summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rw-r--r--lib/.gitignore2
-rw-r--r--lib/Kconfig.debug16
-rw-r--r--lib/Makefile35
-rw-r--r--lib/assoc_array.c22
-rw-r--r--lib/audit.c14
-rw-r--r--lib/bitmap.c13
-rw-r--r--lib/bootconfig.c231
-rw-r--r--lib/compat_audit.c15
-rw-r--r--lib/crypto/sm4.c4
-rw-r--r--lib/decompress_unxz.c10
-rw-r--r--lib/devres.c82
-rw-r--r--lib/error-inject.c3
-rw-r--r--lib/flex_proportions.c28
-rw-r--r--lib/iov_iter.c103
-rw-r--r--lib/kunit/executor.c152
-rw-r--r--lib/kunit/executor_test.c110
-rw-r--r--lib/kunit/kunit-test.c14
-rw-r--r--lib/kunit/test.c6
-rw-r--r--lib/locking-selftest.c2
-rw-r--r--lib/memcpy_kunit.c289
-rw-r--r--lib/random32.c1
-rw-r--r--lib/sbitmap.c95
-rw-r--r--lib/string.c210
-rw-r--r--lib/string_helpers.c215
-rw-r--r--lib/test_bpf.c6358
-rw-r--r--lib/test_fortify/read_overflow-memchr.c5
-rw-r--r--lib/test_fortify/read_overflow-memchr_inv.c5
-rw-r--r--lib/test_fortify/read_overflow-memcmp.c5
-rw-r--r--lib/test_fortify/read_overflow-memscan.c5
-rw-r--r--lib/test_fortify/read_overflow2-memcmp.c5
-rw-r--r--lib/test_fortify/read_overflow2-memcpy.c5
-rw-r--r--lib/test_fortify/read_overflow2-memmove.c5
-rw-r--r--lib/test_fortify/test_fortify.h35
-rw-r--r--lib/test_fortify/write_overflow-memcpy.c5
-rw-r--r--lib/test_fortify/write_overflow-memmove.c5
-rw-r--r--lib/test_fortify/write_overflow-memset.c5
-rw-r--r--lib/test_fortify/write_overflow-strcpy-lit.c5
-rw-r--r--lib/test_fortify/write_overflow-strcpy.c5
-rw-r--r--lib/test_fortify/write_overflow-strlcpy-src.c5
-rw-r--r--lib/test_fortify/write_overflow-strlcpy.c5
-rw-r--r--lib/test_fortify/write_overflow-strncpy-src.c5
-rw-r--r--lib/test_fortify/write_overflow-strncpy.c5
-rw-r--r--lib/test_fortify/write_overflow-strscpy.c5
-rw-r--r--lib/test_kasan.c2
-rw-r--r--lib/test_kprobes.c371
-rw-r--r--lib/test_printf.c61
-rw-r--r--lib/vsprintf.c11
-rw-r--r--lib/xz/Kconfig13
-rw-r--r--lib/xz/xz_dec_lzma2.c182
-rw-r--r--lib/xz/xz_dec_stream.c6
-rw-r--r--lib/xz/xz_dec_syms.c9
-rw-r--r--lib/xz/xz_private.h3
52 files changed, 8079 insertions, 729 deletions
diff --git a/lib/.gitignore b/lib/.gitignore
index 5e7fa54c4536..e5e217b8307b 100644
--- a/lib/.gitignore
+++ b/lib/.gitignore
@@ -4,3 +4,5 @@
/gen_crc32table
/gen_crc64table
/oid_registry_data.c
+/test_fortify.log
+/test_fortify/*.log
diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug
index 2a9b6dcdac4f..6fdbf9613aec 100644
--- a/lib/Kconfig.debug
+++ b/lib/Kconfig.debug
@@ -458,7 +458,7 @@ config STACK_VALIDATION
config VMLINUX_VALIDATION
bool
- depends on STACK_VALIDATION && DEBUG_ENTRY && !PARAVIRT
+ depends on STACK_VALIDATION && DEBUG_ENTRY
default y
config VMLINUX_MAP
@@ -2080,9 +2080,10 @@ config TEST_DIV64
If unsure, say N.
config KPROBES_SANITY_TEST
- bool "Kprobes sanity tests"
+ tristate "Kprobes sanity tests"
depends on DEBUG_KERNEL
depends on KPROBES
+ depends on KUNIT
help
This option provides for testing basic kprobes functionality on
boot. Samples of kprobe and kretprobe are inserted and
@@ -2452,6 +2453,17 @@ config RATIONAL_KUNIT_TEST
If unsure, say N.
+config MEMCPY_KUNIT_TEST
+ tristate "Test memcpy(), memmove(), and memset() functions at runtime" if !KUNIT_ALL_TESTS
+ depends on KUNIT
+ default KUNIT_ALL_TESTS
+ help
+ Builds unit tests for memcpy(), memmove(), and memset() functions.
+ For more information on KUnit and unit tests in general please refer
+ to the KUnit documentation in Documentation/dev-tools/kunit/.
+
+ If unsure, say N.
+
config TEST_UDELAY
tristate "udelay test driver"
help
diff --git a/lib/Makefile b/lib/Makefile
index a841be5244ac..364c23f15578 100644
--- a/lib/Makefile
+++ b/lib/Makefile
@@ -100,6 +100,7 @@ obj-$(CONFIG_TEST_MEMINIT) += test_meminit.o
obj-$(CONFIG_TEST_LOCKUP) += test_lockup.o
obj-$(CONFIG_TEST_HMM) += test_hmm.o
obj-$(CONFIG_TEST_FREE_PAGES) += test_free_pages.o
+obj-$(CONFIG_KPROBES_SANITY_TEST) += test_kprobes.o
#
# CFLAGS for compiling floating point code inside the kernel. x86/Makefile turns
@@ -358,5 +359,39 @@ obj-$(CONFIG_LINEAR_RANGES_TEST) += test_linear_ranges.o
obj-$(CONFIG_BITS_TEST) += test_bits.o
obj-$(CONFIG_CMDLINE_KUNIT_TEST) += cmdline_kunit.o
obj-$(CONFIG_SLUB_KUNIT_TEST) += slub_kunit.o
+obj-$(CONFIG_MEMCPY_KUNIT_TEST) += memcpy_kunit.o
obj-$(CONFIG_GENERIC_LIB_DEVMEM_IS_ALLOWED) += devmem_is_allowed.o
+
+# FORTIFY_SOURCE compile-time behavior tests
+TEST_FORTIFY_SRCS = $(wildcard $(srctree)/$(src)/test_fortify/*-*.c)
+TEST_FORTIFY_LOGS = $(patsubst $(srctree)/$(src)/%.c, %.log, $(TEST_FORTIFY_SRCS))
+TEST_FORTIFY_LOG = test_fortify.log
+
+quiet_cmd_test_fortify = TEST $@
+ cmd_test_fortify = $(CONFIG_SHELL) $(srctree)/scripts/test_fortify.sh \
+ $< $@ "$(NM)" $(CC) $(c_flags) \
+ $(call cc-disable-warning,fortify-source)
+
+targets += $(TEST_FORTIFY_LOGS)
+clean-files += $(TEST_FORTIFY_LOGS)
+clean-files += $(addsuffix .o, $(TEST_FORTIFY_LOGS))
+$(obj)/test_fortify/%.log: $(src)/test_fortify/%.c \
+ $(src)/test_fortify/test_fortify.h \
+ $(srctree)/include/linux/fortify-string.h \
+ $(srctree)/scripts/test_fortify.sh \
+ FORCE
+ $(call if_changed,test_fortify)
+
+quiet_cmd_gen_fortify_log = GEN $@
+ cmd_gen_fortify_log = cat </dev/null $(filter-out FORCE,$^) 2>/dev/null > $@ || true
+
+targets += $(TEST_FORTIFY_LOG)
+clean-files += $(TEST_FORTIFY_LOG)
+$(obj)/$(TEST_FORTIFY_LOG): $(addprefix $(obj)/, $(TEST_FORTIFY_LOGS)) FORCE
+ $(call if_changed,gen_fortify_log)
+
+# Fake dependency to trigger the fortify tests.
+ifeq ($(CONFIG_FORTIFY_SOURCE),y)
+$(obj)/string.o: $(obj)/$(TEST_FORTIFY_LOG)
+endif
diff --git a/lib/assoc_array.c b/lib/assoc_array.c
index 04c98799c3ba..079c72e26493 100644
--- a/lib/assoc_array.c
+++ b/lib/assoc_array.c
@@ -741,8 +741,7 @@ all_leaves_cluster_together:
keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
- new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
- keylen * sizeof(unsigned long), GFP_KERNEL);
+ new_s0 = kzalloc(struct_size(new_s0, index_key, keylen), GFP_KERNEL);
if (!new_s0)
return false;
edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
@@ -849,8 +848,8 @@ static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
- new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
- keylen * sizeof(unsigned long), GFP_KERNEL);
+ new_s0 = kzalloc(struct_size(new_s0, index_key, keylen),
+ GFP_KERNEL);
if (!new_s0)
return false;
edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
@@ -864,7 +863,7 @@ static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
new_n0->parent_slot = 0;
memcpy(new_s0->index_key, shortcut->index_key,
- keylen * sizeof(unsigned long));
+ flex_array_size(new_s0, index_key, keylen));
blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
@@ -899,8 +898,8 @@ static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
- new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
- keylen * sizeof(unsigned long), GFP_KERNEL);
+ new_s1 = kzalloc(struct_size(new_s1, index_key, keylen),
+ GFP_KERNEL);
if (!new_s1)
return false;
edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
@@ -913,7 +912,7 @@ static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
memcpy(new_s1->index_key, shortcut->index_key,
- keylen * sizeof(unsigned long));
+ flex_array_size(new_s1, index_key, keylen));
edit->set[1].ptr = &side->back_pointer;
edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
@@ -1490,13 +1489,12 @@ descend:
shortcut = assoc_array_ptr_to_shortcut(cursor);
keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
- new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
- keylen * sizeof(unsigned long), GFP_KERNEL);
+ new_s = kmalloc(struct_size(new_s, index_key, keylen),
+ GFP_KERNEL);
if (!new_s)
goto enomem;
pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
- memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
- keylen * sizeof(unsigned long)));
+ memcpy(new_s, shortcut, struct_size(new_s, index_key, keylen));
new_s->back_pointer = new_parent;
new_s->parent_slot = shortcut->parent_slot;
*new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
diff --git a/lib/audit.c b/lib/audit.c
index 5004bff928a7..738bda22dd39 100644
--- a/lib/audit.c
+++ b/lib/audit.c
@@ -45,23 +45,27 @@ int audit_classify_syscall(int abi, unsigned syscall)
switch(syscall) {
#ifdef __NR_open
case __NR_open:
- return 2;
+ return AUDITSC_OPEN;
#endif
#ifdef __NR_openat
case __NR_openat:
- return 3;
+ return AUDITSC_OPENAT;
#endif
#ifdef __NR_socketcall
case __NR_socketcall:
- return 4;
+ return AUDITSC_SOCKETCALL;
#endif
#ifdef __NR_execveat
case __NR_execveat:
#endif
case __NR_execve:
- return 5;
+ return AUDITSC_EXECVE;
+#ifdef __NR_openat2
+ case __NR_openat2:
+ return AUDITSC_OPENAT2;
+#endif
default:
- return 0;
+ return AUDITSC_NATIVE;
}
}
diff --git a/lib/bitmap.c b/lib/bitmap.c
index 663dd81967d4..926408883456 100644
--- a/lib/bitmap.c
+++ b/lib/bitmap.c
@@ -1398,6 +1398,19 @@ unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
}
EXPORT_SYMBOL(bitmap_zalloc);
+unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
+{
+ return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
+ flags, node);
+}
+EXPORT_SYMBOL(bitmap_alloc_node);
+
+unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
+{
+ return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
+}
+EXPORT_SYMBOL(bitmap_zalloc_node);
+
void bitmap_free(const unsigned long *bitmap)
{
kfree(bitmap);
diff --git a/lib/bootconfig.c b/lib/bootconfig.c
index 5ae248b29373..70e0d52ffd24 100644
--- a/lib/bootconfig.c
+++ b/lib/bootconfig.c
@@ -4,16 +4,24 @@
* Masami Hiramatsu <mhiramat@kernel.org>
*/
-#define pr_fmt(fmt) "bootconfig: " fmt
-
+#ifdef __KERNEL__
#include <linux/bootconfig.h>
#include <linux/bug.h>
#include <linux/ctype.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/memblock.h>
-#include <linux/printk.h>
#include <linux/string.h>
+#else /* !__KERNEL__ */
+/*
+ * NOTE: This is only for tools/bootconfig, because tools/bootconfig will
+ * run the parser sanity test.
