned long thermal_pressure;
+ unsigned long hw_pressure;
u64 resched_latency;
- if (housekeeping_cpu(cpu, HK_TYPE_TICK))
+ if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
arch_scale_freq_tick();
sched_clock_tick();
rq_lock(rq, &rf);
+ donor = rq->donor;
+
+ psi_account_irqtime(rq, donor, NULL);
update_rq_clock(rq);
- thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
- update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
- curr->sched_class->task_tick(rq, curr, 0);
+ hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
+ update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
+
+ if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
+ resched_curr(rq);
+
+ donor->sched_class->task_tick(rq, donor, 0);
if (sched_feat(LATENCY_WARN))
resched_latency = cpu_resched_latency(rq);
calc_global_load_tick(rq);
sched_core_tick(rq);
- task_tick_mm_cid(rq, curr);
+ task_tick_mm_cid(rq, donor);
+ scx_tick(rq);
rq_unlock(rq, &rf);
@@ -5686,12 +5673,14 @@ void scheduler_tick(void)
perf_event_task_tick();
- if (curr->flags & PF_WQ_WORKER)
- wq_worker_tick(curr);
+ if (donor->flags & PF_WQ_WORKER)
+ wq_worker_tick(donor);
#ifdef CONFIG_SMP
- rq->idle_balance = idle_cpu(cpu);
- trigger_load_balance(rq);
+ if (!scx_switched_all()) {
+ rq->idle_balance = idle_cpu(cpu);
+ sched_balance_trigger(rq);
+ }
#endif
}
@@ -5752,6 +5741,12 @@ static void sched_tick_remote(struct work_struct *work)
struct task_struct *curr = rq->curr;
if (cpu_online(cpu)) {
+ /*
+ * Since this is a remote tick for full dynticks mode,
+ * we are always sure that there is no proxy (only a
+ * single task is running).
+ */
+ SCHED_WARN_ON(rq->curr != rq->donor);
update_rq_clock(rq);
if (!is_idle_task(curr)) {
@@ -5785,7 +5780,7 @@ static void sched_tick_start(int cpu)
int os;
struct tick_work *twork;
- if (housekeeping_cpu(cpu, HK_TYPE_TICK))
+ if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
return;
WARN_ON_ONCE(!tick_work_cpu);
@@ -5806,7 +5801,7 @@ static void sched_tick_stop(int cpu)
struct tick_work *twork;
int os;
- if (housekeeping_cpu(cpu, HK_TYPE_TICK))
+ if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE))
return;
WARN_ON_ONCE(!tick_work_cpu);
@@ -5971,18 +5966,32 @@ static inline void schedule_debug(struct task_struct *prev, bool preempt)
preempt_count_set(PREEMPT_DISABLED);
}
rcu_sleep_check();
- SCHED_WARN_ON(ct_state() == CONTEXT_USER);
+ SCHED_WARN_ON(ct_state() == CT_STATE_USER);
profile_hit(SCHED_PROFILING, __builtin_return_address(0));
schedstat_inc(this_rq()->sched_count);
}
-static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
- struct rq_flags *rf)
+static void prev_balance(struct rq *rq, struct task_struct *prev,
+ struct rq_flags *rf)
{
-#ifdef CONFIG_SMP
+ const struct sched_class *start_class = prev->sched_class;
const struct sched_class *class;
+
+#ifdef CONFIG_SCHED_CLASS_EXT
+ /*
+ * SCX requires a balance() call before every pick_task() including when
+ * waking up from SCHED_IDLE. If @start_class is below SCX, start from
+ * SCX instead. Also, set a flag to detect missing balance() call.
+ */
+ if (scx_enabled()) {
+ rq->scx.flags |= SCX_RQ_BAL_PENDING;
+ if (sched_class_above(&ext_sched_class, start_class))
+ start_class = &ext_sched_class;
+ }
+#endif
+
/*
* We must do the balancing pass before put_prev_task(), such
* that when we release the rq->lock the task is in the same
@@ -5991,13 +6000,10 @@ static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
* We can terminate the balance pass as soon as we know there is
* a runnable task of @class priority or higher.
*/
- for_class_range(class, prev->sched_class, &idle_sched_class) {
- if (class->balance(rq, prev, rf))
+ for_active_class_range(class, start_class, &idle_sched_class) {
+ if (class->balance && class->balance(rq, prev, rf))
break;
}
-#endif
-
- put_prev_task(rq, prev);
}
/*
@@ -6009,6 +6015,11 @@ __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
const struct sched_class *class;
struct task_struct *p;
+ rq->dl_server = NULL;
+
+ if (scx_enabled())
+ goto restart;
+
/*
* Optimization: we know that if all tasks are in the fair class we can
* call that function directly, but only if the @prev task wasn't of a
@@ -6016,7 +6027,7 @@ __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
* opportunity to pull in more work from other CPUs.
*/
if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
- rq->nr_running == rq->cfs.h_nr_running)) {
+ rq->nr_running == rq->cfs.h_nr_queued)) {
p = pick_next_task_fair(rq, prev, rf);
if (unlikely(p == RETRY_TASK))
@@ -6024,35 +6035,28 @@ __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
/* Assume the next prioritized class is idle_sched_class */
if (!p) {
- put_prev_task(rq, prev);
- p = pick_next_task_idle(rq);
+ p = pick_task_idle(rq);
+ put_prev_set_next_task(rq, prev, p);
}
- /*
- * This is the fast path; it cannot be a DL server pick;
- * therefore even if @p == @prev, ->dl_server must be NULL.
- */
- if (p->dl_server)
- p->dl_server = NULL;
-
return p;
}
restart:
- put_prev_task_balance(rq, prev, rf);
-
- /*
- * We've updated @prev and no longer need the server link, clear it.
- * Must be done before ->pick_next_task() because that can (re)set
- * ->dl_server.
- */
- if (prev->dl_server)
- prev->dl_server = NULL;
+ prev_balance(rq, prev, rf);
- for_each_class(class) {
- p = class->pick_next_task(rq);
- if (p)
- return p;
+ for_each_active_class(class) {
+ if (class->pick_next_task) {
+ p = class->pick_next_task(rq, prev);
+ if (p)
+ return p;
+ } else {
+ p = class->pick_task(rq);
+ if (p) {
+ put_prev_set_next_task(rq, prev, p);
+ return p;
+ }
+ }
}
BUG(); /* The idle class should always have a runnable task. */
@@ -6082,7 +6086,9 @@ static inline struct task_struct *pick_task(struct rq *rq)
const struct sched_class *class;
struct task_struct *p;
- for_each_class(class) {
+ rq->dl_server = NULL;
+
+ for_each_active_class(class) {
p = class->pick_task(rq);
if (p)
return p;
@@ -6120,6 +6126,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
* another cpu during offline.
*/
rq->core_pick = NULL;
+ rq->core_dl_server = NULL;
return __pick_next_task(rq, prev, rf);
}
@@ -6138,16 +6145,13 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
next = rq->core_pick;
- if (next != prev) {
- put_prev_task(rq, prev);
- set_next_task(rq, next);
- }
-
+ rq->dl_server = rq->core_dl_server;
rq->core_pick = NULL;
- goto out;
+ rq->core_dl_server = NULL;
+ goto out_set_next;
}
- put_prev_task_balance(rq, prev, rf);
+ prev_balance(rq, prev, rf);
smt_mask = cpu_smt_mask(cpu);
need_sync = !!rq->core->core_cookie;
@@ -6188,6 +6192,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
next = pick_task(rq);
if (!next->core_cookie) {
rq->core_pick = NULL;
+ rq->core_dl_server = NULL;
/*
* For robustness, update the min_vruntime_fi for
* unconstrained picks as well.
@@ -6215,7 +6220,9 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
if (i != cpu && (rq_i != rq->core || !core_clock_updated))
update_rq_clock(rq_i);
- p = rq_i->core_pick = pick_task(rq_i);
+ rq_i->core_pick = p = pick_task(rq_i);
+ rq_i->core_dl_server = rq_i->dl_server;
+
if (!max || prio_less(max, p, fi_before))
max = p;
}
@@ -6239,6 +6246,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
}
rq_i->core_pick = p;
+ rq_i->core_dl_server = NULL;
if (p == rq_i->idle) {
if (rq_i->nr_running) {
@@ -6299,6 +6307,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
if (i == cpu) {
rq_i->core_pick = NULL;
+ rq_i->core_dl_server = NULL;
continue;
}
@@ -6307,6 +6316,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
if (rq_i->curr == rq_i->core_pick) {
rq_i->core_pick = NULL;
+ rq_i->core_dl_server = NULL;
continue;
}
@@ -6314,8 +6324,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
}
out_set_next:
- set_next_task(rq, next);
-out:
+ put_prev_set_next_task(rq, prev, next);
if (rq->core->core_forceidle_count && next == rq->idle)
queue_core_balance(rq);
@@ -6361,10 +6370,7 @@ static bool try_steal_cookie(int this, int that)
if (sched_task_is_throttled(p, this))
goto next;
- deactivate_task(src, p, 0);
- set_task_cpu(p, this);
- activate_task(dst, p, 0);
-
+ move_queued_task_locked(src, dst, p);
resched_curr(dst);
success = true;
@@ -6551,19 +6557,51 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
* Constants for the sched_mode argument of __schedule().
*
* The mode argument allows RT enabled kernels to differentiate a
- * preemption from blocking on an 'sleeping' spin/rwlock. Note that
- * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
- * optimize the AND operation out and just check for zero.
+ * preemption from blocking on an 'sleeping' spin/rwlock.
*/
-#define SM_NONE 0x0
-#define SM_PREEMPT 0x1
-#define SM_RTLOCK_WAIT 0x2
+#define SM_IDLE (-1)
+#define SM_NONE 0
+#define SM_PREEMPT 1
+#define SM_RTLOCK_WAIT 2
-#ifndef CONFIG_PREEMPT_RT
-# define SM_MASK_PREEMPT (~0U)
-#else
-# define SM_MASK_PREEMPT SM_PREEMPT
-#endif
+/*
+ * Helper function for __schedule()
+ *
+ * If a task does not have signals pending, deactivate it
+ * Otherwise marks the task's __state as RUNNING
+ */
+static bool try_to_block_task(struct rq *rq, struct task_struct *p,
+ unsigned long task_state)
+{
+ int flags = DEQUEUE_NOCLOCK;
+
+ if (signal_pending_state(task_state, p)) {
+ WRITE_ONCE(p->__state, TASK_RUNNING);
+ return false;
+ }
+
+ p->sched_contributes_to_load =
+ (task_state & TASK_UNINTERRUPTIBLE) &&
+ !(task_state & TASK_NOLOAD) &&
+ !(task_state & TASK_FROZEN);
+
+ if (unlikely(is_special_task_state(task_state)))
+ flags |= DEQUEUE_SPECIAL;
+
+ /*
+ * __schedule() ttwu()
+ * prev_state = prev->state; if (p->on_rq && ...)
+ * if (prev_state) goto out;
+ * p->on_rq = 0; smp_acquire__after_ctrl_dep();
+ * p->state = TASK_WAKING
+ *
+ * Where __schedule() and ttwu() have matching control dependencies.
+ *
+ * After this, schedule() must not care about p->state any more.
+ */
+ block_task(rq, p, flags);
+ return true;
+}
/*
* __schedule() is the main scheduler function.
@@ -6576,7 +6614,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
* paths. For example, see arch/x86/entry_64.S.
*
* To drive preemption between tasks, the scheduler sets the flag in timer
- * interrupt handler scheduler_tick().
+ * interrupt handler sched_tick().
*
* 3. Wakeups don't really cause entry into schedule(). They add a
* task to the run-queue and that's it.