+ * This does NOT mean lib/bootconfig.c is available in the user space.
+ * However, if you change this file, please make sure the tools/bootconfig
+ * has no issue on building and running.
+ */
+#include <linux/bootconfig.h>
+#endif
/*
* Extra Boot Config (XBC) is given as tree-structured ascii text of
@@ -34,6 +42,50 @@ static int xbc_err_pos __initdata;
static int open_brace[XBC_DEPTH_MAX] __initdata;
static int brace_index __initdata;
+#ifdef __KERNEL__
+static inline void * __init xbc_alloc_mem(size_t size)
+{
+ return memblock_alloc(size, SMP_CACHE_BYTES);
+}
+
+static inline void __init xbc_free_mem(void *addr, size_t size)
+{
+ memblock_free_ptr(addr, size);
+}
+
+#else /* !__KERNEL__ */
+
+static inline void *xbc_alloc_mem(size_t size)
+{
+ return malloc(size);
+}
+
+static inline void xbc_free_mem(void *addr, size_t size)
+{
+ free(addr);
+}
+#endif
+/**
+ * xbc_get_info() - Get the information of loaded boot config
+ * @node_size: A pointer to store the number of nodes.
+ * @data_size: A pointer to store the size of bootconfig data.
+ *
+ * Get the number of used nodes in @node_size if it is not NULL,
+ * and the size of bootconfig data in @data_size if it is not NULL.
+ * Return 0 if the boot config is initialized, or return -ENODEV.
+ */
+int __init xbc_get_info(int *node_size, size_t *data_size)
+{
+ if (!xbc_data)
+ return -ENODEV;
+
+ if (node_size)
+ *node_size = xbc_node_num;
+ if (data_size)
+ *data_size = xbc_data_size;
+ return 0;
+}
+
static int __init xbc_parse_error(const char *msg, const char *p)
{
xbc_err_msg = msg;
@@ -226,7 +278,7 @@ int __init xbc_node_compose_key_after(struct xbc_node *root,
struct xbc_node *node,
char *buf, size_t size)
{
- u16 keys[XBC_DEPTH_MAX];
+ uint16_t keys[XBC_DEPTH_MAX];
int depth = 0, ret = 0, total = 0;
if (!node || node == root)
@@ -341,21 +393,21 @@ const char * __init xbc_node_find_next_key_value(struct xbc_node *root,
/* XBC parse and tree build */
-static int __init xbc_init_node(struct xbc_node *node, char *data, u32 flag)
+static int __init xbc_init_node(struct xbc_node *node, char *data, uint32_t flag)
{
unsigned long offset = data - xbc_data;
if (WARN_ON(offset >= XBC_DATA_MAX))
return -EINVAL;
- node->data = (u16)offset | flag;
+ node->data = (uint16_t)offset | flag;
node->child = 0;
node->next = 0;
return 0;
}
-static struct xbc_node * __init xbc_add_node(char *data, u32 flag)
+static struct xbc_node * __init xbc_add_node(char *data, uint32_t flag)
{
struct xbc_node *node;
@@ -385,7 +437,7 @@ static inline __init struct xbc_node *xbc_last_child(struct xbc_node *node)
return node;
}
-static struct xbc_node * __init __xbc_add_sibling(char *data, u32 flag, bool head)
+static struct xbc_node * __init __xbc_add_sibling(char *data, uint32_t flag, bool head)
{
struct xbc_node *sib, *node = xbc_add_node(data, flag);
@@ -412,17 +464,17 @@ static struct xbc_node * __init __xbc_add_sibling(char *data, u32 flag, bool hea
return node;
}
-static inline struct xbc_node * __init xbc_add_sibling(char *data, u32 flag)
+static inline struct xbc_node * __init xbc_add_sibling(char *data, uint32_t flag)
{
return __xbc_add_sibling(data, flag, false);
}
-static inline struct xbc_node * __init xbc_add_head_sibling(char *data, u32 flag)
+static inline struct xbc_node * __init xbc_add_head_sibling(char *data, uint32_t flag)
{
return __xbc_add_sibling(data, flag, true);
}
-static inline __init struct xbc_node *xbc_add_child(char *data, u32 flag)
+static inline __init struct xbc_node *xbc_add_child(char *data, uint32_t flag)
{
struct xbc_node *node = xbc_add_sibling(data, flag);
@@ -780,41 +832,94 @@ static int __init xbc_verify_tree(void)
return 0;
}
+/* Need to setup xbc_data and xbc_nodes before call this. */
+static int __init xbc_parse_tree(void)
+{
+ char *p, *q;
+ int ret = 0, c;
+
+ last_parent = NULL;
+ p = xbc_data;
+ do {
+ q = strpbrk(p, "{}=+;:\n#");
+ if (!q) {
+ p = skip_spaces(p);
+ if (*p != '\0')
+ ret = xbc_parse_error("No delimiter", p);
+ break;
+ }
+
+ c = *q;
+ *q++ = '\0';
+ switch (c) {
+ case ':':
+ case '+':
+ if (*q++ != '=') {
+ ret = xbc_parse_error(c == '+' ?
+ "Wrong '+' operator" :
+ "Wrong ':' operator",
+ q - 2);
+ break;
+ }
+ fallthrough;
+ case '=':
+ ret = xbc_parse_kv(&p, q, c);
+ break;
+ case '{':
+ ret = xbc_open_brace(&p, q);
+ break;
+ case '#':
+ q = skip_comment(q);
+ fallthrough;
+ case ';':
+ case '\n':
+ ret = xbc_parse_key(&p, q);
+ break;
+ case '}':
+ ret = xbc_close_brace(&p, q);
+ break;
+ }
+ } while (!ret);
+
+ return ret;
+}
+
/**
- * xbc_destroy_all() - Clean up all parsed bootconfig
+ * xbc_exit() - Clean up all parsed bootconfig
*
* This clears all data structures of parsed bootconfig on memory.
* If you need to reuse xbc_init() with new boot config, you can
* use this.
*/
-void __init xbc_destroy_all(void)
+void __init xbc_exit(void)
{
+ xbc_free_mem(xbc_data, xbc_data_size);
xbc_data = NULL;
xbc_data_size = 0;
xbc_node_num = 0;
- memblock_free_ptr(xbc_nodes, sizeof(struct xbc_node) * XBC_NODE_MAX);
+ xbc_free_mem(xbc_nodes, sizeof(struct xbc_node) * XBC_NODE_MAX);
xbc_nodes = NULL;
brace_index = 0;
}
/**
* xbc_init() - Parse given XBC file and build XBC internal tree
- * @buf: boot config text
+ * @data: The boot config text original data
+ * @size: The size of @data
* @emsg: A pointer of const char * to store the error message
* @epos: A pointer of int to store the error position
*
- * This parses the boot config text in @buf. @buf must be a
- * null terminated string and smaller than XBC_DATA_MAX.
+ * This parses the boot config text in @data. @size must be smaller
+ * than XBC_DATA_MAX.
* Return the number of stored nodes (>0) if succeeded, or -errno
* if there is any error.
* In error cases, @emsg will be updated with an error message and
* @epos will be updated with the error position which is the byte offset
* of @buf. If the error is not a parser error, @epos will be -1.
*/
-int __init xbc_init(char *buf, const char **emsg, int *epos)
+int __init xbc_init(const char *data, size_t size, const char **emsg, int *epos)
{
- char *p, *q;
- int ret, c;
+ int ret;
if (epos)
*epos = -1;
@@ -824,69 +929,33 @@ int __init xbc_init(char *buf, const char **emsg, int *epos)
*emsg = "Bootconfig is already initialized";
return -EBUSY;
}
-
- ret = strlen(buf);
- if (ret > XBC_DATA_MAX - 1 || ret == 0) {
+ if (size > XBC_DATA_MAX || size == 0) {
if (emsg)
- *emsg = ret ? "Config data is too big" :
+ *emsg = size ? "Config data is too big" :
"Config data is empty";
return -ERANGE;
}
- xbc_nodes = memblock_alloc(sizeof(struct xbc_node) * XBC_NODE_MAX,
- SMP_CACHE_BYTES);
+ xbc_data = xbc_alloc_mem(size + 1);
+ if (!xbc_data) {
+ if (emsg)
+ *emsg = "Failed to allocate bootconfig data";
+ return -ENOMEM;
+ }
+ memcpy(xbc_data, data, size);
+ xbc_data[size] = '\0';
+ xbc_data_size = size + 1;
+
+ xbc_nodes = xbc_alloc_mem(sizeof(struct xbc_node) * XBC_NODE_MAX);
if (!xbc_nodes) {
if (emsg)
*emsg = "Failed to allocate bootconfig nodes";
+ xbc_exit();
return -ENOMEM;
}
memset(xbc_nodes, 0, sizeof(struct xbc_node) * XBC_NODE_MAX);
- xbc_data = buf;
- xbc_data_size = ret + 1;
- last_parent = NULL;
-
- p = buf;
- do {
- q = strpbrk(p, "{}=+;:\n#");
- if (!q) {
- p = skip_spaces(p);
- if (*p != '\0')
- ret = xbc_parse_error("No delimiter", p);
- break;
- }
-
- c = *q;
- *q++ = '\0';
- switch (c) {
- case ':':
- case '+':
- if (*q++ != '=') {
- ret = xbc_parse_error(c == '+' ?
- "Wrong '+' operator" :
- "Wrong ':' operator",
- q - 2);
- break;
- }
- fallthrough;
- case '=':
- ret = xbc_parse_kv(&p, q, c);
- break;
- case '{':
- ret = xbc_open_brace(&p, q);
- break;
- case '#':
- q = skip_comment(q);
- fallthrough;
- case ';':
- case '\n':
- ret = xbc_parse_key(&p, q);
- break;
- case '}':
- ret = xbc_close_brace(&p, q);
- break;
- }
- } while (!ret);
+ ret = xbc_parse_tree();
if (!ret)
ret = xbc_verify_tree();
@@ -895,27 +964,9 @@ int __init xbc_init(char *buf, const char **emsg, int *epos)
*epos = xbc_err_pos;
if (emsg)
*emsg = xbc_err_msg;
- xbc_destroy_all();
+ xbc_exit();
} else
ret = xbc_node_num;
return ret;
}
-
-/**
- * xbc_debug_dump() - Dump current XBC node list
- *
- * Dump the current XBC node list on printk buffer for debug.