@@ -6604,9 +6642,14 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
*
* WARNING: must be called with preemption disabled!
*/
-static void __sched notrace __schedule(unsigned int sched_mode)
+static void __sched notrace __schedule(int sched_mode)
{
struct task_struct *prev, *next;
+ /*
+ * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
+ * as a preemption by schedule_debug() and RCU.
+ */
+ bool preempt = sched_mode > SM_NONE;
unsigned long *switch_count;
unsigned long prev_state;
struct rq_flags rf;
@@ -6617,13 +6660,13 @@ static void __sched notrace __schedule(unsigned int sched_mode)
rq = cpu_rq(cpu);
prev = rq->curr;
- schedule_debug(prev, !!sched_mode);
+ schedule_debug(prev, preempt);
if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
hrtick_clear(rq);
local_irq_disable();
- rcu_note_context_switch(!!sched_mode);
+ rcu_note_context_switch(preempt);
/*
* Make sure that signal_pending_state()->signal_pending() below
@@ -6638,7 +6681,9 @@ static void __sched notrace __schedule(unsigned int sched_mode)
* if (signal_pending_state()) if (p->state & @state)
*
* Also, the membarrier system call requires a full memory barrier
- * after coming from user-space, before storing to rq->curr.
+ * after coming from user-space, before storing to rq->curr; this
+ * barrier matches a full barrier in the proximity of the membarrier
+ * system call exit.
*/
rq_lock(rq, &rf);
smp_mb__after_spinlock();
@@ -6650,45 +6695,28 @@ static void __sched notrace __schedule(unsigned int sched_mode)
switch_count = &prev->nivcsw;
+ /* Task state changes only considers SM_PREEMPT as preemption */
+ preempt = sched_mode == SM_PREEMPT;
+
/*
* We must load prev->state once (task_struct::state is volatile), such
* that we form a control dependency vs deactivate_task() below.
*/
prev_state = READ_ONCE(prev->__state);
- if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
- if (signal_pending_state(prev_state, prev)) {
- WRITE_ONCE(prev->__state, TASK_RUNNING);
- } else {
- prev->sched_contributes_to_load =
- (prev_state & TASK_UNINTERRUPTIBLE) &&
- !(prev_state & TASK_NOLOAD) &&
- !(prev_state & TASK_FROZEN);
-
- if (prev->sched_contributes_to_load)
- rq->nr_uninterruptible++;
-
- /*
- * __schedule() ttwu()
- * prev_state = prev->state; if (p->on_rq && ...)
- * if (prev_state) goto out;
- * p->on_rq = 0; smp_acquire__after_ctrl_dep();
- * p->state = TASK_WAKING
- *
- * Where __schedule() and ttwu() have matching control dependencies.
- *
- * After this, schedule() must not care about p->state any more.
- */
- deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
-
- if (prev->in_iowait) {
- atomic_inc(&rq->nr_iowait);
- delayacct_blkio_start();
- }
+ if (sched_mode == SM_IDLE) {
+ /* SCX must consult the BPF scheduler to tell if rq is empty */
+ if (!rq->nr_running && !scx_enabled()) {
+ next = prev;
+ goto picked;
}
+ } else if (!preempt && prev_state) {
+ try_to_block_task(rq, prev, prev_state);
switch_count = &prev->nvcsw;
}
next = pick_next_task(rq, prev, &rf);
+ rq_set_donor(rq, next);
+picked:
clear_tsk_need_resched(prev);
clear_preempt_need_resched();
#ifdef CONFIG_SCHED_DEBUG
@@ -6709,19 +6737,29 @@ static void __sched notrace __schedule(unsigned int sched_mode)
*
* Here are the schemes providing that barrier on the
* various architectures:
- * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
- * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
+ * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
+ * RISC-V. switch_mm() relies on membarrier_arch_switch_mm()
+ * on PowerPC and on RISC-V.
* - finish_lock_switch() for weakly-ordered
* architectures where spin_unlock is a full barrier,
* - switch_to() for arm64 (weakly-ordered, spin_unlock
* is a RELEASE barrier),
+ *
+ * The barrier matches a full barrier in the proximity of
+ * the membarrier system call entry.
+ *
+ * On RISC-V, this barrier pairing is also needed for the
+ * SYNC_CORE command when switching between processes, cf.
+ * the inline comments in membarrier_arch_switch_mm().
*/
++*switch_count;
migrate_disable_switch(rq, prev);
- psi_sched_switch(prev, next, !task_on_rq_queued(prev));
+ psi_account_irqtime(rq, prev, next);
+ psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
+ prev->se.sched_delayed);
- trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
+ trace_sched_switch(preempt, prev, next, prev_state);
/* Also unlocks the rq: */
rq = context_switch(rq, prev, next, &rf);
@@ -6787,15 +6825,17 @@ static inline void sched_submit_work(struct task_struct *tsk)
static void sched_update_worker(struct task_struct *tsk)
{
- if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
+ if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
+ if (tsk->flags & PF_BLOCK_TS)
+ blk_plug_invalidate_ts(tsk);
if (tsk->flags & PF_WQ_WORKER)
wq_worker_running(tsk);
- else
+ else if (tsk->flags & PF_IO_WORKER)
io_wq_worker_running(tsk);
}
}
-static __always_inline void __schedule_loop(unsigned int sched_mode)
+static __always_inline void __schedule_loop(int sched_mode)
{
do {
preempt_disable();
@@ -6833,14 +6873,14 @@ void __sched schedule_idle(void)
{
/*
* As this skips calling sched_submit_work(), which the idle task does
- * regardless because that function is a nop when the task is in a
+ * regardless because that function is a NOP when the task is in a
* TASK_RUNNING state, make sure this isn't used someplace that the
* current task can be in any other state. Note, idle is always in the
* TASK_RUNNING state.
*/
WARN_ON_ONCE(current->__state);
do {
- __schedule(SM_NONE);
+ __schedule(SM_IDLE);
} while (need_resched());
}
@@ -6854,7 +6894,7 @@ asmlinkage __visible void __sched schedule_user(void)
* we find a better solution.
*
* NB: There are buggy callers of this function. Ideally we
- * should warn if prev_state != CONTEXT_USER, but that will trigger
+ * should warn if prev_state != CT_STATE_USER, but that will trigger
* too frequently to make sense yet.
*/
enum ctx_state prev_state = exception_enter();
@@ -7028,9 +7068,9 @@ EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
/*
* This is the entry point to schedule() from kernel preemption
- * off of irq context.
- * Note, that this is called and return with irqs disabled. This will
- * protect us against recursive calling from irq.
+ * off of IRQ context.
+ * Note, that this is called and return with IRQs disabled. This will
+ * protect us against recursive calling from IRQ contexts.
*/
asmlinkage __visible void __sched preempt_schedule_irq(void)
{
@@ -7060,16 +7100,20 @@ int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flag
}
EXPORT_SYMBOL(default_wake_function);
-static void __setscheduler_prio(struct task_struct *p, int prio)
+const struct sched_class *__setscheduler_class(int policy, int prio)
{
if (dl_prio(prio))
- p->sched_class = &dl_sched_class;
- else if (rt_prio(prio))
- p->sched_class = &rt_sched_class;
- else
- p->sched_class = &fair_sched_class;
+ return &dl_sched_class;
- p->prio = prio;
+ if (rt_prio(prio))
+ return &rt_sched_class;
+
+#ifdef CONFIG_SCHED_CLASS_EXT
+ if (task_should_scx(policy))
+ return &ext_sched_class;
+#endif
+
+ return &fair_sched_class;
}
#ifdef CONFIG_RT_MUTEXES
@@ -7100,21 +7144,6 @@ void rt_mutex_post_schedule(void)
lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
}
-static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
-{
- if (pi_task)
- prio = min(prio, pi_task->prio);
-
- return prio;
-}
-
-static inline int rt_effective_prio(struct task_struct *p, int prio)
-{
- struct task_struct *pi_task = rt_mutex_get_top_task(p);
-
- return __rt_effective_prio(pi_task, prio);
-}
-
/*
* rt_mutex_setprio - set the current priority of a task
* @p: task to boost
@@ -7130,7 +7159,7 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
{
int prio, oldprio, queued, running, queue_flag =
DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
- const struct sched_class *prev_class;
+ const struct sched_class *prev_class, *next_class;
struct rq_flags rf;
struct rq *rq;
@@ -7164,7 +7193,7 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
goto out_unlock;
/*
- * Idle task boosting is a nono in general. There is one
+ * Idle task boosting is a no-no in general. There is one
* exception, when PREEMPT_RT and NOHZ is active:
*
* The idle task calls get_next_timer_interrupt() and holds
@@ -7188,8 +7217,13 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
queue_flag &= ~DEQUEUE_MOVE;
prev_class = p->sched_class;
+ next_class = __setscheduler_class(p->policy, prio);
+
+ if (prev_class != next_class && p->se.sched_delayed)
+ dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
+
queued = task_on_rq_queued(p);
- running = task_current(rq, p);
+ running = task_current_donor(rq, p);
if (queued)
dequeue_task(rq, p, queue_flag);
if (running)
@@ -7225,7 +7259,10 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
p->rt.timeout = 0;
}
- __setscheduler_prio(p, prio);
+ p->sched_class = next_class;
+ p->prio = prio;
+
+ check_class_changing(rq, p, prev_class);
if (queued)
enqueue_task(rq, p, queue_flag);
@@ -7243,1329 +7280,12 @@ out_unlock:
preempt_enable();
}
-#else
-static inline int rt_effective_prio(struct task_struct *p, int prio)
-{
- return prio;
-}
-#endif
-
-void set_user_nice(struct task_struct *p, long nice)
-{
- bool queued, running;
- struct rq *rq;
- int old_prio;
-
- if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
- return;
- /*
- * We have to be careful, if called from sys_setpriority(),
- * the task might be in the middle of scheduling on another CPU.
- */
- CLASS(task_rq_lock, rq_guard)(p);
- rq = rq_guard.rq;
-
- update_rq_clock(rq);
-
- /*
- * The RT priorities are set via sched_setscheduler(), but we still
- * allow the 'normal' nice value to be set - but as expected
- * it won't have any effect on scheduling until the task is
- * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
- */
- if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
- p->static_prio = NICE_TO_PRIO(nice);
- return;
- }
-
- queued = task_on_rq_queued(p);
- running = task_current(rq, p);
- if (queued)
- dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
- if (running)
- put_prev_task(rq, p);
-
- p->static_prio = NICE_TO_PRIO(nice);
- set_load_weight(p, true);
- old_prio = p->prio;
- p->prio = effective_prio(p);
-
- if (queued)
- enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
- if (running)
- set_next_task(rq, p);
-
- /*
- * If the task increased its priority or is running and
- * lowered its priority, then reschedule its CPU:
- */
- p->sched_class->prio_changed(rq, p, old_prio);
-}
-EXPORT_SYMBOL(set_user_nice);
-
-/*
- * is_nice_reduction - check if nice value is an actual reduction
- *
- * Similar to can_nice() but does not perform a capability check.
- *
- * @p: task
- * @nice: nice value
- */
-static bool is_nice_reduction(const struct task_struct *p, const int nice)
-{
- /* Convert nice value [19,-20] to rlimit style value [1,40]: */
- int nice_rlim = nice_to_rlimit(nice);
-
- return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
-}
-
-/*
- * can_nice - check if a task can reduce its nice value
- * @p: task
- * @nice: nice value
- */
-int can_nice(const struct task_struct *p, const int nice)
-{
- return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
-}
-
-#ifdef __ARCH_WANT_SYS_NICE
-
-/*
- * sys_nice - change the priority of the current process.
- * @increment: priority increment
- *
- * sys_setpriority is a more generic, but much slower function that
- * does similar things.
- */
-SYSCALL_DEFINE1(nice, int, increment)
-{
- long nice, retval;
-
- /*
- * Setpriority might change our priority at the same moment.
- * We don't have to worry. Conceptually one call occurs first
- * and we have a single winner.
- */
- increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
- nice = task_nice(current) + increment;
-
- nice = clamp_val(nice, MIN_NICE, MAX_NICE);
- if (increment < 0 && !can_nice(current, nice))
- return -EPERM;
-
- retval = security_task_setnice(current, nice);
- if (retval)
- return retval;
-
- set_user_nice(current, nice);
- return 0;
-}
-
-#endif
-
-/**
- * task_prio - return the priority value of a given task.
- * @p: the task in question.
- *
- * Return: The priority value as seen by users in /proc.
- *
- * sched policy return value kernel prio user prio/nice
- *
- * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
- * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
- * deadline -101 -1 0
- */
-int task_prio(const struct task_struct *p)
-{
- return p->prio - MAX_RT_PRIO;
-}
-
-/**
- * idle_cpu - is a given CPU idle currently?
- * @cpu: the processor in question.
- *
- * Return: 1 if the CPU is currently idle. 0 otherwise.
- */
-int idle_cpu(int cpu)
-{
- struct rq *rq = cpu_rq(cpu);
-
- if (rq->curr != rq->idle)
- return 0;
-
- if (rq->nr_running)
- return 0;
-
-#ifdef CONFIG_SMP
- if (rq->ttwu_pending)
- return 0;
-#endif
-
- return 1;
-}
-
-/**
- * available_idle_cpu - is a given CPU idle for enqueuing work.
- * @cpu: the CPU in question.
- *
- * Return: 1 if the CPU is currently idle. 0 otherwise.
- */
-int available_idle_cpu(int cpu)
-{
- if (!idle_cpu(cpu))
- return 0;
-
- if (vcpu_is_preempted(cpu))
- return 0;
-
- return 1;
-}
-
-/**
- * idle_task - return the idle task for a given CPU.
- * @cpu: the processor in question.
- *
- * Return: The idle task for the CPU @cpu.
- */
-struct task_struct *idle_task(int cpu)
-{
- return cpu_rq(cpu)->idle;
-}
-
-#ifdef CONFIG_SCHED_CORE
-int sched_core_idle_cpu(int cpu)
-{
- struct rq *rq = cpu_rq(cpu);
-
- if (sched_core_enabled(rq) && rq->curr == rq->idle)
- return 1;
-
- return idle_cpu(cpu);
-}
-
-#endif
-
-#ifdef CONFIG_SMP
-/*
- * This function computes an effective utilization for the given CPU, to be
- * used for frequency selection given the linear relation: f = u * f_max.
- *
- * The scheduler tracks the following metrics:
- *
- * cpu_util_{cfs,rt,dl,irq}()
- * cpu_bw_dl()
- *
- * Where the cfs,rt and dl util numbers are tracked with the same metric and
- * synchronized windows and are thus directly comparable.
- *
- * The cfs,rt,dl utilization are the running times measured with rq->clock_task
- * which excludes things like IRQ and steal-time. These latter are then accrued
- * in the irq utilization.
- *
- * The DL bandwidth number otoh is not a measured metric but a value computed
- * based on the task model parameters and gives the minimal utilization
- * required to meet deadlines.
- */
-unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
- unsigned long *min,
- unsigned long *max)
-{
- unsigned long util, irq, scale;
- struct rq *rq = cpu_rq(cpu);
-
- scale = arch_scale_cpu_capacity(cpu);
-
- /*
- * Early check to see if IRQ/steal time saturates the CPU, can be
- * because of inaccuracies in how we track these -- see
- * update_irq_load_avg().
- */
- irq = cpu_util_irq(rq);
- if (unlikely(irq >= scale)) {
- if (min)
- *min = scale;
- if (max)
- *max = scale;
- return scale;
- }
-
- if (min) {
- /*
- * The minimum utilization returns the highest level between:
- * - the computed DL bandwidth needed with the IRQ pressure which
- * steals time to the deadline task.
- * - The minimum performance requirement for CFS and/or RT.
- */
- *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
-
- /*
- * When an RT task is runnable and uclamp is not used, we must
- * ensure that the task will run at maximum compute capacity.
- */
- if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
- *min = max(*min, scale);
- }
-
- /*
- * Because the time spend on RT/DL tasks is visible as 'lost' time to
- * CFS tasks and we use the same metric to track the effective
- * utilization (PELT windows are synchronized) we can directly add them
- * to obtain the CPU's actual utilization.
- */
- util = util_cfs + cpu_util_rt(rq);
- util += cpu_util_dl(rq);
-
- /*
- * The maximum hint is a soft bandwidth requirement, which can be lower
- * than the actual utilization because of uclamp_max requirements.
- */
- if (max)
- *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
-
- if (util >= scale)
- return scale;
-
- /*
- * There is still idle time; further improve the number by using the
- * irq metric. Because IRQ/steal time is hidden from the task clock we
- * need to scale the task numbers:
- *
- * max - irq
- * U' = irq + --------- * U
- * max
- */
- util = scale_irq_capacity(util, irq, scale);
- util += irq;
-
- return min(scale, util);
-}
-
-unsigned long sched_cpu_util(int cpu)
-{
- return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
-}
-#endif /* CONFIG_SMP */
-
-/**
- * find_process_by_pid - find a process with a matching PID value.
- * @pid: the pid in question.
- *
- * The task of @pid, if found. %NULL otherwise.
- */
-static struct task_struct *find_process_by_pid(pid_t pid)
-{
- return pid ? find_task_by_vpid(pid) : current;
-}
-
-static struct task_struct *find_get_task(pid_t pid)
-{
- struct task_struct *p;
- guard(rcu)();
-
- p = find_process_by_pid(pid);
- if (likely(p))
- get_task_struct(p);
-
- return p;
-}
-
-DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
- find_get_task(pid), pid_t pid)
-
-/*
- * sched_setparam() passes in -1 for its policy, to let the functions
- * it calls know not to change it.
- */
-#define SETPARAM_POLICY -1
-
-static void __setscheduler_params(struct task_struct *p,
- const struct sched_attr *attr)
-{
- int policy = attr->sched_policy;
-
- if (policy == SETPARAM_POLICY)
- policy = p->policy;
-
- p->policy = policy;
-
- if (dl_policy(policy))
- __setparam_dl(p, attr);
- else if (fair_policy(policy))
- p->static_prio = NICE_TO_PRIO(attr->sched_nice);
-
- /*
- * __sched_setscheduler() ensures attr->sched_priority == 0 when
- * !rt_policy. Always setting this ensures that things like
- * getparam()/getattr() don't report silly values for !rt tasks.
- */
- p->rt_priority = attr->sched_priority;
- p->normal_prio = normal_prio(p);
- set_load_weight(p, true);
-}
-
-/*
- * Check the target process has a UID that matches the current process's:
- */
-static bool check_same_owner(struct task_struct *p)
-{
- const struct cred *cred = current_cred(), *pcred;
- guard(rcu)();
-
- pcred = __task_cred(p);
- return (uid_eq(cred->euid, pcred->euid) ||
- uid_eq(cred->euid, pcred->uid));
-}
-
-/*
- * Allow unprivileged RT tasks to decrease priority.
- * Only issue a capable test if needed and only once to avoid an audit
- * event on permitted non-privileged operations:
- */
-static int user_check_sched_setscheduler(struct task_struct *p,
- const struct sched_attr *attr,
- int policy, int reset_on_fork)
-{
- if (fair_policy(policy)) {
- if (attr->sched_nice < task_nice(p) &&
- !is_nice_reduction(p, attr->sched_nice))
- goto req_priv;
- }
-
- if (rt_policy(policy)) {
- unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
-
- /* Can't set/change the rt policy: */
- if (policy != p->policy && !rlim_rtprio)
- goto req_priv;
-
- /* Can't increase priority: */
- if (attr->sched_priority > p->rt_priority &&
- attr->sched_priority > rlim_rtprio)
- goto req_priv;
- }
-
- /*
- * Can't set/change SCHED_DEADLINE policy at all for now
- * (safest behavior); in the future we would like to allow
- * unprivileged DL tasks to increase their relative deadline
- * or reduce their runtime (both ways reducing utilization)
- */
- if (dl_policy(policy))
- goto req_priv;
-
- /*
- * Treat SCHED_IDLE as nice 20. Only allow a switch to
- * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
- */
- if (task_has_idle_policy(p) && !idle_policy(policy)) {
- if (!is_nice_reduction(p, task_nice(p)))
- goto req_priv;
- }
-
- /* Can't change other user's priorities: */
- if (!check_same_owner(p))
- goto req_priv;
-
- /* Normal users shall not reset the sched_reset_on_fork flag: */
- if (p->sched_reset_on_fork && !reset_on_fork)
- goto req_priv;
-
- return 0;
-
-req_priv:
- if (!capable(CAP_SYS_NICE))
- return -EPERM;
-
- return 0;
-}
-
-static int __sched_setscheduler(struct task_struct *p,
- const struct sched_attr *attr,
- bool user, bool pi)
-{
- int oldpolicy = -1, policy = attr->sched_policy;
- int retval, oldprio, newprio, queued, running;
- const struct sched_class *prev_class;
- struct balance_callback *head;
- struct rq_flags rf;
- int reset_on_fork;
- int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
- struct rq *rq;
- bool cpuset_locked = false;
-
- /* The pi code expects interrupts enabled */
- BUG_ON(pi && in_interrupt());
-recheck:
- /* Double check policy once rq lock held: */
- if (policy < 0) {
- reset_on_fork = p->sched_reset_on_fork;
- policy = oldpolicy = p->policy;
- } else {
- reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
-
- if (!valid_policy(policy))
- return -EINVAL;
- }
-
- if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
- return -EINVAL;
-
- /*
- * Valid priorities for SCHED_FIFO and SCHED_RR are
- * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
- * SCHED_BATCH and SCHED_IDLE is 0.
- */
- if (attr->sched_priority > MAX_RT_PRIO-1)
- return -EINVAL;
- if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
- (rt_policy(policy) != (attr->sched_priority != 0)))
- return -EINVAL;
-
- if (user) {
- retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
- if (retval)
- return retval;
-
- if (attr->sched_flags & SCHED_FLAG_SUGOV)
- return -EINVAL;
-
- retval = security_task_setscheduler(p);
- if (retval)
- return retval;
- }
-
- /* Update task specific "requested" clamps */
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
- retval = uclamp_validate(p, attr);
- if (retval)
- return retval;
- }
-
- /*
- * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
- * information.
- */
- if (dl_policy(policy) || dl_policy(p->policy)) {
- cpuset_locked = true;
- cpuset_lock();
- }
-
- /*
- * Make sure no PI-waiters arrive (or leave) while we are
- * changing the priority of the task:
- *
- * To be able to change p->policy safely, the appropriate
- * runqueue lock must be held.
- */
- rq = task_rq_lock(p, &rf);
- update_rq_clock(rq);
-
- /*
- * Changing the policy of the stop threads its a very bad idea:
- */
- if (p == rq->stop) {
- retval = -EINVAL;
- goto unlock;
- }
-
- /*
- * If not changing anything there's no need to proceed further,
- * but store a possible modification of reset_on_fork.
- */
- if (unlikely(policy == p->policy)) {
- if (fair_policy(policy) && attr->sched_nice != task_nice(p))
- goto change;
- if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
- goto change;
- if (dl_policy(policy) && dl_param_changed(p, attr))
- goto change;
- if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
- goto change;
-
- p->sched_reset_on_fork = reset_on_fork;
- retval = 0;
- goto unlock;
- }
-change:
-
- if (user) {
-#ifdef CONFIG_RT_GROUP_SCHED
- /*
- * Do not allow realtime tasks into groups that have no runtime
- * assigned.