- */
-void __init xbc_debug_dump(void)
-{
- int i;
-
- for (i = 0; i < xbc_node_num; i++) {
- pr_debug("[%d] %s (%s) .next=%d, .child=%d .parent=%d\n", i,
- xbc_node_get_data(xbc_nodes + i),
- xbc_node_is_value(xbc_nodes + i) ? "value" : "key",
- xbc_nodes[i].next, xbc_nodes[i].child,
- xbc_nodes[i].parent);
- }
-}
diff --git a/lib/compat_audit.c b/lib/compat_audit.c
index 77eabad69b4a..3d6b8996f027 100644
--- a/lib/compat_audit.c
+++ b/lib/compat_audit.c
@@ -1,6 +1,7 @@
// SPDX-License-Identifier: GPL-2.0
#include <linux/init.h>
#include <linux/types.h>
+#include <linux/audit_arch.h>
#include <asm/unistd32.h>
unsigned compat_dir_class[] = {
@@ -33,19 +34,23 @@ int audit_classify_compat_syscall(int abi, unsigned syscall)
switch (syscall) {
#ifdef __NR_open
case __NR_open:
- return 2;
+ return AUDITSC_OPEN;
#endif
#ifdef __NR_openat
case __NR_openat:
- return 3;
+ return AUDITSC_OPENAT;
#endif
#ifdef __NR_socketcall
case __NR_socketcall:
- return 4;
+ return AUDITSC_SOCKETCALL;
#endif
case __NR_execve:
- return 5;
+ return AUDITSC_EXECVE;
+#ifdef __NR_openat2
+ case __NR_openat2:
+ return AUDITSC_OPENAT2;
+#endif
default:
- return 1;
+ return AUDITSC_COMPAT;
}
}
diff --git a/lib/crypto/sm4.c b/lib/crypto/sm4.c
index 633b59fed9db..284e62576d0c 100644
--- a/lib/crypto/sm4.c
+++ b/lib/crypto/sm4.c
@@ -15,7 +15,7 @@ static const u32 fk[4] = {
0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc
};
-static const u32 __cacheline_aligned ck[32] = {
+static const u32 ____cacheline_aligned ck[32] = {
0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
@@ -26,7 +26,7 @@ static const u32 __cacheline_aligned ck[32] = {
0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279
};
-static const u8 __cacheline_aligned sbox[256] = {
+static const u8 ____cacheline_aligned sbox[256] = {
0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7,
0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05,
0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3,
diff --git a/lib/decompress_unxz.c b/lib/decompress_unxz.c
index a2f38e23004a..9f4262ee33a5 100644
--- a/lib/decompress_unxz.c
+++ b/lib/decompress_unxz.c
@@ -20,8 +20,8 @@
*
* The worst case for in-place decompression is that the beginning of
* the file is compressed extremely well, and the rest of the file is
- * uncompressible. Thus, we must look for worst-case expansion when the
- * compressor is encoding uncompressible data.
+ * incompressible. Thus, we must look for worst-case expansion when the
+ * compressor is encoding incompressible data.
*
* The structure of the .xz file in case of a compressed kernel is as follows.
* Sizes (as bytes) of the fields are in parenthesis.
@@ -58,7 +58,7 @@
* uncompressed size of the payload is in practice never less than the
* payload size itself. The LZMA2 format would allow uncompressed size
* to be less than the payload size, but no sane compressor creates such
- * files. LZMA2 supports storing uncompressible data in uncompressed form,
+ * files. LZMA2 supports storing incompressible data in uncompressed form,
* so there's never a need to create payloads whose uncompressed size is
* smaller than the compressed size.
*
@@ -167,8 +167,8 @@
* memeq and memzero are not used much and any remotely sane implementation
* is fast enough. memcpy/memmove speed matters in multi-call mode, but
* the kernel image is decompressed in single-call mode, in which only
- * memcpy speed can matter and only if there is a lot of uncompressible data
- * (LZMA2 stores uncompressible chunks in uncompressed form). Thus, the
+ * memmove speed can matter and only if there is a lot of incompressible data
+ * (LZMA2 stores incompressible chunks in uncompressed form). Thus, the
* functions below should just be kept small; it's probably not worth
* optimizing for speed.
*/
diff --git a/lib/devres.c b/lib/devres.c
index b0e1c6702c71..14664bbb4875 100644
--- a/lib/devres.c
+++ b/lib/devres.c
@@ -528,3 +528,85 @@ void pcim_iounmap_regions(struct pci_dev *pdev, int mask)
}
EXPORT_SYMBOL(pcim_iounmap_regions);
#endif /* CONFIG_PCI */
+
+static void devm_arch_phys_ac_add_release(struct device *dev, void *res)
+{
+ arch_phys_wc_del(*((int *)res));
+}
+
+/**
+ * devm_arch_phys_wc_add - Managed arch_phys_wc_add()
+ * @dev: Managed device
+ * @base: Memory base address
+ * @size: Size of memory range
+ *
+ * Adds a WC MTRR using arch_phys_wc_add() and sets up a release callback.
+ * See arch_phys_wc_add() for more information.
+ */
+int devm_arch_phys_wc_add(struct device *dev, unsigned long base, unsigned long size)
+{
+ int *mtrr;
+ int ret;
+
+ mtrr = devres_alloc(devm_arch_phys_ac_add_release, sizeof(*mtrr), GFP_KERNEL);
+ if (!mtrr)
+ return -ENOMEM;
+
+ ret = arch_phys_wc_add(base, size);
+ if (ret < 0) {
+ devres_free(mtrr);
+ return ret;
+ }
+
+ *mtrr = ret;
+ devres_add(dev, mtrr);
+
+ return ret;
+}
+EXPORT_SYMBOL(devm_arch_phys_wc_add);
+
+struct arch_io_reserve_memtype_wc_devres {
+ resource_size_t start;
+ resource_size_t size;
+};
+
+static void devm_arch_io_free_memtype_wc_release(struct device *dev, void *res)
+{
+ const struct arch_io_reserve_memtype_wc_devres *this = res;
+
+ arch_io_free_memtype_wc(this->start, this->size);
+}
+
+/**
+ * devm_arch_io_reserve_memtype_wc - Managed arch_io_reserve_memtype_wc()
+ * @dev: Managed device
+ * @start: Memory base address
+ * @size: Size of memory range
+ *
+ * Reserves a memory range with WC caching using arch_io_reserve_memtype_wc()
+ * and sets up a release callback See arch_io_reserve_memtype_wc() for more
+ * information.
+ */
+int devm_arch_io_reserve_memtype_wc(struct device *dev, resource_size_t start,
+ resource_size_t size)
+{
+ struct arch_io_reserve_memtype_wc_devres *dr;
+ int ret;
+
+ dr = devres_alloc(devm_arch_io_free_memtype_wc_release, sizeof(*dr), GFP_KERNEL);
+ if (!dr)
+ return -ENOMEM;
+
+ ret = arch_io_reserve_memtype_wc(start, size);
+ if (ret < 0) {
+ devres_free(dr);
+ return ret;
+ }
+
+ dr->start = start;
+ dr->size = size;
+ devres_add(dev, dr);
+
+ return ret;
+}
+EXPORT_SYMBOL(devm_arch_io_reserve_memtype_wc);
diff --git a/lib/error-inject.c b/lib/error-inject.c
index c73651b15b76..2ff5ef689d72 100644
--- a/lib/error-inject.c
+++ b/lib/error-inject.c
@@ -8,6 +8,7 @@
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/slab.h>
+#include <asm/sections.h>
/* Whitelist of symbols that can be overridden for error injection. */
static LIST_HEAD(error_injection_list);
@@ -64,7 +65,7 @@ static void populate_error_injection_list(struct error_injection_entry *start,
mutex_lock(&ei_mutex);
for (iter = start; iter < end; iter++) {
- entry = arch_deref_entry_point((void *)iter->addr);
+ entry = (unsigned long)dereference_symbol_descriptor((void *)iter->addr);
if (!kernel_text_address(entry) ||
!kallsyms_lookup_size_offset(entry, &size, &offset)) {
diff --git a/lib/flex_proportions.c b/lib/flex_proportions.c
index 451543937524..53e7eb1dd76c 100644
--- a/lib/flex_proportions.c
+++ b/lib/flex_proportions.c
@@ -217,11 +217,12 @@ static void fprop_reflect_period_percpu(struct fprop_global *p,
}
/* Event of type pl happened */
-void __fprop_inc_percpu(struct fprop_global *p, struct fprop_local_percpu *pl)
+void __fprop_add_percpu(struct fprop_global *p, struct fprop_local_percpu *pl,
+ long nr)
{
fprop_reflect_period_percpu(p, pl);
- percpu_counter_add_batch(&pl->events, 1, PROP_BATCH);
- percpu_counter_add(&p->events, 1);
+ percpu_counter_add_batch(&pl->events, nr, PROP_BATCH);
+ percpu_counter_add(&p->events, nr);
}
void fprop_fraction_percpu(struct fprop_global *p,
@@ -253,20 +254,29 @@ void fprop_fraction_percpu(struct fprop_global *p,
}
/*
- * Like __fprop_inc_percpu() except that event is counted only if the given
+ * Like __fprop_add_percpu() except that event is counted only if the given
* type has fraction smaller than @max_frac/FPROP_FRAC_BASE
*/
-void __fprop_inc_percpu_max(struct fprop_global *p,
- struct fprop_local_percpu *pl, int max_frac)
+void __fprop_add_percpu_max(struct fprop_global *p,
+ struct fprop_local_percpu *pl, int max_frac, long nr)
{
if (unlikely(max_frac < FPROP_FRAC_BASE)) {
unsigned long numerator, denominator;
+ s64 tmp;
fprop_fraction_percpu(p, pl, &numerator, &denominator);
- if (numerator >
- (((u64)denominator) * max_frac) >> FPROP_FRAC_SHIFT)
+ /* Adding 'nr' to fraction exceeds max_frac/FPROP_FRAC_BASE? */
+ tmp = (u64)denominator * max_frac -
+ ((u64)numerator << FPROP_FRAC_SHIFT);
+ if (tmp < 0) {
+ /* Maximum fraction already exceeded? */
return;
+ } else if (tmp < nr * (FPROP_FRAC_BASE - max_frac)) {
+ /* Add just enough for the fraction to saturate */
+ nr = div_u64(tmp + FPROP_FRAC_BASE - max_frac - 1,
+ FPROP_FRAC_BASE - max_frac);
+ }
}
- __fprop_inc_percpu(p, pl);
+ __fprop_add_percpu(p, pl, nr);
}
diff --git a/lib/iov_iter.c b/lib/iov_iter.c
index 755c10c5138c..66a740e6e153 100644
--- a/lib/iov_iter.c
+++ b/lib/iov_iter.c
@@ -191,7 +191,7 @@ static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t b
buf = iov->iov_base + skip;
copy = min(bytes, iov->iov_len - skip);
- if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
+ if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_writeable(buf, copy)) {
kaddr = kmap_atomic(page);
from = kaddr + offset;
@@ -275,7 +275,7 @@ static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t
buf = iov->iov_base + skip;
copy = min(bytes, iov->iov_len - skip);
- if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
+ if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_readable(buf, copy)) {
kaddr = kmap_atomic(page);
to = kaddr + offset;
@@ -430,35 +430,81 @@ out:
}
/*
+ * fault_in_iov_iter_readable - fault in iov iterator for reading
+ * @i: iterator
+ * @size: maximum length
+ *
* Fault in one or more iovecs of the given iov_iter, to a maximum length of
- * bytes. For each iovec, fault in each page that constitutes the iovec.
+ * @size. For each iovec, fault in each page that constitutes the iovec.
+ *
+ * Returns the number of bytes not faulted in (like copy_to_user() and
+ * copy_from_user()).
*
- * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
- * because it is an invalid address).
+ * Always returns 0 for non-userspace iterators.