- */
- if (rt_bandwidth_enabled() && rt_policy(policy) &&
- task_group(p)->rt_bandwidth.rt_runtime == 0 &&
- !task_group_is_autogroup(task_group(p))) {
- retval = -EPERM;
- goto unlock;
- }
-#endif
-#ifdef CONFIG_SMP
- if (dl_bandwidth_enabled() && dl_policy(policy) &&
- !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
- cpumask_t *span = rq->rd->span;
-
- /*
- * Don't allow tasks with an affinity mask smaller than
- * the entire root_domain to become SCHED_DEADLINE. We
- * will also fail if there's no bandwidth available.
- */
- if (!cpumask_subset(span, p->cpus_ptr) ||
- rq->rd->dl_bw.bw == 0) {
- retval = -EPERM;
- goto unlock;
- }
- }
-#endif
- }
-
- /* Re-check policy now with rq lock held: */
- if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
- policy = oldpolicy = -1;
- task_rq_unlock(rq, p, &rf);
- if (cpuset_locked)
- cpuset_unlock();
- goto recheck;
- }
-
- /*
- * If setscheduling to SCHED_DEADLINE (or changing the parameters
- * of a SCHED_DEADLINE task) we need to check if enough bandwidth
- * is available.
- */
- if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
- retval = -EBUSY;
- goto unlock;
- }
-
- p->sched_reset_on_fork = reset_on_fork;
- oldprio = p->prio;
-
- newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
- if (pi) {
- /*
- * Take priority boosted tasks into account. If the new
- * effective priority is unchanged, we just store the new
- * normal parameters and do not touch the scheduler class and
- * the runqueue. This will be done when the task deboost
- * itself.
- */
- newprio = rt_effective_prio(p, newprio);
- if (newprio == oldprio)
- queue_flags &= ~DEQUEUE_MOVE;
- }
-
- queued = task_on_rq_queued(p);
- running = task_current(rq, p);
- if (queued)
- dequeue_task(rq, p, queue_flags);
- if (running)
- put_prev_task(rq, p);
-
- prev_class = p->sched_class;
-
- if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
- __setscheduler_params(p, attr);
- __setscheduler_prio(p, newprio);
- }
- __setscheduler_uclamp(p, attr);
-
- if (queued) {
- /*
- * We enqueue to tail when the priority of a task is
- * increased (user space view).
- */
- if (oldprio < p->prio)
- queue_flags |= ENQUEUE_HEAD;
-
- enqueue_task(rq, p, queue_flags);
- }
- if (running)
- set_next_task(rq, p);
-
- check_class_changed(rq, p, prev_class, oldprio);
-
- /* Avoid rq from going away on us: */
- preempt_disable();
- head = splice_balance_callbacks(rq);
- task_rq_unlock(rq, p, &rf);
-
- if (pi) {
- if (cpuset_locked)
- cpuset_unlock();
- rt_mutex_adjust_pi(p);
- }
-
- /* Run balance callbacks after we've adjusted the PI chain: */
- balance_callbacks(rq, head);
- preempt_enable();
-
- return 0;
-
-unlock:
- task_rq_unlock(rq, p, &rf);
- if (cpuset_locked)
- cpuset_unlock();
- return retval;
-}
-
-static int _sched_setscheduler(struct task_struct *p, int policy,
- const struct sched_param *param, bool check)
-{
- struct sched_attr attr = {
- .sched_policy = policy,
- .sched_priority = param->sched_priority,
- .sched_nice = PRIO_TO_NICE(p->static_prio),
- };
-
- /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
- if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
- attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
- policy &= ~SCHED_RESET_ON_FORK;
- attr.sched_policy = policy;
- }
-
- return __sched_setscheduler(p, &attr, check, true);
-}
-/**
- * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
- * @p: the task in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * Use sched_set_fifo(), read its comment.
- *
- * Return: 0 on success. An error code otherwise.
- *
- * NOTE that the task may be already dead.
- */
-int sched_setscheduler(struct task_struct *p, int policy,
- const struct sched_param *param)
-{
- return _sched_setscheduler(p, policy, param, true);
-}
-
-int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
-{
- return __sched_setscheduler(p, attr, true, true);
-}
-
-int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
-{
- return __sched_setscheduler(p, attr, false, true);
-}
-EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
-
-/**
- * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
- * @p: the task in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * Just like sched_setscheduler, only don't bother checking if the
- * current context has permission. For example, this is needed in
- * stop_machine(): we create temporary high priority worker threads,
- * but our caller might not have that capability.
- *
- * Return: 0 on success. An error code otherwise.
- */
-int sched_setscheduler_nocheck(struct task_struct *p, int policy,
- const struct sched_param *param)
-{
- return _sched_setscheduler(p, policy, param, false);
-}
-
-/*
- * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
- * incapable of resource management, which is the one thing an OS really should
- * be doing.
- *
- * This is of course the reason it is limited to privileged users only.
- *
- * Worse still; it is fundamentally impossible to compose static priority
- * workloads. You cannot take two correctly working static prio workloads
- * and smash them together and still expect them to work.
- *
- * For this reason 'all' FIFO tasks the kernel creates are basically at:
- *
- * MAX_RT_PRIO / 2
- *
- * The administrator _MUST_ configure the system, the kernel simply doesn't
- * know enough information to make a sensible choice.
- */
-void sched_set_fifo(struct task_struct *p)
-{
- struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
- WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
-}
-EXPORT_SYMBOL_GPL(sched_set_fifo);
-
-/*
- * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
- */
-void sched_set_fifo_low(struct task_struct *p)
-{
- struct sched_param sp = { .sched_priority = 1 };
- WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
-}
-EXPORT_SYMBOL_GPL(sched_set_fifo_low);
-
-void sched_set_normal(struct task_struct *p, int nice)
-{
- struct sched_attr attr = {
- .sched_policy = SCHED_NORMAL,
- .sched_nice = nice,
- };
- WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
-}
-EXPORT_SYMBOL_GPL(sched_set_normal);
-
-static int
-do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
-{
- struct sched_param lparam;
-
- if (!param || pid < 0)
- return -EINVAL;
- if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
- return -EFAULT;
-
- CLASS(find_get_task, p)(pid);
- if (!p)
- return -ESRCH;
-
- return sched_setscheduler(p, policy, &lparam);
-}
-
-/*
- * Mimics kernel/events/core.c perf_copy_attr().
- */
-static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
-{
- u32 size;
- int ret;
-
- /* Zero the full structure, so that a short copy will be nice: */
- memset(attr, 0, sizeof(*attr));
-
- ret = get_user(size, &uattr->size);
- if (ret)
- return ret;
-
- /* ABI compatibility quirk: */
- if (!size)
- size = SCHED_ATTR_SIZE_VER0;
- if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
- goto err_size;
-
- ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
- if (ret) {
- if (ret == -E2BIG)
- goto err_size;
- return ret;
- }
-
- if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
- size < SCHED_ATTR_SIZE_VER1)
- return -EINVAL;
-
- /*
- * XXX: Do we want to be lenient like existing syscalls; or do we want
- * to be strict and return an error on out-of-bounds values?
- */
- attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
-
- return 0;
-
-err_size:
- put_user(sizeof(*attr), &uattr->size);
- return -E2BIG;
-}
-
-static void get_params(struct task_struct *p, struct sched_attr *attr)
-{
- if (task_has_dl_policy(p))
- __getparam_dl(p, attr);
- else if (task_has_rt_policy(p))
- attr->sched_priority = p->rt_priority;
- else
- attr->sched_nice = task_nice(p);
-}
-
-/**
- * sys_sched_setscheduler - set/change the scheduler policy and RT priority
- * @pid: the pid in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * Return: 0 on success. An error code otherwise.
- */
-SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
-{
- if (policy < 0)
- return -EINVAL;
-
- return do_sched_setscheduler(pid, policy, param);
-}
-
-/**
- * sys_sched_setparam - set/change the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the new RT priority.
- *
- * Return: 0 on success. An error code otherwise.
- */
-SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
-{
- return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
-}
-
-/**
- * sys_sched_setattr - same as above, but with extended sched_attr
- * @pid: the pid in question.
- * @uattr: structure containing the extended parameters.
- * @flags: for future extension.
- */
-SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
- unsigned int, flags)
-{
- struct sched_attr attr;
- int retval;
-
- if (!uattr || pid < 0 || flags)
- return -EINVAL;
-
- retval = sched_copy_attr(uattr, &attr);
- if (retval)
- return retval;
-
- if ((int)attr.sched_policy < 0)
- return -EINVAL;
- if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
- attr.sched_policy = SETPARAM_POLICY;
-
- CLASS(find_get_task, p)(pid);
- if (!p)
- return -ESRCH;
-
- if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
- get_params(p, &attr);
-
- return sched_setattr(p, &attr);
-}
-
-/**
- * sys_sched_getscheduler - get the policy (scheduling class) of a thread
- * @pid: the pid in question.
- *
- * Return: On success, the policy of the thread. Otherwise, a negative error
- * code.
- */
-SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
-{
- struct task_struct *p;
- int retval;
-
- if (pid < 0)
- return -EINVAL;
-
- guard(rcu)();
- p = find_process_by_pid(pid);
- if (!p)
- return -ESRCH;
-
- retval = security_task_getscheduler(p);
- if (!retval) {
- retval = p->policy;
- if (p->sched_reset_on_fork)
- retval |= SCHED_RESET_ON_FORK;
- }
- return retval;
-}
-
-/**
- * sys_sched_getparam - get the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the RT priority.
- *
- * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
- * code.
- */
-SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
-{
- struct sched_param lp = { .sched_priority = 0 };
- struct task_struct *p;
- int retval;
-
- if (!param || pid < 0)
- return -EINVAL;
-
- scoped_guard (rcu) {
- p = find_process_by_pid(pid);
- if (!p)
- return -ESRCH;
-
- retval = security_task_getscheduler(p);
- if (retval)
- return retval;
-
- if (task_has_rt_policy(p))
- lp.sched_priority = p->rt_priority;
- }
-
- /*
- * This one might sleep, we cannot do it with a spinlock held ...
- */
- return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
-}
-
-/*
- * Copy the kernel size attribute structure (which might be larger
- * than what user-space knows about) to user-space.
- *
- * Note that all cases are valid: user-space buffer can be larger or
- * smaller than the kernel-space buffer. The usual case is that both
- * have the same size.
- */
-static int
-sched_attr_copy_to_user(struct sched_attr __user *uattr,
- struct sched_attr *kattr,
- unsigned int usize)
-{
- unsigned int ksize = sizeof(*kattr);
-
- if (!access_ok(uattr, usize))
- return -EFAULT;
-
- /*
- * sched_getattr() ABI forwards and backwards compatibility:
- *
- * If usize == ksize then we just copy everything to user-space and all is good.
- *
- * If usize < ksize then we only copy as much as user-space has space for,
- * this keeps ABI compatibility as well. We skip the rest.
- *
- * If usize > ksize then user-space is using a newer version of the ABI,
- * which part the kernel doesn't know about. Just ignore it - tooling can
- * detect the kernel's knowledge of attributes from the attr->size value
- * which is set to ksize in this case.
- */
- kattr->size = min(usize, ksize);
-
- if (copy_to_user(uattr, kattr, kattr->size))
- return -EFAULT;
-
- return 0;
-}
-
-/**
- * sys_sched_getattr - similar to sched_getparam, but with sched_attr
- * @pid: the pid in question.