*/
-int iov_iter_fault_in_readable(const struct iov_iter *i, size_t bytes)
+size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
{
if (iter_is_iovec(i)) {
+ size_t count = min(size, iov_iter_count(i));
const struct iovec *p;
size_t skip;
- if (bytes > i->count)
- bytes = i->count;
- for (p = i->iov, skip = i->iov_offset; bytes; p++, skip = 0) {
- size_t len = min(bytes, p->iov_len - skip);
- int err;
+ size -= count;
+ for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
+ size_t len = min(count, p->iov_len - skip);
+ size_t ret;
if (unlikely(!len))
continue;
- err = fault_in_pages_readable(p->iov_base + skip, len);
- if (unlikely(err))
- return err;
- bytes -= len;
+ ret = fault_in_readable(p->iov_base + skip, len);
+ count -= len - ret;
+ if (ret)
+ break;
}
+ return count + size;
}
return 0;
}
-EXPORT_SYMBOL(iov_iter_fault_in_readable);
+EXPORT_SYMBOL(fault_in_iov_iter_readable);
+
+/*
+ * fault_in_iov_iter_writeable - fault in iov iterator for writing
+ * @i: iterator
+ * @size: maximum length
+ *
+ * Faults in the iterator using get_user_pages(), i.e., without triggering
+ * hardware page faults. This is primarily useful when we already know that
+ * some or all of the pages in @i aren't in memory.
+ *
+ * Returns the number of bytes not faulted in, like copy_to_user() and
+ * copy_from_user().
+ *
+ * Always returns 0 for non-user-space iterators.
+ */
+size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
+{
+ if (iter_is_iovec(i)) {
+ size_t count = min(size, iov_iter_count(i));
+ const struct iovec *p;
+ size_t skip;
+
+ size -= count;
+ for (p = i->iov, skip = i->iov_offset; count; p++, skip = 0) {
+ size_t len = min(count, p->iov_len - skip);
+ size_t ret;
+
+ if (unlikely(!len))
+ continue;
+ ret = fault_in_safe_writeable(p->iov_base + skip, len);
+ count -= len - ret;
+ if (ret)
+ break;
+ }
+ return count + size;
+ }
+ return 0;
+}
+EXPORT_SYMBOL(fault_in_iov_iter_writeable);
void iov_iter_init(struct iov_iter *i, unsigned int direction,
const struct iovec *iov, unsigned long nr_segs,
@@ -467,6 +513,7 @@ void iov_iter_init(struct iov_iter *i, unsigned int direction,
WARN_ON(direction & ~(READ | WRITE));
*i = (struct iov_iter) {
.iter_type = ITER_IOVEC,
+ .nofault = false,
.data_source = direction,
.iov = iov,
.nr_segs = nr_segs,
@@ -1481,14 +1528,18 @@ ssize_t iov_iter_get_pages(struct iov_iter *i,
return 0;
if (likely(iter_is_iovec(i))) {
+ unsigned int gup_flags = 0;
unsigned long addr;
+ if (iov_iter_rw(i) != WRITE)
+ gup_flags |= FOLL_WRITE;
+ if (i->nofault)
+ gup_flags |= FOLL_NOFAULT;
+
addr = first_iovec_segment(i, &len, start, maxsize, maxpages);
n = DIV_ROUND_UP(len, PAGE_SIZE);
- res = get_user_pages_fast(addr, n,
- iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0,
- pages);
- if (unlikely(res < 0))
+ res = get_user_pages_fast(addr, n, gup_flags, pages);
+ if (unlikely(res <= 0))
return res;
return (res == n ? len : res * PAGE_SIZE) - *start;
}
@@ -1603,17 +1654,23 @@ ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
return 0;
if (likely(iter_is_iovec(i))) {
+ unsigned int gup_flags = 0;
unsigned long addr;
+ if (iov_iter_rw(i) != WRITE)
+ gup_flags |= FOLL_WRITE;
+ if (i->nofault)
+ gup_flags |= FOLL_NOFAULT;
+
addr = first_iovec_segment(i, &len, start, maxsize, ~0U);
n = DIV_ROUND_UP(len, PAGE_SIZE);
p = get_pages_array(n);
if (!p)
return -ENOMEM;
- res = get_user_pages_fast(addr, n,
- iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, p);
- if (unlikely(res < 0)) {
+ res = get_user_pages_fast(addr, n, gup_flags, p);
+ if (unlikely(res <= 0)) {
kvfree(p);
+ *pages = NULL;
return res;
}
*pages = p;
diff --git a/lib/kunit/executor.c b/lib/kunit/executor.c
index acd1de436f59..22640c9ee819 100644
--- a/lib/kunit/executor.c
+++ b/lib/kunit/executor.c
@@ -15,23 +15,89 @@ extern struct kunit_suite * const * const __kunit_suites_end[];
#if IS_BUILTIN(CONFIG_KUNIT)
static char *filter_glob_param;
+static char *action_param;
+
module_param_named(filter_glob, filter_glob_param, charp, 0);
MODULE_PARM_DESC(filter_glob,
- "Filter which KUnit test suites run at boot-time, e.g. list*");
+ "Filter which KUnit test suites/tests run at boot-time, e.g. list* or list*.*del_test");
+module_param_named(action, action_param, charp, 0);
+MODULE_PARM_DESC(action,
+ "Changes KUnit executor behavior, valid values are:\n"
+ "<none>: run the tests like normal\n"
+ "'list' to list test names instead of running them.\n");
+
+/* glob_match() needs NULL terminated strings, so we need a copy of filter_glob_param. */
+struct kunit_test_filter {
+ char *suite_glob;
+ char *test_glob;
+};
+
+/* Split "suite_glob.test_glob" into two. Assumes filter_glob is not empty. */
+static void kunit_parse_filter_glob(struct kunit_test_filter *parsed,
+ const char *filter_glob)
+{
+ const int len = strlen(filter_glob);
+ const char *period = strchr(filter_glob, '.');
+
+ if (!period) {
+ parsed->suite_glob = kzalloc(len + 1, GFP_KERNEL);
+ parsed->test_glob = NULL;
+ strcpy(parsed->suite_glob, filter_glob);
+ return;
+ }
+
+ parsed->suite_glob = kzalloc(period - filter_glob + 1, GFP_KERNEL);
+ parsed->test_glob = kzalloc(len - (period - filter_glob) + 1, GFP_KERNEL);
+
+ strncpy(parsed->suite_glob, filter_glob, period - filter_glob);
+ strncpy(parsed->test_glob, period + 1, len - (period - filter_glob));
+}
+
+/* Create a copy of suite with only tests that match test_glob. */
+static struct kunit_suite *
+kunit_filter_tests(struct kunit_suite *const suite, const char *test_glob)
+{
+ int n = 0;
+ struct kunit_case *filtered, *test_case;
+ struct kunit_suite *copy;
+
+ kunit_suite_for_each_test_case(suite, test_case) {
+ if (!test_glob || glob_match(test_glob, test_case->name))
+ ++n;
+ }
+
+ if (n == 0)
+ return NULL;
+
+ /* Use memcpy to workaround copy->name being const. */
+ copy = kmalloc(sizeof(*copy), GFP_KERNEL);
+ memcpy(copy, suite, sizeof(*copy));
+
+ filtered = kcalloc(n + 1, sizeof(*filtered), GFP_KERNEL);
+
+ n = 0;
+ kunit_suite_for_each_test_case(suite, test_case) {
+ if (!test_glob || glob_match(test_glob, test_case->name))
+ filtered[n++] = *test_case;
+ }
+
+ copy->test_cases = filtered;
+ return copy;
+}
static char *kunit_shutdown;
core_param(kunit_shutdown, kunit_shutdown, charp, 0644);
static struct kunit_suite * const *
kunit_filter_subsuite(struct kunit_suite * const * const subsuite,
- const char *filter_glob)
+ struct kunit_test_filter *filter)
{
int i, n = 0;
- struct kunit_suite **filtered;
+ struct kunit_suite **filtered, *filtered_suite;
n = 0;
- for (i = 0; subsuite[i] != NULL; ++i) {
- if (glob_match(filter_glob, subsuite[i]->name))
+ for (i = 0; subsuite[i]; ++i) {
+ if (glob_match(filter->suite_glob, subsuite[i]->name))
++n;
}
@@ -44,8 +110,11 @@ kunit_filter_subsuite(struct kunit_suite * const * const subsuite,
n = 0;
for (i = 0; subsuite[i] != NULL; ++i) {
- if (glob_match(filter_glob, subsuite[i]->name))
- filtered[n++] = subsuite[i];
+ if (!glob_match(filter->suite_glob, subsuite[i]->name))
+ continue;
+ filtered_suite = kunit_filter_tests(subsuite[i], filter->test_glob);
+ if (filtered_suite)
+ filtered[n++] = filtered_suite;
}
filtered[n] = NULL;
@@ -57,12 +126,32 @@ struct suite_set {
struct kunit_suite * const * const *end;
};
+static void kunit_free_subsuite(struct kunit_suite * const *subsuite)
+{
+ unsigned int i;
+
+ for (i = 0; subsuite[i]; i++)
+ kfree(subsuite[i]);
+
+ kfree(subsuite);
+}
+
+static void kunit_free_suite_set(struct suite_set suite_set)
+{
+ struct kunit_suite * const * const *suites;
+
+ for (suites = suite_set.start; suites < suite_set.end; suites++)
+ kunit_free_subsuite(*suites);
+ kfree(suite_set.start);
+}
+
static struct suite_set kunit_filter_suites(const struct suite_set *suite_set,
const char *filter_glob)
{
int i;
struct kunit_suite * const **copy, * const *filtered_subsuite;
struct suite_set filtered;
+ struct kunit_test_filter filter;
const size_t max = suite_set->end - suite_set->start;
@@ -73,12 +162,17 @@ static struct suite_set kunit_filter_suites(const struct suite_set *suite_set,
return filtered;
}
+ kunit_parse_filter_glob(&filter, filter_glob);
+
for (i = 0; i < max; ++i) {
- filtered_subsuite = kunit_filter_subsuite(suite_set->start[i], filter_glob);
+ filtered_subsuite = kunit_filter_subsuite(suite_set->start[i], &filter);
if (filtered_subsuite)
*copy++ = filtered_subsuite;
}
filtered.end = copy;
+
+ kfree(filter.suite_glob);
+ kfree(filter.test_glob);
return filtered;
}
@@ -109,9 +203,35 @@ static void kunit_print_tap_header(struct suite_set *suite_set)
pr_info("1..%d\n", num_of_suites);
}
-int kunit_run_all_tests(void)
+static void kunit_exec_run_tests(struct suite_set *suite_set)
+{
+ struct kunit_suite * const * const *suites;
+
+ kunit_print_tap_header(suite_set);
+
+ for (suites = suite_set->start; suites < suite_set->end; suites++)
+ __kunit_test_suites_init(*suites);
+}
+
+static void kunit_exec_list_tests(struct suite_set *suite_set)
{
+ unsigned int i;
struct kunit_suite * const * const *suites;
+ struct kunit_case *test_case;
+
+ /* Hack: print a tap header so kunit.py can find the start of KUnit output. */
+ pr_info("TAP version 14\n");
+
+ for (suites = suite_set->start; suites < suite_set->end; suites++)
+ for (i = 0; (*suites)[i] != NULL; i++) {
+ kunit_suite_for_each_test_case((*suites)[i], test_case) {
+ pr_info("%s.%s\n", (*suites)[i]->name, test_case->name);
+ }
+ }
+}
+
+int kunit_run_all_tests(void)
+{
struct suite_set suite_set = {
.start = __kunit_suites_start,
.end = __kunit_suites_end,
@@ -120,15 +240,15 @@ int kunit_run_all_tests(void)
if (filter_glob_param)
suite_set = kunit_filter_suites(&suite_set, filter_glob_param);
- kunit_print_tap_header(&suite_set);
-
- for (suites = suite_set.start; suites < suite_set.end; suites++)