- * @uattr: structure containing the extended parameters.
- * @usize: sizeof(attr) for fwd/bwd comp.
- * @flags: for future extension.
- */
-SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
- unsigned int, usize, unsigned int, flags)
-{
- struct sched_attr kattr = { };
- struct task_struct *p;
- int retval;
-
- if (!uattr || pid < 0 || usize > PAGE_SIZE ||
- usize < SCHED_ATTR_SIZE_VER0 || flags)
- return -EINVAL;
-
- scoped_guard (rcu) {
- p = find_process_by_pid(pid);
- if (!p)
- return -ESRCH;
-
- retval = security_task_getscheduler(p);
- if (retval)
- return retval;
-
- kattr.sched_policy = p->policy;
- if (p->sched_reset_on_fork)
- kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
- get_params(p, &kattr);
- kattr.sched_flags &= SCHED_FLAG_ALL;
-
-#ifdef CONFIG_UCLAMP_TASK
- /*
- * This could race with another potential updater, but this is fine
- * because it'll correctly read the old or the new value. We don't need
- * to guarantee who wins the race as long as it doesn't return garbage.
- */
- kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
- kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
-#endif
- }
-
- return sched_attr_copy_to_user(uattr, &kattr, usize);
-}
-
-#ifdef CONFIG_SMP
-int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
-{
- /*
- * If the task isn't a deadline task or admission control is
- * disabled then we don't care about affinity changes.
- */
- if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
- return 0;
-
- /*
- * Since bandwidth control happens on root_domain basis,
- * if admission test is enabled, we only admit -deadline
- * tasks allowed to run on all the CPUs in the task's
- * root_domain.
- */
- guard(rcu)();
- if (!cpumask_subset(task_rq(p)->rd->span, mask))
- return -EBUSY;
-
- return 0;
-}
#endif
-static int
-__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
-{
- int retval;
- cpumask_var_t cpus_allowed, new_mask;
-
- if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
- return -ENOMEM;
-
- if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
- retval = -ENOMEM;
- goto out_free_cpus_allowed;
- }
-
- cpuset_cpus_allowed(p, cpus_allowed);
- cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
-
- ctx->new_mask = new_mask;
- ctx->flags |= SCA_CHECK;
-
- retval = dl_task_check_affinity(p, new_mask);
- if (retval)
- goto out_free_new_mask;
-
- retval = __set_cpus_allowed_ptr(p, ctx);
- if (retval)
- goto out_free_new_mask;
-
- cpuset_cpus_allowed(p, cpus_allowed);
- if (!cpumask_subset(new_mask, cpus_allowed)) {
- /*
- * We must have raced with a concurrent cpuset update.
- * Just reset the cpumask to the cpuset's cpus_allowed.
- */
- cpumask_copy(new_mask, cpus_allowed);
-
- /*
- * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
- * will restore the previous user_cpus_ptr value.
- *
- * In the unlikely event a previous user_cpus_ptr exists,
- * we need to further restrict the mask to what is allowed
- * by that old user_cpus_ptr.
- */
- if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
- bool empty = !cpumask_and(new_mask, new_mask,
- ctx->user_mask);
-
- if (WARN_ON_ONCE(empty))
- cpumask_copy(new_mask, cpus_allowed);
- }
- __set_cpus_allowed_ptr(p, ctx);
- retval = -EINVAL;
- }
-
-out_free_new_mask:
- free_cpumask_var(new_mask);
-out_free_cpus_allowed:
- free_cpumask_var(cpus_allowed);
- return retval;
-}
-
-long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
-{
- struct affinity_context ac;
- struct cpumask *user_mask;
- int retval;
-
- CLASS(find_get_task, p)(pid);
- if (!p)
- return -ESRCH;
-
- if (p->flags & PF_NO_SETAFFINITY)
- return -EINVAL;
-
- if (!check_same_owner(p)) {
- guard(rcu)();
- if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
- return -EPERM;
- }
-
- retval = security_task_setscheduler(p);
- if (retval)
- return retval;
-
- /*
- * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
- * alloc_user_cpus_ptr() returns NULL.
- */
- user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
- if (user_mask) {
- cpumask_copy(user_mask, in_mask);
- } else if (IS_ENABLED(CONFIG_SMP)) {
- return -ENOMEM;
- }
-
- ac = (struct affinity_context){
- .new_mask = in_mask,
- .user_mask = user_mask,
- .flags = SCA_USER,
- };
-
- retval = __sched_setaffinity(p, &ac);
- kfree(ac.user_mask);
-
- return retval;
-}
-
-static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
- struct cpumask *new_mask)
-{
- if (len < cpumask_size())
- cpumask_clear(new_mask);
- else if (len > cpumask_size())
- len = cpumask_size();
-
- return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
-}
-
-/**
- * sys_sched_setaffinity - set the CPU affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to the new CPU mask
- *
- * Return: 0 on success. An error code otherwise.
- */
-SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
- unsigned long __user *, user_mask_ptr)
-{
- cpumask_var_t new_mask;
- int retval;
-
- if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
- return -ENOMEM;
-
- retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
- if (retval == 0)
- retval = sched_setaffinity(pid, new_mask);
- free_cpumask_var(new_mask);
- return retval;
-}
-
-long sched_getaffinity(pid_t pid, struct cpumask *mask)
-{
- struct task_struct *p;
- int retval;
-
- guard(rcu)();
- p = find_process_by_pid(pid);
- if (!p)
- return -ESRCH;
-
- retval = security_task_getscheduler(p);
- if (retval)
- return retval;
-
- guard(raw_spinlock_irqsave)(&p->pi_lock);
- cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
-
- return 0;
-}
-
-/**
- * sys_sched_getaffinity - get the CPU affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to hold the current CPU mask
- *
- * Return: size of CPU mask copied to user_mask_ptr on success. An
- * error code otherwise.
- */
-SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
- unsigned long __user *, user_mask_ptr)
-{
- int ret;
- cpumask_var_t mask;
-
- if ((len * BITS_PER_BYTE) < nr_cpu_ids)
- return -EINVAL;
- if (len & (sizeof(unsigned long)-1))
- return -EINVAL;
-
- if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
- return -ENOMEM;
-
- ret = sched_getaffinity(pid, mask);
- if (ret == 0) {
- unsigned int retlen = min(len, cpumask_size());
-
- if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
- ret = -EFAULT;
- else
- ret = retlen;
- }
- free_cpumask_var(mask);
-
- return ret;
-}
-
-static void do_sched_yield(void)
-{
- struct rq_flags rf;
- struct rq *rq;
-
- rq = this_rq_lock_irq(&rf);
-
- schedstat_inc(rq->yld_count);
- current->sched_class->yield_task(rq);
-
- preempt_disable();
- rq_unlock_irq(rq, &rf);
- sched_preempt_enable_no_resched();
-
- schedule();
-}
-
-/**
- * sys_sched_yield - yield the current processor to other threads.
- *
- * This function yields the current CPU to other tasks. If there are no
- * other threads running on this CPU then this function will return.
- *
- * Return: 0.
- */
-SYSCALL_DEFINE0(sched_yield)
-{
- do_sched_yield();
- return 0;
-}
-
#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
int __sched __cond_resched(void)
{
- if (should_resched(0)) {
+ if (should_resched(0) && !irqs_disabled()) {
preempt_schedule_common();
return 1;
}
@@ -8703,6 +7423,7 @@ EXPORT_SYMBOL(__cond_resched_rwlock_write);
* preempt_schedule <- NOP
* preempt_schedule_notrace <- NOP
* irqentry_exit_cond_resched <- NOP
+ * dynamic_preempt_lazy <- false
*
* VOLUNTARY:
* cond_resched <- __cond_resched
@@ -8710,6 +7431,7 @@ EXPORT_SYMBOL(__cond_resched_rwlock_write);
* preempt_schedule <- NOP
* preempt_schedule_notrace <- NOP
* irqentry_exit_cond_resched <- NOP
+ * dynamic_preempt_lazy <- false
*
* FULL:
* cond_resched <- RET0
@@ -8717,6 +7439,15 @@ EXPORT_SYMBOL(__cond_resched_rwlock_write);
* preempt_schedule <- preempt_schedule
* preempt_schedule_notrace <- preempt_schedule_notrace
* irqentry_exit_cond_resched <- irqentry_exit_cond_resched
+ * dynamic_preempt_lazy <- false
+ *
+ * LAZY:
+ * cond_resched <- RET0
+ * might_resched <- RET0
+ * preempt_schedule <- preempt_schedule
+ * preempt_schedule_notrace <- preempt_schedule_notrace
+ * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
+ * dynamic_preempt_lazy <- true
*/
enum {
@@ -8724,30 +7455,41 @@ enum {
preempt_dynamic_none,
preempt_dynamic_voluntary,
preempt_dynamic_full,
+ preempt_dynamic_lazy,
};
int preempt_dynamic_mode = preempt_dynamic_undefined;
int sched_dynamic_mode(const char *str)
{
+#ifndef CONFIG_PREEMPT_RT
if (!strcmp(str, "none"))
return preempt_dynamic_none;
if (!strcmp(str, "voluntary"))
return preempt_dynamic_voluntary;
+#endif
if (!strcmp(str, "full"))
return preempt_dynamic_full;
+#ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
+ if (!strcmp(str, "lazy"))
+ return preempt_dynamic_lazy;
+#endif
+
return -EINVAL;
}
+#define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key)
+#define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key)
+
#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
-#define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
-#define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
+#define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f)
+#define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f)
#else
#error "Unsupported PREEMPT_DYNAMIC mechanism"
#endif
@@ -8767,6 +7509,7 @@ static void __sched_dynamic_update(int mode)
preempt_dynamic_enable(preempt_schedule);
preempt_dynamic_enable(preempt_schedule_notrace);
preempt_dynamic_enable(irqentry_exit_cond_resched);
+ preempt_dynamic_key_disable(preempt_lazy);
switch (mode) {
case preempt_dynamic_none:
@@ -8776,6 +7519,7 @@ static void __sched_dynamic_update(int mode)
preempt_dynamic_disable(preempt_schedule);
preempt_dynamic_disable(preempt_schedule_notrace);
preempt_dynamic_disable(irqentry_exit_cond_resched);
+ preempt_dynamic_key_disable(preempt_lazy);
if (mode != preempt_dynamic_mode)
pr_info("Dynamic Preempt: none\n");
break;
@@ -8787,6 +7531,7 @@ static void __sched_dynamic_update(int mode)
preempt_dynamic_disable(preempt_schedule);
preempt_dynamic_disable(preempt_schedule_notrace);
preempt_dynamic_disable(irqentry_exit_cond_resched);
+ preempt_dynamic_key_disable(preempt_lazy);
if (mode != preempt_dynamic_mode)
pr_info("Dynamic Preempt: voluntary\n");
break;
@@ -8798,9 +7543,22 @@ static void __sched_dynamic_update(int mode)
preempt_dynamic_enable(preempt_schedule);
preempt_dynamic_enable(preempt_schedule_notrace);
preempt_dynamic_enable(irqentry_exit_cond_resched);
+ preempt_dynamic_key_disable(preempt_lazy);
if (mode != preempt_dynamic_mode)
pr_info("Dynamic Preempt: full\n");
break;
+
+ case preempt_dynamic_lazy:
+ if (!klp_override)
+ preempt_dynamic_disable(cond_resched);
+ preempt_dynamic_disable(might_resched);
+ preempt_dynamic_enable(preempt_schedule);
+ preempt_dynamic_enable(preempt_schedule_notrace);
+ preempt_dynamic_enable(irqentry_exit_cond_resched);
+ preempt_dynamic_key_enable(preempt_lazy);
+ if (mode != preempt_dynamic_mode)
+ pr_info("Dynamic Preempt: lazy\n");
+ break;
}
preempt_dynamic_mode = mode;
@@ -8863,6 +7621,8 @@ static void __init preempt_dynamic_init(void)
sched_dynamic_update(preempt_dynamic_none);
} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
sched_dynamic_update(preempt_dynamic_voluntary);
+ } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
+ sched_dynamic_update(preempt_dynamic_lazy);
} else {
/* Default static call setting, nothing to do */
WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
@@ -8883,106 +7643,13 @@ static void __init preempt_dynamic_init(void)
PREEMPT_MODEL_ACCESSOR(none);
PREEMPT_MODEL_ACCESSOR(voluntary);
PREEMPT_MODEL_ACCESSOR(full);
+PREEMPT_MODEL_ACCESSOR(lazy);
-#else /* !CONFIG_PREEMPT_DYNAMIC */
+#else /* !CONFIG_PREEMPT_DYNAMIC: */
static inline void preempt_dynamic_init(void) { }
-#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
-
-/**
- * yield - yield the current processor to other threads.
- *
- * Do not ever use this function, there's a 99% chance you're doing it wrong.
- *
- * The scheduler is at all times free to pick the calling task as the most
- * eligible task to run, if removing the yield() call from your code breaks
- * it, it's already broken.
- *
- * Typical broken usage is:
- *
- * while (!event)
- * yield();
- *
- * where one assumes that yield() will let 'the other' process run that will
- * make event true. If the current task is a SCHED_FIFO task that will never
- * happen. Never use yield() as a progress guarantee!!
- *
- * If you want to use yield() to wait for something, use wait_event().
- * If you want to use yield() to be 'nice' for others, use cond_resched().
- * If you still want to use yield(), do not!
- */
-void __sched yield(void)
-{
- set_current_state(TASK_RUNNING);
- do_sched_yield();
-}
-EXPORT_SYMBOL(yield);
-
-/**
- * yield_to - yield the current processor to another thread in
- * your thread group, or accelerate that thread toward the
- * processor it's on.
- * @p: target task
- * @preempt: whether task preemption is allowed or not
- *
- * It's the caller's job to ensure that the target task struct
- * can't go away on us before we can do any checks.
- *
- * Return:
- * true (>0) if we indeed boosted the target task.
- * false (0) if we failed to boost the target.
- * -ESRCH if there's no task to yield to.
- */
-int __sched yield_to(struct task_struct *p, bool preempt)
-{
- struct task_struct *curr = current;
- struct rq *rq, *p_rq;
- int yielded = 0;
-
- scoped_guard (irqsave) {
- rq = this_rq();
-
-again:
- p_rq = task_rq(p);
- /*
- * If we're the only runnable task on the rq and target rq also
- * has only one task, there's absolutely no point in yielding.
- */
- if (rq->nr_running == 1 && p_rq->nr_running == 1)
- return -ESRCH;
-
- guard(double_rq_lock)(rq, p_rq);
- if (task_rq(p) != p_rq)
- goto again;
-
- if (!curr->sched_class->yield_to_task)
- return 0;
-
- if (curr->sched_class != p->sched_class)
- return 0;
-
- if (task_on_cpu(p_rq, p) || !task_is_running(p))
- return 0;
-
- yielded = curr->sched_class->yield_to_task(rq, p);
- if (yielded) {
- schedstat_inc(rq->yld_count);
- /*
- * Make p's CPU reschedule; pick_next_entity
- * takes care of fairness.
- */
- if (preempt && rq != p_rq)
- resched_curr(p_rq);
- }
- }
-
- if (yielded)
- schedule();
-
- return yielded;
-}
-EXPORT_SYMBOL_GPL(yield_to);
+#endif /* CONFIG_PREEMPT_DYNAMIC */
int io_schedule_prepare(void)
{
@@ -9025,126 +7692,9 @@ void __sched io_schedule(void)
}
EXPORT_SYMBOL(io_schedule);
-/**
- * sys_sched_get_priority_max - return maximum RT priority.
- * @policy: scheduling class.
- *
- * Return: On success, this syscall returns the maximum
- * rt_priority that can be used by a given scheduling class.
- * On failure, a negative error code is returned.
- */
-SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
-{
- int ret = -EINVAL;
-
- switch (policy) {
- case SCHED_FIFO:
- case SCHED_RR:
- ret = MAX_RT_PRIO-1;
- break;
- case SCHED_DEADLINE:
- case SCHED_NORMAL:
- case SCHED_BATCH:
- case SCHED_IDLE:
- ret = 0;
- break;
- }
- return ret;
-}
-
-/**
- * sys_sched_get_priority_min - return minimum RT priority.
- * @policy: scheduling class.
- *
- * Return: On success, this syscall returns the minimum
- * rt_priority that can be used by a given scheduling class.
- * On failure, a negative error code is returned.
- */
-SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
-{
- int ret = -EINVAL;
-
- switch (policy) {
- case SCHED_FIFO:
- case SCHED_RR:
- ret = 1;
- break;
- case SCHED_DEADLINE:
- case SCHED_NORMAL:
- case SCHED_BATCH:
- case SCHED_IDLE:
- ret = 0;
- }
- return ret;
-}
-
-static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
-{
- unsigned int time_slice = 0;
- int retval;
-
- if (pid < 0)
- return -EINVAL;
-
- scoped_guard (rcu) {
- struct task_struct *p = find_process_by_pid(pid);
- if (!p)
- return -ESRCH;
-
- retval = security_task_getscheduler(p);
- if (retval)
- return retval;
-
- scoped_guard (task_rq_lock, p) {
- struct rq *rq = scope.rq;
- if (p->sched_class->get_rr_interval)
- time_slice = p->sched_class->get_rr_interval(rq, p);
- }
- }
-
- jiffies_to_timespec64(time_slice, t);
- return 0;
-}
-
-/**
- * sys_sched_rr_get_interval - return the default timeslice of a process.
- * @pid: pid of the process.
- * @interval: userspace pointer to the timeslice value.
- *
- * this syscall writes the default timeslice value of a given process
- * into the user-space timespec buffer. A value of '0' means infinity.
- *
- * Return: On success, 0 and the timeslice is in @interval. Otherwise,
- * an error code.
- */
-SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
- struct __kernel_timespec __user *, interval)
-{
- struct timespec64 t;
- int retval = sched_rr_get_interval(pid, &t);
-
- if (retval == 0)
- retval = put_timespec64(&t, interval);
-
- return retval;
-}
-
-#ifdef CONFIG_COMPAT_32BIT_TIME
-SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
- struct old_timespec32 __user *, interval)
-{
- struct timespec64 t;
- int retval = sched_rr_get_interval(pid, &t);
-
- if (retval == 0)
- retval = put_old_timespec32(&t, interval);
- return retval;
-}
-#endif
-
void sched_show_task(struct task_struct *p)
{
- unsigned long free = 0;
+ unsigned long free;
int ppid;
if (!try_get_task_stack(p))
@@ -9154,20 +7704,19 @@ void sched_show_task(struct task_struct *p)
if (task_is_running(p))
pr_cont(" running task ");
-#ifdef CONFIG_DEBUG_STACK_USAGE
free = stack_not_used(p);
-#endif
ppid = 0;
rcu_read_lock();
if (pid_alive(p))
ppid = task_pid_nr(rcu_dereference(p->real_parent));
rcu_read_unlock();
- pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
+ pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d task_flags:0x%04x flags:0x%08lx\n",
free, task_pid_nr(p), task_tgid_nr(p),
- ppid, read_task_thread_flags(p));
+ ppid, p->flags, read_task_thread_flags(p));
print_worker_info(KERN_INFO, p);
print_stop_info(KERN_INFO, p);
+ print_scx_info(KERN_INFO, p);
show_stack(p, NULL, KERN_INFO);
put_task_stack(p);
}
@@ -9247,8 +7796,6 @@ void __init init_idle(struct task_struct *idle, int cpu)
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
- __sched_fork(0, idle);
-
raw_spin_lock_irqsave(&idle->pi_lock, flags);
raw_spin_rq_lock(rq);
@@ -9263,10 +7810,8 @@ void __init init_idle(struct task_struct *idle, int cpu)
#ifdef CONFIG_SMP
/*
- * It's possible that init_idle() gets called multiple times on a task,
- * in that case do_set_cpus_allowed() will not do the right thing.
- *
- * And since this is boot we can forgo the serialization.
+ * No validation and serialization required at boot time and for
+ * setting up the idle tasks of not yet online CPUs.
*/
set_cpus_allowed_common(idle, &ac);
#endif
@@ -9285,6 +7830,7 @@ void __init init_idle(struct task_struct *idle, int cpu)
rcu_read_unlock();
rq->idle = idle;
+ rq_set_donor(rq, idle);
rcu_assign_pointer(rq->curr, idle);
idle->on_rq = TASK_ON_RQ_QUEUED;
#ifdef CONFIG_SMP
@@ -9374,7 +7920,7 @@ void sched_setnuma(struct task_struct *p, int nid)
rq = task_rq_lock(p, &rf);
queued = task_on_rq_queued(p);
- running = task_current(rq, p);
+ running = task_current_donor(rq, p);
if (queued)
dequeue_task(rq, p, DEQUEUE_SAVE);
@@ -9393,19 +7939,26 @@ void sched_setnuma(struct task_struct *p, int nid)
#ifdef CONFIG_HOTPLUG_CPU
/*
- * Ensure that the idle task is using init_mm right before its CPU goes
- * offline.
+ * Invoked on the outgoing CPU in context of the CPU hotplug thread
+ * after ensuring that there are no user space tasks left on the CPU.
+ *
+ * If there is a lazy mm in use on the hotplug thread, drop it and
+ * switch to init_mm.
+ *
+ * The reference count on init_mm is dropped in finish_cpu().
*/
-void idle_task_exit(void)
+static void sched_force_init_mm(void)
{
struct mm_struct *mm = current->active_mm;
- BUG_ON(cpu_online(smp_processor_id()));
- BUG_ON(current != this_rq()->idle);
-
if (mm != &init_mm) {
- switch_mm(mm, &init_mm, current);
+ mmgrab_lazy_tlb(&init_mm);
+ local_irq_disable();
+ current->active_mm = &init_mm;
+ switch_mm_irqs_off(mm, &init_mm, current);
+ local_irq_enable();
finish_arch_post_lock_switch();
+ mmdrop_lazy_tlb(mm);
}
/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
@@ -9584,6 +8137,30 @@ void set_rq_offline(struct rq *rq)
}
}
+static inline void sched_set_rq_online(struct rq *rq, int cpu)
+{
+ struct rq_flags rf;
+
+ rq_lock_irqsave(rq, &rf);
+ if (rq->rd) {
+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
+ set_rq_online(rq);
+ }
+ rq_unlock_irqrestore(rq, &rf);
+}
+
+static inline void sched_set_rq_offline(struct rq *rq, int cpu)
+{
+ struct rq_flags rf;
+
+ rq_lock_irqsave(rq, &rf);
+ if (rq->rd) {
+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
+ set_rq_offline(rq);
+ }
+ rq_unlock_irqrestore(rq, &rf);
+}
+
/*
* used to mark begin/end of suspend/resume:
*/
@@ -9619,25 +8196,35 @@ static void cpuset_cpu_active(void)
cpuset_update_active_cpus();
}
-static int cpuset_cpu_inactive(unsigned int cpu)
+static void cpuset_cpu_inactive(unsigned int cpu)
{
if (!cpuhp_tasks_frozen) {
- int ret = dl_bw_check_overflow(cpu);
-
- if (ret)
- return ret;
cpuset_update_active_cpus();
} else {
num_cpus_frozen++;
partition_sched_domains(1, NULL, NULL);
}
- return 0;
+}
+
+static inline void sched_smt_present_inc(int cpu)
+{
+#ifdef CONFIG_SCHED_SMT
+ if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
+ static_branch_inc_cpuslocked(&sched_smt_present);
+#endif
+}
+
+static inline void sched_smt_present_dec(int cpu)
+{
+#ifdef CONFIG_SCHED_SMT
+ if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
+ static_branch_dec_cpuslocked(&sched_smt_present);
+#endif
}
int sched_cpu_activate(unsigned int cpu)
{
struct rq *rq = cpu_rq(cpu);
- struct rq_flags rf;
/*
* Clear the balance_push callback and prepare to schedule
@@ -9645,13 +8232,10 @@ int sched_cpu_activate(unsigned int cpu)
*/
balance_push_set(cpu, false);
-#ifdef CONFIG_SCHED_SMT
/*
* When going up, increment the number of cores with SMT present.