- __kunit_test_suites_init(*suites);
+ if (!action_param)
+ kunit_exec_run_tests(&suite_set);
+ else if (strcmp(action_param, "list") == 0)
+ kunit_exec_list_tests(&suite_set);
+ else
+ pr_err("kunit executor: unknown action '%s'\n", action_param);
if (filter_glob_param) { /* a copy was made of each array */
- for (suites = suite_set.start; suites < suite_set.end; suites++)
- kfree(*suites);
- kfree(suite_set.start);
+ kunit_free_suite_set(suite_set);
}
kunit_handle_shutdown();
diff --git a/lib/kunit/executor_test.c b/lib/kunit/executor_test.c
index e14a18af573d..4ed57fd94e42 100644
--- a/lib/kunit/executor_test.c
+++ b/lib/kunit/executor_test.c
@@ -9,38 +9,103 @@
#include <kunit/test.h>
static void kfree_at_end(struct kunit *test, const void *to_free);
+static void free_subsuite_at_end(struct kunit *test,
+ struct kunit_suite *const *to_free);
static struct kunit_suite *alloc_fake_suite(struct kunit *test,
- const char *suite_name);
+ const char *suite_name,
+ struct kunit_case *test_cases);
+
+static void dummy_test(struct kunit *test) {}
+
+static struct kunit_case dummy_test_cases[] = {
+ /* .run_case is not important, just needs to be non-NULL */
+ { .name = "test1", .run_case = dummy_test },
+ { .name = "test2", .run_case = dummy_test },
+ {},
+};
+
+static void parse_filter_test(struct kunit *test)
+{
+ struct kunit_test_filter filter = {NULL, NULL};
+
+ kunit_parse_filter_glob(&filter, "suite");
+ KUNIT_EXPECT_STREQ(test, filter.suite_glob, "suite");
+ KUNIT_EXPECT_FALSE(test, filter.test_glob);
+ kfree(filter.suite_glob);
+ kfree(filter.test_glob);
+
+ kunit_parse_filter_glob(&filter, "suite.test");
+ KUNIT_EXPECT_STREQ(test, filter.suite_glob, "suite");
+ KUNIT_EXPECT_STREQ(test, filter.test_glob, "test");
+ kfree(filter.suite_glob);
+ kfree(filter.test_glob);
+}
static void filter_subsuite_test(struct kunit *test)
{
struct kunit_suite *subsuite[3] = {NULL, NULL, NULL};
struct kunit_suite * const *filtered;
+ struct kunit_test_filter filter = {
+ .suite_glob = "suite2",
+ .test_glob = NULL,
+ };
- subsuite[0] = alloc_fake_suite(test, "suite1");
- subsuite[1] = alloc_fake_suite(test, "suite2");
+ subsuite[0] = alloc_fake_suite(test, "suite1", dummy_test_cases);
+ subsuite[1] = alloc_fake_suite(test, "suite2", dummy_test_cases);
/* Want: suite1, suite2, NULL -> suite2, NULL */
- filtered = kunit_filter_subsuite(subsuite, "suite2*");
+ filtered = kunit_filter_subsuite(subsuite, &filter);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, filtered);
- kfree_at_end(test, filtered);
+ free_subsuite_at_end(test, filtered);
+ /* Validate we just have suite2 */
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, filtered[0]);
KUNIT_EXPECT_STREQ(test, (const char *)filtered[0]->name, "suite2");
+ KUNIT_EXPECT_FALSE(test, filtered[1]);
+}
+
+static void filter_subsuite_test_glob_test(struct kunit *test)
+{
+ struct kunit_suite *subsuite[3] = {NULL, NULL, NULL};
+ struct kunit_suite * const *filtered;
+ struct kunit_test_filter filter = {
+ .suite_glob = "suite2",
+ .test_glob = "test2",
+ };
+
+ subsuite[0] = alloc_fake_suite(test, "suite1", dummy_test_cases);
+ subsuite[1] = alloc_fake_suite(test, "suite2", dummy_test_cases);
+ /* Want: suite1, suite2, NULL -> suite2 (just test1), NULL */
+ filtered = kunit_filter_subsuite(subsuite, &filter);
+ KUNIT_ASSERT_NOT_ERR_OR_NULL(test, filtered);
+ free_subsuite_at_end(test, filtered);
+
+ /* Validate we just have suite2 */
+ KUNIT_ASSERT_NOT_ERR_OR_NULL(test, filtered[0]);
+ KUNIT_EXPECT_STREQ(test, (const char *)filtered[0]->name, "suite2");
KUNIT_EXPECT_FALSE(test, filtered[1]);
+
+ /* Now validate we just have test2 */
+ KUNIT_ASSERT_NOT_ERR_OR_NULL(test, filtered[0]->test_cases);
+ KUNIT_EXPECT_STREQ(test, (const char *)filtered[0]->test_cases[0].name, "test2");
+ KUNIT_EXPECT_FALSE(test, filtered[0]->test_cases[1].name);
}
static void filter_subsuite_to_empty_test(struct kunit *test)
{
struct kunit_suite *subsuite[3] = {NULL, NULL, NULL};
struct kunit_suite * const *filtered;
+ struct kunit_test_filter filter = {
+ .suite_glob = "not_found",
+ .test_glob = NULL,
+ };
- subsuite[0] = alloc_fake_suite(test, "suite1");
- subsuite[1] = alloc_fake_suite(test, "suite2");
+ subsuite[0] = alloc_fake_suite(test, "suite1", dummy_test_cases);
+ subsuite[1] = alloc_fake_suite(test, "suite2", dummy_test_cases);
- filtered = kunit_filter_subsuite(subsuite, "not_found");
- kfree_at_end(test, filtered); /* just in case */
+ filtered = kunit_filter_subsuite(subsuite, &filter);
+ free_subsuite_at_end(test, filtered); /* just in case */
KUNIT_EXPECT_FALSE_MSG(test, filtered,
"should be NULL to indicate no match");
@@ -52,7 +117,7 @@ static void kfree_subsuites_at_end(struct kunit *test, struct suite_set *suite_s
kfree_at_end(test, suite_set->start);
for (suites = suite_set->start; suites < suite_set->end; suites++)
- kfree_at_end(test, *suites);
+ free_subsuite_at_end(test, *suites);
}
static void filter_suites_test(struct kunit *test)
@@ -74,8 +139,8 @@ static void filter_suites_test(struct kunit *test)
struct suite_set filtered = {.start = NULL, .end = NULL};
/* Emulate two files, each having one suite */
- subsuites[0][0] = alloc_fake_suite(test, "suite0");
- subsuites[1][0] = alloc_fake_suite(test, "suite1");
+ subsuites[0][0] = alloc_fake_suite(test, "suite0", dummy_test_cases);
+ subsuites[1][0] = alloc_fake_suite(test, "suite1", dummy_test_cases);
/* Filter out suite1 */
filtered = kunit_filter_suites(&suite_set, "suite0");
@@ -84,11 +149,14 @@ static void filter_suites_test(struct kunit *test)
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, filtered.start);
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, filtered.start[0]);
+ KUNIT_ASSERT_NOT_ERR_OR_NULL(test, filtered.start[0][0]);
KUNIT_EXPECT_STREQ(test, (const char *)filtered.start[0][0]->name, "suite0");
}
static struct kunit_case executor_test_cases[] = {
+ KUNIT_CASE(parse_filter_test),
KUNIT_CASE(filter_subsuite_test),
+ KUNIT_CASE(filter_subsuite_test_glob_test),
KUNIT_CASE(filter_subsuite_to_empty_test),
KUNIT_CASE(filter_suites_test),
{}
@@ -120,14 +188,30 @@ static void kfree_at_end(struct kunit *test, const void *to_free)
(void *)to_free);
}
+static void free_subsuite_res_free(struct kunit_resource *res)
+{
+ kunit_free_subsuite(res->data);
+}
+
+static void free_subsuite_at_end(struct kunit *test,
+ struct kunit_suite *const *to_free)
+{
+ if (IS_ERR_OR_NULL(to_free))
+ return;
+ kunit_alloc_resource(test, NULL, free_subsuite_res_free,
+ GFP_KERNEL, (void *)to_free);
+}
+
static struct kunit_suite *alloc_fake_suite(struct kunit *test,
- const char *suite_name)
+ const char *suite_name,
+ struct kunit_case *test_cases)
{
struct kunit_suite *suite;
/* We normally never expect to allocate suites, hence the non-const cast. */
suite = kunit_kzalloc(test, sizeof(*suite), GFP_KERNEL);
strncpy((char *)suite->name, suite_name, sizeof(suite->name) - 1);
+ suite->test_cases = test_cases;
return suite;
}
diff --git a/lib/kunit/kunit-test.c b/lib/kunit/kunit-test.c
index d69efcbed624..555601d17f79 100644
--- a/lib/kunit/kunit-test.c
+++ b/lib/kunit/kunit-test.c
@@ -415,12 +415,15 @@ static struct kunit_suite kunit_log_test_suite = {
static void kunit_log_test(struct kunit *test)
{
- struct kunit_suite *suite = &kunit_log_test_suite;
+ struct kunit_suite suite;
+
+ suite.log = kunit_kzalloc(test, KUNIT_LOG_SIZE, GFP_KERNEL);
+ KUNIT_ASSERT_NOT_ERR_OR_NULL(test, suite.log);
kunit_log(KERN_INFO, test, "put this in log.");
kunit_log(KERN_INFO, test, "this too.");
- kunit_log(KERN_INFO, suite, "add to suite log.");
- kunit_log(KERN_INFO, suite, "along with this.");
+ kunit_log(KERN_INFO, &suite, "add to suite log.");
+ kunit_log(KERN_INFO, &suite, "along with this.");
#ifdef CONFIG_KUNIT_DEBUGFS
KUNIT_EXPECT_NOT_ERR_OR_NULL(test,
@@ -428,12 +431,11 @@ static void kunit_log_test(struct kunit *test)
KUNIT_EXPECT_NOT_ERR_OR_NULL(test,
strstr(test->log, "this too."));
KUNIT_EXPECT_NOT_ERR_OR_NULL(test,
- strstr(suite->log, "add to suite log."));
+ strstr(suite.log, "add to suite log."));
KUNIT_EXPECT_NOT_ERR_OR_NULL(test,
- strstr(suite->log, "along with this."));
+ strstr(suite.log, "along with this."));
#else
KUNIT_EXPECT_PTR_EQ(test, test->log, (char *)NULL);
- KUNIT_EXPECT_PTR_EQ(test, suite->log, (char *)NULL);
#endif
}
diff --git a/lib/kunit/test.c b/lib/kunit/test.c
index f246b847024e..3bd741e50a2d 100644
--- a/lib/kunit/test.c
+++ b/lib/kunit/test.c
@@ -190,10 +190,10 @@ enum kunit_status kunit_suite_has_succeeded(struct kunit_suite *suite)
}
EXPORT_SYMBOL_GPL(kunit_suite_has_succeeded);
+static size_t kunit_suite_counter = 1;
+
static void kunit_print_subtest_end(struct kunit_suite *suite)
{
- static size_t kunit_suite_counter = 1;
-
kunit_print_ok_not_ok((void *)suite, false,
kunit_suite_has_succeeded(suite),
kunit_suite_counter++,
@@ -583,6 +583,8 @@ void __kunit_test_suites_exit(struct kunit_suite **suites)
for (i = 0; suites[i] != NULL; i++)
kunit_exit_suite(suites[i]);
+
+ kunit_suite_counter = 1;
}
EXPORT_SYMBOL_GPL(__kunit_test_suites_exit);
diff --git a/lib/locking-selftest.c b/lib/locking-selftest.c
index 161108e5d2fe..71652e1c397c 100644
--- a/lib/locking-selftest.c
+++ b/lib/locking-selftest.c
@@ -258,7 +258,7 @@ static void init_shared_classes(void)
#define WWAF(x) ww_acquire_fini(x)
#define WWL(x, c) ww_mutex_lock(x, c)
-#define WWT(x) ww_mutex_trylock(x)
+#define WWT(x) ww_mutex_trylock(x, NULL)
#define WWL1(x) ww_mutex_lock(x, NULL)
#define WWU(x) ww_mutex_unlock(x)
diff --git a/lib/memcpy_kunit.c b/lib/memcpy_kunit.c
new file mode 100644
index 000000000000..62f8ffcbbaa3
--- /dev/null
+++ b/lib/memcpy_kunit.c
@@ -0,0 +1,289 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Test cases for memcpy(), memmove(), and memset().