*/
- if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
- static_branch_inc_cpuslocked(&sched_smt_present);
-#endif
+ sched_smt_present_inc(cpu);
set_cpu_active(cpu, true);
if (sched_smp_initialized) {
@@ -9660,6 +8244,8 @@ int sched_cpu_activate(unsigned int cpu)
cpuset_cpu_active();
}
+ scx_rq_activate(rq);
+
/*
* Put the rq online, if not already. This happens:
*
@@ -9669,12 +8255,7 @@ int sched_cpu_activate(unsigned int cpu)
* 2) At runtime, if cpuset_cpu_active() fails to rebuild the
* domains.
*/
- rq_lock_irqsave(rq, &rf);
- if (rq->rd) {
- BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
- set_rq_online(rq);
- }
- rq_unlock_irqrestore(rq, &rf);
+ sched_set_rq_online(rq, cpu);
return 0;
}
@@ -9682,9 +8263,13 @@ int sched_cpu_activate(unsigned int cpu)
int sched_cpu_deactivate(unsigned int cpu)
{
struct rq *rq = cpu_rq(cpu);
- struct rq_flags rf;
int ret;
+ ret = dl_bw_deactivate(cpu);
+
+ if (ret)
+ return ret;
+
/*
* Remove CPU from nohz.idle_cpus_mask to prevent participating in
* load balancing when not active
@@ -9709,24 +8294,20 @@ int sched_cpu_deactivate(unsigned int cpu)
* Specifically, we rely on ttwu to no longer target this CPU, see
* ttwu_queue_cond() and is_cpu_allowed().
*
- * Do sync before park smpboot threads to take care the rcu boost case.
+ * Do sync before park smpboot threads to take care the RCU boost case.
*/
synchronize_rcu();
- rq_lock_irqsave(rq, &rf);
- if (rq->rd) {
- BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
- set_rq_offline(rq);
- }
- rq_unlock_irqrestore(rq, &rf);
+ sched_set_rq_offline(rq, cpu);
+
+ scx_rq_deactivate(rq);
-#ifdef CONFIG_SCHED_SMT
/*
* When going down, decrement the number of cores with SMT present.
*/
- if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
- static_branch_dec_cpuslocked(&sched_smt_present);
+ sched_smt_present_dec(cpu);
+#ifdef CONFIG_SCHED_SMT
sched_core_cpu_deactivate(cpu);
#endif
@@ -9734,13 +8315,7 @@ int sched_cpu_deactivate(unsigned int cpu)
return 0;
sched_update_numa(cpu, false);
- ret = cpuset_cpu_inactive(cpu);
- if (ret) {
- balance_push_set(cpu, false);
- set_cpu_active(cpu, true);
- sched_update_numa(cpu, true);
- return ret;
- }
+ cpuset_cpu_inactive(cpu);
sched_domains_numa_masks_clear(cpu);
return 0;
}
@@ -9777,6 +8352,7 @@ int sched_cpu_starting(unsigned int cpu)
int sched_cpu_wait_empty(unsigned int cpu)
{
balance_hotplug_wait();
+ sched_force_init_mm();
return 0;
}
@@ -9784,7 +8360,7 @@ int sched_cpu_wait_empty(unsigned int cpu)
* Since this CPU is going 'away' for a while, fold any nr_active delta we
* might have. Called from the CPU stopper task after ensuring that the
* stopper is the last running task on the CPU, so nr_active count is
- * stable. We need to take the teardown thread which is calling this into
+ * stable. We need to take the tear-down thread which is calling this into
* account, so we hand in adjust = 1 to the load calculation.
*
* Also see the comment "Global load-average calculations".
@@ -9903,11 +8479,15 @@ void __init sched_init(void)
int i;
/* Make sure the linker didn't screw up */
- BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
- &fair_sched_class != &rt_sched_class + 1 ||
- &rt_sched_class != &dl_sched_class + 1);
#ifdef CONFIG_SMP
- BUG_ON(&dl_sched_class != &stop_sched_class + 1);
+ BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
+#endif
+ BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
+ BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
+ BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
+#ifdef CONFIG_SCHED_CLASS_EXT
+ BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
+ BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
#endif
wait_bit_init();
@@ -9931,6 +8511,9 @@ void __init sched_init(void)
root_task_group.shares = ROOT_TASK_GROUP_LOAD;
init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
#endif /* CONFIG_FAIR_GROUP_SCHED */
+#ifdef CONFIG_EXT_GROUP_SCHED
+ root_task_group.scx_weight = CGROUP_WEIGHT_DFL;
+#endif /* CONFIG_EXT_GROUP_SCHED */
#ifdef CONFIG_RT_GROUP_SCHED
root_task_group.rt_se = (struct sched_rt_entity **)ptr;
ptr += nr_cpu_ids * sizeof(void **);
@@ -9941,8 +8524,6 @@ void __init sched_init(void)
#endif /* CONFIG_RT_GROUP_SCHED */
}
- init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
-
#ifdef CONFIG_SMP
init_defrootdomain();
#endif
@@ -9978,7 +8559,7 @@ void __init sched_init(void)
/*
* How much CPU bandwidth does root_task_group get?
*
- * In case of task-groups formed thr' the cgroup filesystem, it
+ * In case of task-groups formed through the cgroup filesystem, it
* gets 100% of the CPU resources in the system. This overall
* system CPU resource is divided among the tasks of
* root_task_group and its child task-groups in a fair manner,
@@ -9997,8 +8578,13 @@ void __init sched_init(void)
init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
#endif /* CONFIG_FAIR_GROUP_SCHED */
- rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
#ifdef CONFIG_RT_GROUP_SCHED
+ /*
+ * This is required for init cpu because rt.c:__enable_runtime()
+ * starts working after scheduler_running, which is not the case
+ * yet.
+ */
+ rq->rt.rt_runtime = global_rt_runtime();
init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
#endif
#ifdef CONFIG_SMP
@@ -10030,10 +8616,12 @@ void __init sched_init(void)
#endif /* CONFIG_SMP */
hrtick_rq_init(rq);
atomic_set(&rq->nr_iowait, 0);
+ fair_server_init(rq);
#ifdef CONFIG_SCHED_CORE
rq->core = rq;
rq->core_pick = NULL;
+ rq->core_dl_server = NULL;
rq->core_enabled = 0;
rq->core_tree = RB_ROOT;
rq->core_forceidle_count = 0;
@@ -10046,6 +8634,7 @@ void __init sched_init(void)
}
set_load_weight(&init_task, false);
+ init_task.se.slice = sysctl_sched_base_slice,
/*
* The boot idle thread does lazy MMU switching as well:
@@ -10067,6 +8656,7 @@ void __init sched_init(void)
* but because we are the idle thread, we just pick up running again
* when this runqueue becomes "idle".
*/
+ __sched_fork(0, current);
init_idle(current, smp_processor_id());
calc_load_update = jiffies + LOAD_FREQ;
@@ -10076,6 +8666,7 @@ void __init sched_init(void)
balance_push_set(smp_processor_id(), false);
#endif
init_sched_fair_class();
+ init_sched_ext_class();
psi_init();
@@ -10261,7 +8852,7 @@ void normalize_rt_tasks(void)
schedstat_set(p->stats.sleep_start, 0);
schedstat_set(p->stats.block_start, 0);
- if (!dl_task(p) && !rt_task(p)) {
+ if (!rt_or_dl_task(p)) {
/*
* Renice negative nice level userspace
* tasks back to 0:
@@ -10280,7 +8871,7 @@ void normalize_rt_tasks(void)
#if defined(CONFIG_KGDB_KDB)
/*
- * These functions are only useful for kdb.
+ * These functions are only useful for KDB.
*
* They can only be called when the whole system has been
* stopped - every CPU needs to be quiescent, and no scheduling
@@ -10361,6 +8952,7 @@ struct task_group *sched_create_group(struct task_group *parent)
if (!alloc_rt_sched_group(tg, parent))
goto err;
+ scx_group_set_weight(tg, CGROUP_WEIGHT_DFL);
alloc_uclamp_sched_group(tg, parent);
return tg;
@@ -10388,7 +8980,7 @@ void sched_online_group(struct task_group *tg, struct task_group *parent)
online_fair_sched_group(tg);
}
-/* rcu callback to free various structures associated with a task group */
+/* RCU callback to free various structures associated with a task group */
static void sched_unregister_group_rcu(struct rcu_head *rhp)
{
/* Now it should be safe to free those cfs_rqs: */
@@ -10424,7 +9016,7 @@ void sched_release_group(struct task_group *tg)
spin_unlock_irqrestore(&task_group_lock, flags);
}
-static struct task_group *sched_get_task_group(struct task_struct *tsk)
+static void sched_change_group(struct task_struct *tsk)
{
struct task_group *tg;
@@ -10436,13 +9028,7 @@ static struct task_group *sched_get_task_group(struct task_struct *tsk)
tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
struct task_group, css);
tg = autogroup_task_group(tsk, tg);
-
- return tg;
-}
-
-static void sched_change_group(struct task_struct *tsk, struct task_group *group)
-{
- tsk->sched_task_group = group;
+ tsk->sched_task_group = tg;
#ifdef CONFIG_FAIR_GROUP_SCHED
if (tsk->sched_class->task_change_group)
@@ -10459,27 +9045,18 @@ static void sched_change_group(struct task_struct *tsk, struct task_group *group
* now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
* its new group.
*/
-void sched_move_task(struct task_struct *tsk)
+void sched_move_task(struct task_struct *tsk, bool for_autogroup)
{
int queued, running, queue_flags =
DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
- struct task_group *group;
struct rq *rq;
CLASS(task_rq_lock, rq_guard)(tsk);
rq = rq_guard.rq;
- /*
- * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
- * group changes.