+ */
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <kunit/test.h>
+#include <linux/device.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/overflow.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/vmalloc.h>
+
+struct some_bytes {
+ union {
+ u8 data[32];
+ struct {
+ u32 one;
+ u16 two;
+ u8 three;
+ /* 1 byte hole */
+ u32 four[4];
+ };
+ };
+};
+
+#define check(instance, v) do { \
+ int i; \
+ BUILD_BUG_ON(sizeof(instance.data) != 32); \
+ for (i = 0; i < sizeof(instance.data); i++) { \
+ KUNIT_ASSERT_EQ_MSG(test, instance.data[i], v, \
+ "line %d: '%s' not initialized to 0x%02x @ %d (saw 0x%02x)\n", \
+ __LINE__, #instance, v, i, instance.data[i]); \
+ } \
+} while (0)
+
+#define compare(name, one, two) do { \
+ int i; \
+ BUILD_BUG_ON(sizeof(one) != sizeof(two)); \
+ for (i = 0; i < sizeof(one); i++) { \
+ KUNIT_EXPECT_EQ_MSG(test, one.data[i], two.data[i], \
+ "line %d: %s.data[%d] (0x%02x) != %s.data[%d] (0x%02x)\n", \
+ __LINE__, #one, i, one.data[i], #two, i, two.data[i]); \
+ } \
+ kunit_info(test, "ok: " TEST_OP "() " name "\n"); \
+} while (0)
+
+static void memcpy_test(struct kunit *test)
+{
+#define TEST_OP "memcpy"
+ struct some_bytes control = {
+ .data = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ },
+ };
+ struct some_bytes zero = { };
+ struct some_bytes middle = {
+ .data = { 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ 0x20, 0x20, 0x20, 0x20, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x20, 0x20, 0x20, 0x20, 0x20,
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ },
+ };
+ struct some_bytes three = {
+ .data = { 0x00, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ 0x20, 0x00, 0x00, 0x20, 0x20, 0x20, 0x20, 0x20,
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ },
+ };
+ struct some_bytes dest = { };
+ int count;
+ u8 *ptr;
+
+ /* Verify static initializers. */
+ check(control, 0x20);
+ check(zero, 0);
+ compare("static initializers", dest, zero);
+
+ /* Verify assignment. */
+ dest = control;
+ compare("direct assignment", dest, control);
+
+ /* Verify complete overwrite. */
+ memcpy(dest.data, zero.data, sizeof(dest.data));
+ compare("complete overwrite", dest, zero);
+
+ /* Verify middle overwrite. */
+ dest = control;
+ memcpy(dest.data + 12, zero.data, 7);
+ compare("middle overwrite", dest, middle);
+
+ /* Verify argument side-effects aren't repeated. */
+ dest = control;
+ ptr = dest.data;
+ count = 1;
+ memcpy(ptr++, zero.data, count++);
+ ptr += 8;
+ memcpy(ptr++, zero.data, count++);
+ compare("argument side-effects", dest, three);
+#undef TEST_OP
+}
+
+static void memmove_test(struct kunit *test)
+{
+#define TEST_OP "memmove"
+ struct some_bytes control = {
+ .data = { 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99,
+ 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99,
+ 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99,
+ 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99,
+ },
+ };
+ struct some_bytes zero = { };
+ struct some_bytes middle = {
+ .data = { 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99,
+ 0x99, 0x99, 0x99, 0x99, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x99, 0x99, 0x99, 0x99, 0x99,
+ 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99,
+ },
+ };
+ struct some_bytes five = {
+ .data = { 0x00, 0x00, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99,
+ 0x99, 0x99, 0x00, 0x00, 0x00, 0x99, 0x99, 0x99,
+ 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99,
+ 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99,
+ },
+ };
+ struct some_bytes overlap = {
+ .data = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
+ 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99,
+ 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99,
+ },
+ };
+ struct some_bytes overlap_expected = {
+ .data = { 0x00, 0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x07,
+ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
+ 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99,
+ 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99, 0x99,
+ },
+ };
+ struct some_bytes dest = { };
+ int count;
+ u8 *ptr;
+
+ /* Verify static initializers. */
+ check(control, 0x99);
+ check(zero, 0);
+ compare("static initializers", zero, dest);
+
+ /* Verify assignment. */
+ dest = control;
+ compare("direct assignment", dest, control);
+
+ /* Verify complete overwrite. */
+ memmove(dest.data, zero.data, sizeof(dest.data));
+ compare("complete overwrite", dest, zero);
+
+ /* Verify middle overwrite. */
+ dest = control;
+ memmove(dest.data + 12, zero.data, 7);
+ compare("middle overwrite", dest, middle);
+
+ /* Verify argument side-effects aren't repeated. */
+ dest = control;
+ ptr = dest.data;
+ count = 2;
+ memmove(ptr++, zero.data, count++);
+ ptr += 9;
+ memmove(ptr++, zero.data, count++);
+ compare("argument side-effects", dest, five);
+
+ /* Verify overlapping overwrite is correct. */
+ ptr = &overlap.data[2];
+ memmove(ptr, overlap.data, 5);
+ compare("overlapping write", overlap, overlap_expected);
+#undef TEST_OP
+}
+
+static void memset_test(struct kunit *test)
+{
+#define TEST_OP "memset"
+ struct some_bytes control = {
+ .data = { 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
+ 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
+ 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
+ 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
+ },
+ };
+ struct some_bytes complete = {
+ .data = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ },
+ };
+ struct some_bytes middle = {
+ .data = { 0x30, 0x30, 0x30, 0x30, 0x31, 0x31, 0x31, 0x31,
+ 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31,
+ 0x31, 0x31, 0x31, 0x31, 0x30, 0x30, 0x30, 0x30,
+ 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
+ },
+ };
+ struct some_bytes three = {
+ .data = { 0x60, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
+ 0x30, 0x61, 0x61, 0x30, 0x30, 0x30, 0x30, 0x30,
+ 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
+ 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
+ },
+ };
+ struct some_bytes after = {
+ .data = { 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x72,
+ 0x72, 0x72, 0x72, 0x72, 0x72, 0x72, 0x72, 0x72,
+ 0x72, 0x72, 0x72, 0x72, 0x72, 0x72, 0x72, 0x72,
+ 0x72, 0x72, 0x72, 0x72, 0x72, 0x72, 0x72, 0x72,
+ },
+ };
+ struct some_bytes startat = {
+ .data = { 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
+ 0x79, 0x79, 0x79, 0x79, 0x79, 0x79, 0x79, 0x79,
+ 0x79, 0x79, 0x79, 0x79, 0x79, 0x79, 0x79, 0x79,
+ 0x79, 0x79, 0x79, 0x79, 0x79, 0x79, 0x79, 0x79,
+ },
+ };
+ struct some_bytes dest = { };
+ int count, value;
+ u8 *ptr;
+
+ /* Verify static initializers. */
+ check(control, 0x30);
+ check(dest, 0);
+
+ /* Verify assignment. */
+ dest = control;
+ compare("direct assignment", dest, control);
+
+ /* Verify complete overwrite. */
+ memset(dest.data, 0xff, sizeof(dest.data));
+ compare("complete overwrite", dest, complete);
+
+ /* Verify middle overwrite. */
+ dest = control;
+ memset(dest.data + 4, 0x31, 16);
+ compare("middle overwrite", dest, middle);
+
+ /* Verify argument side-effects aren't repeated. */
+ dest = control;
+ ptr = dest.data;
+ value = 0x60;
+ count = 1;
+ memset(ptr++, value++, count++);
+ ptr += 8;
+ memset(ptr++, value++, count++);
+ compare("argument side-effects", dest, three);
+
+ /* Verify memset_after() */
+ dest = control;
+ memset_after(&dest, 0x72, three);
+ compare("memset_after()", dest, after);
+
+ /* Verify memset_startat() */
+ dest = control;
+ memset_startat(&dest, 0x79, four);
+ compare("memset_startat()", dest, startat);
+#undef TEST_OP
+}
+
+static struct kunit_case memcpy_test_cases[] = {
+ KUNIT_CASE(memset_test),
+ KUNIT_CASE(memcpy_test),
+ KUNIT_CASE(memmove_test),
+ {}
+};
+
+static struct kunit_suite memcpy_test_suite = {
+ .name = "memcpy",
+ .test_cases = memcpy_test_cases,
+};
+
+kunit_test_suite(memcpy_test_suite);
+
+MODULE_LICENSE("GPL");
diff --git a/lib/random32.c b/lib/random32.c
index 4d0e05e471d7..a57a0e18819d 100644
--- a/lib/random32.c
+++ b/lib/random32.c
@@ -39,6 +39,7 @@
#include <linux/random.h>
#include <linux/sched.h>
#include <linux/bitops.h>
+#include <linux/slab.h>
#include <asm/unaligned.h>
#include <trace/events/random.h>
diff --git a/lib/sbitmap.c b/lib/sbitmap.c
index b25db9be938a..2709ab825499 100644
--- a/lib/sbitmap.c
+++ b/lib/sbitmap.c
@@ -489,6 +489,57 @@ int __sbitmap_queue_get(struct sbitmap_queue *sbq)
}
EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
+unsigned long __sbitmap_queue_get_batch(struct sbitmap_queue *sbq, int nr_tags,
+ unsigned int *offset)
+{
+ struct sbitmap *sb = &sbq->sb;
+ unsigned int hint, depth;
+ unsigned long index, nr;
+ int i;
+
+ if (unlikely(sb->round_robin))
+ return 0;
+
+ depth = READ_ONCE(sb->depth);
+ hint = update_alloc_hint_before_get(sb, depth);
+
+ index = SB_NR_TO_INDEX(sb, hint);
+
+ for (i = 0; i < sb->map_nr; i++) {
+ struct sbitmap_word *map = &sb->map[index];
+ unsigned long get_mask;
+
+ sbitmap_deferred_clear(map);
+ if (map->word == (1UL << (map->depth - 1)) - 1)
+ continue;
+
+ nr = find_first_zero_bit(&map->word, map->depth);
+ if (nr + nr_tags <= map->depth) {
+ atomic_long_t *ptr = (atomic_long_t *) &map->word;
+ int map_tags = min_t(int, nr_tags, map->depth);
+ unsigned long val, ret;
+
+ get_mask = ((1UL << map_tags) - 1) << nr;
+ do {
+ val = READ_ONCE(map->word);
+ ret = atomic_long_cmpxchg(ptr, val, get_mask | val);
+ } while (ret != val);
+ get_mask = (get_mask & ~ret) >> nr;
+ if (get_mask) {
+ *offset = nr + (index << sb->shift);
+ update_alloc_hint_after_get(sb, depth, hint,
+ *offset + map_tags - 1);
+ return get_mask;
+ }
+ }
+ /* Jump to next index. */
+ if (++index >= sb->map_nr)
+ index = 0;
+ }
+
+ return 0;
+}
+
int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
unsigned int shallow_depth)
{
@@ -577,6 +628,46 @@ void sbitmap_queue_wake_up(struct sbitmap_queue *sbq)
}
EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);
+static inline void sbitmap_update_cpu_hint(struct sbitmap *sb, int cpu, int tag)
+{
+ if (likely(!sb->round_robin && tag < sb->depth))
+ data_race(*per_cpu_ptr(sb->alloc_hint, cpu) = tag);
+}
+
+void sbitmap_queue_clear_batch(struct sbitmap_queue *sbq, int offset,
+ int *tags, int nr_tags)
+{
+ struct sbitmap *sb = &sbq->sb;
+ unsigned long *addr = NULL;
+ unsigned long mask = 0;
+ int i;
+
+ smp_mb__before_atomic();
+ for (i = 0; i < nr_tags; i++) {
+ const int tag = tags[i] - offset;
+ unsigned long *this_addr;
+
+ /* since we're clearing a batch, skip the deferred map */
+ this_addr = &sb->map[SB_NR_TO_INDEX(sb, tag)].word;
+ if (!addr) {
+ addr = this_addr;
+ } else if (addr != this_addr) {
+ atomic_long_andnot(mask, (atomic_long_t *) addr);
+ mask = 0;
+ addr = this_addr;
+ }
+ mask |= (1UL << SB_NR_TO_BIT(sb, tag));
+ }
+
+ if (mask)
+ atomic_long_andnot(mask, (atomic_long_t *) addr);
+
+ smp_mb__after_atomic();
+ sbitmap_queue_wake_up(sbq);
+ sbitmap_update_cpu_hint(&sbq->sb, raw_smp_processor_id(),
+ tags[nr_tags - 1] - offset);
+}
+
void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
unsigned int cpu)
{
@@ -601,9 +692,7 @@ void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
*/
smp_mb__after_atomic();
sbitmap_queue_wake_up(sbq);
-
- if (likely(!sbq->sb.round_robin && nr < sbq->sb.depth))
- *per_cpu_ptr(sbq->sb.alloc_hint, cpu) = nr;
+ sbitmap_update_cpu_hint(&sbq->sb, cpu, nr);
}
EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
diff --git a/lib/string.c b/lib/string.c
index b2de45a581f4..485777c9da83 100644
--- a/lib/string.c
+++ b/lib/string.c
@@ -6,20 +6,15 @@
*/
/*
- * stupid library routines.. The optimized versions should generally be found
- * as inline code in <asm-xx/string.h>
+ * This file should be used only for "library" routines that may have
+ * alternative implementations on specific architectures (generally
+ * found in <asm-xx/string.h>), or get overloaded by FORTIFY_SOURCE.
+ * (Specifically, this file is built with __NO_FORTIFY.)
*
- * These are buggy as well..
- *
- * * Fri Jun 25 1999, Ingo Oeser <ioe@informatik.tu-chemnitz.de>
- * - Added strsep() which will replace strtok() soon (because strsep() is
- * reentrant and should be faster). Use only strsep() in new code, please.
- *
- * * Sat Feb 09 2002, Jason Thomas <jason@topic.com.au>,
- * Matthew Hawkins <matt@mh.dropbear.id.au>
- * - Kissed strtok() goodbye
+ * Other helper functions should live in string_helpers.c.
*/
+#define __NO_FORTIFY
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
@@ -239,40 +234,6 @@ EXPORT_SYMBOL(strscpy);
#endif
/**
- * strscpy_pad() - Copy a C-string into a sized buffer
- * @dest: Where to copy the string to
- * @src: Where to copy the string from
- * @count: Size of destination buffer
- *
- * Copy the string, or as much of it as fits, into the dest buffer. The
- * behavior is undefined if the string buffers overlap. The destination
- * buffer is always %NUL terminated, unless it's zero-sized.
- *
- * If the source string is shorter than the destination buffer, zeros
- * the tail of the destination buffer.
- *
- * For full explanation of why you may want to consider using the
- * 'strscpy' functions please see the function docstring for strscpy().
- *
- * Returns:
- * * The number of characters copied (not including the trailing %NUL)
- * * -E2BIG if count is 0 or @src was truncated.
- */
-ssize_t strscpy_pad(char *dest, const char *src, size_t count)
-{
- ssize_t written;
-
- written = strscpy(dest, src, count);
- if (written < 0 || written == count - 1)
- return written;
-
- memset(dest + written + 1, 0, count - written - 1);
-
- return written;
-}
-EXPORT_SYMBOL(strscpy_pad);
-
-/**
* stpcpy - copy a string from src to dest returning a pointer to the new end
* of dest, including src's %NUL-terminator. May overrun dest.
* @dest: pointer to end of string being copied into. Must be large enough
@@ -514,46 +475,6 @@ char *strnchr(const char *s, size_t count, int c)
EXPORT_SYMBOL(strnchr);
#endif
-/**
- * skip_spaces - Removes leading whitespace from @str.
- * @str: The string to be stripped.
- *
- * Returns a pointer to the first non-whitespace character in @str.
- */
-char *skip_spaces(const char *str)
-{
- while (isspace(*str))
- ++str;
- return (char *)str;
-}
-EXPORT_SYMBOL(skip_spaces);
-
-/**
- * strim - Removes leading and trailing whitespace from @s.
- * @s: The string to be stripped.
- *
- * Note that the first trailing whitespace is replaced with a %NUL-terminator
- * in the given string @s. Returns a pointer to the first non-whitespace
- * character in @s.
- */
-char *strim(char *s)
-{
- size_t size;
- char *end;
-
- size = strlen(s);
- if (!size)
- return s;
-
- end = s + size - 1;
- while (end >= s && isspace(*end))
- end--;
- *(end + 1) = '\0';
-
- return skip_spaces(s);
-}
-EXPORT_SYMBOL(strim);
-
#ifndef __HAVE_ARCH_STRLEN
/**
* strlen - Find the length of a string
@@ -688,101 +609,6 @@ char *strsep(char **s, const char *ct)
EXPORT_SYMBOL(strsep);
#endif
-/**
- * sysfs_streq - return true if strings are equal, modulo trailing newline
- * @s1: one string
- * @s2: another string
- *
- * This routine returns true iff two strings are equal, treating both
- * NUL and newline-then-NUL as equivalent string terminations. It's
- * geared for use with sysfs input strings, which generally terminate
- * with newlines but are compared against values without newlines.
- */
-bool sysfs_streq(const char *s1, const char *s2)
-{
- while (*s1 && *s1 == *s2) {
- s1++;
- s2++;
- }
-
- if (*s1 == *s2)
- return true;
- if (!*s1 && *s2 == '\n' && !s2[1])
- return true;
- if (*s1 == '\n' && !s1[1] && !*s2)
- return true;
- return false;
-}
-EXPORT_SYMBOL(sysfs_streq);
-
-/**
- * match_string - matches given string in an array
- * @array: array of strings
- * @n: number of strings in the array or -1 for NULL terminated arrays
- * @string: string to match with
- *
- * This routine will look for a string in an array of strings up to the
- * n-th element in the array or until the first NULL element.
- *
- * Historically the value of -1 for @n, was used to search in arrays that
- * are NULL terminated. However, the function does not make a distinction
- * when finishing the search: either @n elements have been compared OR
- * the first NULL element was found.
- *
- * Return:
- * index of a @string in the @array if matches, or %-EINVAL otherwise.
- */
-int match_string(const char * const *array, size_t n, const char *string)
-{
- int index;
- const char *item;
-
- for (index = 0; index < n; index++) {
- item = array[index];
- if (!item)
- break;
- if (!strcmp(item, string))
- return index;
- }
-
- return -EINVAL;
-}
-EXPORT_SYMBOL(match_string);
-
-/**
- * __sysfs_match_string - matches given string in an array
- * @array: array of strings
- * @n: number of strings in the array or -1 for NULL terminated arrays
- * @str: string to match with
- *
- * Returns index of @str in the @array or -EINVAL, just like match_string().
- * Uses sysfs_streq instead of strcmp for matching.
- *
- * This routine will look for a string in an array of strings up to the
- * n-th element in the array or until the first NULL element.
- *
- * Historically the value of -1 for @n, was used to search in arrays that
- * are NULL terminated. However, the function does not make a distinction
- * when finishing the search: either @n elements have been compared OR
- * the first NULL element was found.
- */
-int __sysfs_match_string(const char * const *array, size_t n, const char *str)
-{
- const char *item;
- int index;
-
- for (index = 0; index < n; index++) {
- item = array[index];
- if (!item)
- break;
- if (sysfs_streq(item, str))
- return index;
- }
-
- return -EINVAL;
-}
-EXPORT_SYMBOL(__sysfs_match_string);
-
#ifndef __HAVE_ARCH_MEMSET
/**
* memset - Fill a region of memory with the given value
@@ -1141,27 +967,3 @@ void *memchr_inv(const void *start, int c, size_t bytes)
return check_bytes8(start, value, bytes % 8);
}
EXPORT_SYMBOL(memchr_inv);
-
-/**
- * strreplace - Replace all occurrences of character in string.
- * @s: The string to operate on.
- * @old: The character being replaced.
- * @new: The character @old is replaced with.
- *
- * Returns pointer to the nul byte at the end of @s.
- */
-char *strreplace(char *s, char old, char new)
-{
- for (; *s; ++s)
- if (*s == old)
- *s = new;
- return s;
-}
-EXPORT_SYMBOL(strreplace);
-
-void fortify_panic(const char *name)
-{
- pr_emerg("detected buffer overflow in %s\n", name);
- BUG();
-}
-EXPORT_SYMBOL(fortify_panic);
diff --git a/lib/string_helpers.c b/lib/string_helpers.c
index 3806a52ce697..d5d008f5b1d9 100644
--- a/lib/string_helpers.c
+++ b/lib/string_helpers.c
@@ -696,3 +696,218 @@ void kfree_strarray(char **array, size_t n)
kfree(array);
}
EXPORT_SYMBOL_GPL(kfree_strarray);
+
+/**
+ * strscpy_pad() - Copy a C-string into a sized buffer
+ * @dest: Where to copy the string to
+ * @src: Where to copy the string from
+ * @count: Size of destination buffer
+ *
+ * Copy the string, or as much of it as fits, into the dest buffer. The
+ * behavior is undefined if the string buffers overlap. The destination
+ * buffer is always %NUL terminated, unless it's zero-sized.
+ *
+ * If the source string is shorter than the destination buffer, zeros
+ * the tail of the destination buffer.
+ *
+ * For full explanation of why you may want to consider using the
+ * 'strscpy' functions please see the function docstring for strscpy().
+ *
+ * Returns:
+ * * The number of characters copied (not including the trailing %NUL)
+ * * -E2BIG if count is 0 or @src was truncated.
+ */
+ssize_t strscpy_pad(char *dest, const char *src, size_t count)
+{
+ ssize_t written;
+
+ written = strscpy(dest, src, count);
+ if (written < 0 || written == count - 1)
+ return written;
+
+ memset(dest + written + 1, 0, count - written - 1);
+
+ return written;
+}
+EXPORT_SYMBOL(strscpy_pad);
+
+/**
+ * skip_spaces - Removes leading whitespace from @str.
+ * @str: The string to be stripped.
+ *
+ * Returns a pointer to the first non-whitespace character in @str.
+ */
+char *skip_spaces(const char *str)
+{
+ while (isspace(*str))
+ ++str;
+ return (char *)str;
+}
+EXPORT_SYMBOL(skip_spaces);
+
+/**
+ * strim - Removes leading and trailing whitespace from @s.
+ * @s: The string to be stripped.