- */
- group = sched_get_task_group(tsk);
- if (group == tsk->sched_task_group)
- return;
-
update_rq_clock(rq);
- running = task_current(rq, tsk);
+ running = task_current_donor(rq, tsk);
queued = task_on_rq_queued(tsk);
if (queued)
@@ -10487,7 +9064,9 @@ void sched_move_task(struct task_struct *tsk)
if (running)
put_prev_task(rq, tsk);
- sched_change_group(tsk, group);
+ sched_change_group(tsk);
+ if (!for_autogroup)
+ scx_cgroup_move_task(tsk);
if (queued)
enqueue_task(rq, tsk, queue_flags);
@@ -10502,11 +9081,6 @@ void sched_move_task(struct task_struct *tsk)
}
}
-static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
-{
- return css ? container_of(css, struct task_group, css) : NULL;
-}
-
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
{
@@ -10530,6 +9104,11 @@ static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
{
struct task_group *tg = css_tg(css);
struct task_group *parent = css_tg(css->parent);
+ int ret;
+
+ ret = scx_tg_online(tg);
+ if (ret)
+ return ret;
if (parent)
sched_online_group(tg, parent);
@@ -10544,6 +9123,13 @@ static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
return 0;
}
+static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
+{
+ struct task_group *tg = css_tg(css);
+
+ scx_tg_offline(tg);
+}
+
static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
{
struct task_group *tg = css_tg(css);
@@ -10561,9 +9147,9 @@ static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
sched_unregister_group(tg);
}
-#ifdef CONFIG_RT_GROUP_SCHED
static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
{
+#ifdef CONFIG_RT_GROUP_SCHED
struct task_struct *task;
struct cgroup_subsys_state *css;
@@ -10571,9 +9157,9 @@ static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
if (!sched_rt_can_attach(css_tg(css), task))
return -EINVAL;
}
- return 0;
-}
#endif
+ return scx_cgroup_can_attach(tset);
+}
static void cpu_cgroup_attach(struct cgroup_taskset *tset)
{
@@ -10581,7 +9167,14 @@ static void cpu_cgroup_attach(struct cgroup_taskset *tset)
struct cgroup_subsys_state *css;
cgroup_taskset_for_each(task, css, tset)
- sched_move_task(task);
+ sched_move_task(task, false);
+
+ scx_cgroup_finish_attach();
+}
+
+static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
+{
+ scx_cgroup_cancel_attach(tset);
}
#ifdef CONFIG_UCLAMP_TASK_GROUP
@@ -10758,22 +9351,36 @@ static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
}
#endif /* CONFIG_UCLAMP_TASK_GROUP */
+#ifdef CONFIG_GROUP_SCHED_WEIGHT
+static unsigned long tg_weight(struct task_group *tg)
+{
#ifdef CONFIG_FAIR_GROUP_SCHED
+ return scale_load_down(tg->shares);
+#else
+ return sched_weight_from_cgroup(tg->scx_weight);
+#endif
+}
+
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
struct cftype *cftype, u64 shareval)
{
+ int ret;
+
if (shareval > scale_load_down(ULONG_MAX))
shareval = MAX_SHARES;
- return sched_group_set_shares(css_tg(css), scale_load(shareval));
+ ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
+ if (!ret)
+ scx_group_set_weight(css_tg(css),
+ sched_weight_to_cgroup(shareval));
+ return ret;
}
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
struct cftype *cft)
{
- struct task_group *tg = css_tg(css);
-
- return (u64) scale_load_down(tg->shares);
+ return tg_weight(css_tg(css));
}
+#endif /* CONFIG_GROUP_SCHED_WEIGHT */
#ifdef CONFIG_CFS_BANDWIDTH
static DEFINE_MUTEX(cfs_constraints_mutex);
@@ -11119,7 +9726,6 @@ static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
return 0;
}
#endif /* CONFIG_CFS_BANDWIDTH */
-#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_RT_GROUP_SCHED
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
@@ -11147,7 +9753,7 @@ static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
}
#endif /* CONFIG_RT_GROUP_SCHED */
-#ifdef CONFIG_FAIR_GROUP_SCHED
+#ifdef CONFIG_GROUP_SCHED_WEIGHT
static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
struct cftype *cft)
{
@@ -11157,12 +9763,17 @@ static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
struct cftype *cft, s64 idle)
{
- return sched_group_set_idle(css_tg(css), idle);
+ int ret;
+
+ ret = sched_group_set_idle(css_tg(css), idle);
+ if (!ret)
+ scx_group_set_idle(css_tg(css), idle);
+ return ret;
}
#endif
static struct cftype cpu_legacy_files[] = {
-#ifdef CONFIG_FAIR_GROUP_SCHED
+#ifdef CONFIG_GROUP_SCHED_WEIGHT
{
.name = "shares",
.read_u64 = cpu_shares_read_u64,
@@ -11272,38 +9883,35 @@ static int cpu_local_stat_show(struct seq_file *sf,
return 0;
}
-#ifdef CONFIG_FAIR_GROUP_SCHED
+#ifdef CONFIG_GROUP_SCHED_WEIGHT
+
static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
struct cftype *cft)
{
- struct task_group *tg = css_tg(css);
- u64 weight = scale_load_down(tg->shares);
-
- return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
+ return sched_weight_to_cgroup(tg_weight(css_tg(css)));
}
static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
- struct cftype *cft, u64 weight)
+ struct cftype *cft, u64 cgrp_weight)
{
- /*
- * cgroup weight knobs should use the common MIN, DFL and MAX
- * values which are 1, 100 and 10000 respectively. While it loses
- * a bit of range on both ends, it maps pretty well onto the shares
- * value used by scheduler and the round-trip conversions preserve
- * the original value over the entire range.
- */
- if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
+ unsigned long weight;
+ int ret;
+
+ if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
return -ERANGE;
- weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
+ weight = sched_weight_from_cgroup(cgrp_weight);
- return sched_group_set_shares(css_tg(css), scale_load(weight));
+ ret = sched_group_set_shares(css_tg(css), scale_load(weight));
+ if (!ret)
+ scx_group_set_weight(css_tg(css), cgrp_weight);
+ return ret;
}
static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
struct cftype *cft)
{
- unsigned long weight = scale_load_down(css_tg(css)->shares);
+ unsigned long weight = tg_weight(css_tg(css));
int last_delta = INT_MAX;
int prio, delta;
@@ -11322,7 +9930,7 @@ static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
struct cftype *cft, s64 nice)
{
unsigned long weight;
- int idx;
+ int idx, ret;
if (nice < MIN_NICE || nice > MAX_NICE)
return -ERANGE;
@@ -11331,9 +9939,13 @@ static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
idx = array_index_nospec(idx, 40);
weight = sched_prio_to_weight[idx];
- return sched_group_set_shares(css_tg(css), scale_load(weight));
+ ret = sched_group_set_shares(css_tg(css), scale_load(weight));
+ if (!ret)
+ scx_group_set_weight(css_tg(css),
+ sched_weight_to_cgroup(weight));
+ return ret;
}
-#endif
+#endif /* CONFIG_GROUP_SCHED_WEIGHT */
static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
long period, long quota)
@@ -11381,7 +9993,7 @@ static ssize_t cpu_max_write(struct kernfs_open_file *of,
{
struct task_group *tg = css_tg(of_css(of));
u64 period = tg_get_cfs_period(tg);
- u64 burst = tg_get_cfs_burst(tg);
+ u64 burst = tg->cfs_bandwidth.burst;
u64 quota;
int ret;
@@ -11393,7 +10005,7 @@ static ssize_t cpu_max_write(struct kernfs_open_file *of,
#endif
static struct cftype cpu_files[] = {
-#ifdef CONFIG_FAIR_GROUP_SCHED
+#ifdef CONFIG_GROUP_SCHED_WEIGHT
{
.name = "weight",
.flags = CFTYPE_NOT_ON_ROOT,
@@ -11447,14 +10059,14 @@ static struct cftype cpu_files[] = {
struct cgroup_subsys cpu_cgrp_subsys = {
.css_alloc = cpu_cgroup_css_alloc,
.css_online = cpu_cgroup_css_online,
+ .css_offline = cpu_cgroup_css_offline,
.css_released = cpu_cgroup_css_released,
.css_free = cpu_cgroup_css_free,
.css_extra_stat_show = cpu_extra_stat_show,
.css_local_stat_show = cpu_local_stat_show,
-#ifdef CONFIG_RT_GROUP_SCHED
.can_attach = cpu_cgroup_can_attach,
-#endif
.attach = cpu_cgroup_attach,
+ .cancel_attach = cpu_cgroup_cancel_attach,
.legacy_cftypes = cpu_legacy_files,
.dfl_cftypes = cpu_files,
.early_init = true,
@@ -11465,7 +10077,7 @@ struct cgroup_subsys cpu_cgrp_subsys = {
void dump_cpu_task(int cpu)
{
- if (cpu == smp_processor_id() && in_hardirq()) {
+ if (in_hardirq() && cpu == smp_processor_id()) {
struct pt_regs *regs;
regs = get_irq_regs();
@@ -11506,10 +10118,10 @@ const int sched_prio_to_weight[40] = {
};
/*
- * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
+ * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
*
* In cases where the weight does not change often, we can use the
- * precalculated inverse to speed up arithmetics by turning divisions
+ * pre-calculated inverse to speed up arithmetics by turning divisions
* into multiplications:
*/
const u32 sched_prio_to_wmult[40] = {
@@ -11738,6 +10350,7 @@ int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
*/
if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
return -1;
+ WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
return src_cid;
}
@@ -11750,7 +10363,8 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
{
struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
struct mm_struct *mm = t->mm;
- int src_cid, dst_cid, src_cpu;
+ int src_cid, src_cpu;
+ bool dst_cid_is_set;
struct rq *src_rq;
lockdep_assert_rq_held(dst_rq);
@@ -11765,21 +10379,21 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
/*
* Move the src cid if the dst cid is unset. This keeps id
* allocation closest to 0 in cases where few threads migrate around
- * many cpus.
+ * many CPUs.
*
- * If destination cid is already set, we may have to just clear
- * the src cid to ensure compactness in frequent migrations
- * scenarios.
+ * If destination cid or recent cid is already set, we may have
+ * to just clear the src cid to ensure compactness in frequent
+ * migrations scenarios.
*
* It is not useful to clear the src cid when the number of threads is
- * greater or equal to the number of allowed cpus, because user-space
+ * greater or equal to the number of allowed CPUs, because user-space
* can expect that the number of allowed cids can reach the number of
- * allowed cpus.
+ * allowed CPUs.
*/
dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
- dst_cid = READ_ONCE(dst_pcpu_cid->cid);
- if (!mm_cid_is_unset(dst_cid) &&
- atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
+ dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
+ !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
+ if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
return;
src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
src_rq = cpu_rq(src_cpu);
@@ -11790,13 +10404,14 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
src_cid);
if (src_cid == -1)
return;
- if (!mm_cid_is_unset(dst_cid)) {
+ if (dst_cid_is_set) {
__mm_cid_put(mm, src_cid);
return;
}
/* Move src_cid to dst cpu. */
mm_cid_snapshot_time(dst_rq, mm);
WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
+ WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
}
static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
@@ -11968,6 +10583,8 @@ void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
return;
if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
return;
+
+ /* No page allocation under rq lock */
task_work_add(curr, work, TWA_RESUME);
}
@@ -12033,7 +10650,7 @@ void sched_mm_cid_after_execve(struct task_struct *t)
* Matches barrier in sched_mm_cid_remote_clear_old().
*/
smp_mb();
- t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
+ t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
}
rseq_set_notify_resume(t);
}
@@ -12044,3 +10661,38 @@ void sched_mm_cid_fork(struct task_struct *t)
t->mm_cid_active = 1;
}
#endif
+
+#ifdef CONFIG_SCHED_CLASS_EXT
+void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
+ struct sched_enq_and_set_ctx *ctx)
+{
+ struct rq *rq = task_rq(p);
+
+ lockdep_assert_rq_held(rq);
+
+ *ctx = (struct sched_enq_and_set_ctx){
+ .p = p,
+ .queue_flags = queue_flags,
+ .queued = task_on_rq_queued(p),
+ .running = task_current(rq, p),
+ };
+
+ update_rq_clock(rq);
+ if (ctx->queued)
+ dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
+ if (ctx->running)
+ put_prev_task(rq, p);
+}
+
+void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
+{
+ struct rq *rq = task_rq(ctx->p);
+
+ lockdep_assert_rq_held(rq);
+
+ if (ctx->queued)
+ enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
+ if (ctx->running)
+ set_next_task(rq, ctx->p);
+}
+#endif /* CONFIG_SCHED_CLASS_EXT */