+ *
+ * Note that the first trailing whitespace is replaced with a %NUL-terminator
+ * in the given string @s. Returns a pointer to the first non-whitespace
+ * character in @s.
+ */
+char *strim(char *s)
+{
+ size_t size;
+ char *end;
+
+ size = strlen(s);
+ if (!size)
+ return s;
+
+ end = s + size - 1;
+ while (end >= s && isspace(*end))
+ end--;
+ *(end + 1) = '\0';
+
+ return skip_spaces(s);
+}
+EXPORT_SYMBOL(strim);
+
+/**
+ * sysfs_streq - return true if strings are equal, modulo trailing newline
+ * @s1: one string
+ * @s2: another string
+ *
+ * This routine returns true iff two strings are equal, treating both
+ * NUL and newline-then-NUL as equivalent string terminations. It's
+ * geared for use with sysfs input strings, which generally terminate
+ * with newlines but are compared against values without newlines.
+ */
+bool sysfs_streq(const char *s1, const char *s2)
+{
+ while (*s1 && *s1 == *s2) {
+ s1++;
+ s2++;
+ }
+
+ if (*s1 == *s2)
+ return true;
+ if (!*s1 && *s2 == '\n' && !s2[1])
+ return true;
+ if (*s1 == '\n' && !s1[1] && !*s2)
+ return true;
+ return false;
+}
+EXPORT_SYMBOL(sysfs_streq);
+
+/**
+ * match_string - matches given string in an array
+ * @array: array of strings
+ * @n: number of strings in the array or -1 for NULL terminated arrays
+ * @string: string to match with
+ *
+ * This routine will look for a string in an array of strings up to the
+ * n-th element in the array or until the first NULL element.
+ *
+ * Historically the value of -1 for @n, was used to search in arrays that
+ * are NULL terminated. However, the function does not make a distinction
+ * when finishing the search: either @n elements have been compared OR
+ * the first NULL element was found.
+ *
+ * Return:
+ * index of a @string in the @array if matches, or %-EINVAL otherwise.
+ */
+int match_string(const char * const *array, size_t n, const char *string)
+{
+ int index;
+ const char *item;
+
+ for (index = 0; index < n; index++) {
+ item = array[index];
+ if (!item)
+ break;
+ if (!strcmp(item, string))
+ return index;
+ }
+
+ return -EINVAL;
+}
+EXPORT_SYMBOL(match_string);
+
+/**
+ * __sysfs_match_string - matches given string in an array
+ * @array: array of strings
+ * @n: number of strings in the array or -1 for NULL terminated arrays
+ * @str: string to match with
+ *
+ * Returns index of @str in the @array or -EINVAL, just like match_string().
+ * Uses sysfs_streq instead of strcmp for matching.
+ *
+ * This routine will look for a string in an array of strings up to the
+ * n-th element in the array or until the first NULL element.
+ *
+ * Historically the value of -1 for @n, was used to search in arrays that
+ * are NULL terminated. However, the function does not make a distinction
+ * when finishing the search: either @n elements have been compared OR
+ * the first NULL element was found.
+ */
+int __sysfs_match_string(const char * const *array, size_t n, const char *str)
+{
+ const char *item;
+ int index;
+
+ for (index = 0; index < n; index++) {
+ item = array[index];
+ if (!item)
+ break;
+ if (sysfs_streq(item, str))
+ return index;
+ }
+
+ return -EINVAL;
+}
+EXPORT_SYMBOL(__sysfs_match_string);
+
+/**
+ * strreplace - Replace all occurrences of character in string.
+ * @s: The string to operate on.
+ * @old: The character being replaced.
+ * @new: The character @old is replaced with.
+ *
+ * Returns pointer to the nul byte at the end of @s.
+ */
+char *strreplace(char *s, char old, char new)
+{
+ for (; *s; ++s)
+ if (*s == old)
+ *s = new;
+ return s;
+}
+EXPORT_SYMBOL(strreplace);
+
+/**
+ * memcpy_and_pad - Copy one buffer to another with padding
+ * @dest: Where to copy to
+ * @dest_len: The destination buffer size
+ * @src: Where to copy from
+ * @count: The number of bytes to copy
+ * @pad: Character to use for padding if space is left in destination.
+ */
+void memcpy_and_pad(void *dest, size_t dest_len, const void *src, size_t count,
+ int pad)
+{
+ if (dest_len > count) {
+ memcpy(dest, src, count);
+ memset(dest + count, pad, dest_len - count);
+ } else {
+ memcpy(dest, src, dest_len);
+ }
+}
+EXPORT_SYMBOL(memcpy_and_pad);
+
+#ifdef CONFIG_FORTIFY_SOURCE
+void fortify_panic(const char *name)
+{
+ pr_emerg("detected buffer overflow in %s\n", name);
+ BUG();
+}
+EXPORT_SYMBOL(fortify_panic);
+#endif /* CONFIG_FORTIFY_SOURCE */
diff --git a/lib/test_bpf.c b/lib/test_bpf.c
index 830a18ecffc8..adae39567264 100644
--- a/lib/test_bpf.c
+++ b/lib/test_bpf.c
@@ -52,6 +52,7 @@
#define FLAG_NO_DATA BIT(0)
#define FLAG_EXPECTED_FAIL BIT(1)
#define FLAG_SKB_FRAG BIT(2)
+#define FLAG_VERIFIER_ZEXT BIT(3)
enum {
CLASSIC = BIT(6), /* Old BPF instructions only. */
@@ -80,6 +81,7 @@ struct bpf_test {
int expected_errcode; /* used when FLAG_EXPECTED_FAIL is set in the aux */
__u8 frag_data[MAX_DATA];
int stack_depth; /* for eBPF only, since tests don't call verifier */
+ int nr_testruns; /* Custom run count, defaults to MAX_TESTRUNS if 0 */
};
/* Large test cases need separate allocation and fill handler. */
@@ -461,41 +463,2602 @@ static int bpf_fill_stxdw(struct bpf_test *self)
return __bpf_fill_stxdw(self, BPF_DW);
}
-static int bpf_fill_long_jmp(struct bpf_test *self)
+static int __bpf_ld_imm64(struct bpf_insn insns[2], u8 reg, s64 imm64)
{
- unsigned int len = BPF_MAXINSNS;
- struct bpf_insn *insn;
+ struct bpf_insn tmp[] = {BPF_LD_IMM64(reg, imm64)};
+
+ memcpy(insns, tmp, sizeof(tmp));
+ return 2;
+}
+
+/*
+ * Branch conversion tests. Complex operations can expand to a lot
+ * of instructions when JITed. This in turn may cause jump offsets
+ * to overflow the field size of the native instruction, triggering
+ * a branch conversion mechanism in some JITs.
+ */
+static int __bpf_fill_max_jmp(struct bpf_test *self, int jmp, int imm)
+{
+ struct bpf_insn *insns;
+ int len = S16_MAX + 5;
int i;
+ insns = kmalloc_array(len, sizeof(*insns), GFP_KERNEL);
+ if (!insns)
+ return -ENOMEM;
+
+ i = __bpf_ld_imm64(insns, R1, 0x0123456789abcdefULL);
+ insns[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1);
+ insns[i++] = BPF_JMP_IMM(jmp, R0, imm, S16_MAX);
+ insns[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 2);
+ insns[i++] = BPF_EXIT_INSN();
+
+ while (i < len - 1) {
+ static const int ops[] = {
+ BPF_LSH, BPF_RSH, BPF_ARSH, BPF_ADD,
+ BPF_SUB, BPF_MUL, BPF_DIV, BPF_MOD,
+ };
+ int op = ops[(i >> 1) % ARRAY_SIZE(ops)];
+
+ if (i & 1)
+ insns[i++] = BPF_ALU32_REG(op, R0, R1);
+ else
+ insns[i++] = BPF_ALU64_REG(op, R0, R1);
+ }
+
+ insns[i++] = BPF_EXIT_INSN();
+ self->u.ptr.insns = insns;
+ self->u.ptr.len = len;
+ BUG_ON(i != len);
+
+ return 0;
+}
+
+/* Branch taken by runtime decision */
+static int bpf_fill_max_jmp_taken(struct bpf_test *self)
+{
+ return __bpf_fill_max_jmp(self, BPF_JEQ, 1);
+}
+
+/* Branch not taken by runtime decision */
+static int bpf_fill_max_jmp_not_taken(struct bpf_test *self)
+{
+ return __bpf_fill_max_jmp(self, BPF_JEQ, 0);
+}
+
+/* Branch always taken, known at JIT time */
+static int bpf_fill_max_jmp_always_taken(struct bpf_test *self)
+{
+ return __bpf_fill_max_jmp(self, BPF_JGE, 0);
+}
+
+/* Branch never taken, known at JIT time */
+static int bpf_fill_max_jmp_never_taken(struct bpf_test *self)
+{
+ return __bpf_fill_max_jmp(self, BPF_JLT, 0);
+}
+
+/* ALU result computation used in tests */
+static bool __bpf_alu_result(u64 *res, u64 v1, u64 v2, u8 op)
+{
+ *res = 0;
+ switch (op) {
+ case BPF_MOV:
+ *res = v2;
+ break;
+ case BPF_AND:
+ *res = v1 & v2;
+ break;
+ case BPF_OR:
+ *res = v1 | v2;
+ break;
+ case BPF_XOR:
+ *res = v1 ^ v2;
+ break;
+ case BPF_LSH:
+ *res = v1 << v2;
+ break;
+ case BPF_RSH:
+ *res = v1 >> v2;
+ break;
+ case BPF_ARSH:
+ *res = v1 >> v2;
+ if (v2 > 0 && v1 > S64_MAX)
+ *res |= ~0ULL << (64 - v2);
+ break;
+ case BPF_ADD:
+ *res = v1 + v2;
+ break;
+ case BPF_SUB:
+ *res = v1 - v2;
+ break;
+ case BPF_MUL:
+ *res = v1 * v2;
+ break;
+ case BPF_DIV:
+ if (v2 == 0)
+ return false;
+ *res = div64_u64(v1, v2);
+ break;
+ case BPF_MOD:
+ if (v2 == 0)
+ return false;
+ div64_u64_rem(v1, v2, res);
+ break;
+ }
+ return true;
+}
+
+/* Test an ALU shift operation for all valid shift values */
+static int __bpf_fill_alu_shift(struct bpf_test *self, u8 op,
+ u8 mode, bool alu32)
+{
+ static const s64 regs[] = {
+ 0x0123456789abcdefLL, /* dword > 0, word < 0 */
+ 0xfedcba9876543210LL, /* dowrd < 0, word > 0 */
+ 0xfedcba0198765432LL, /* dowrd < 0, word < 0 */
+ 0x0123458967abcdefLL, /* dword > 0, word > 0 */
+ };
+ int bits = alu32 ? 32 : 64;
+ int len = (2 + 7 * bits) * ARRAY_SIZE(regs) + 3;
+ struct bpf_insn *insn;
+ int imm, k;
+ int i = 0;
+
+ insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
+ if (!insn)
+ return -ENOMEM;
+
+ insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 0);
+
+ for (k = 0; k < ARRAY_SIZE(regs); k++) {
+ s64 reg = regs[k];
+
+ i += __bpf_ld_imm64(&insn[i], R3, reg);
+
+ for (imm = 0; imm < bits; imm++) {
+ u64 val;
+
+ /* Perform operation */
+ insn[i++] = BPF_ALU64_REG(BPF_MOV, R1, R3);
+ insn[i++] = BPF_ALU64_IMM(BPF_MOV, R2, imm);
+ if (alu32) {
+ if (mode == BPF_K)
+ insn[i++] = BPF_ALU32_IMM(op, R1, imm);
+ else
+ insn[i++] = BPF_ALU32_REG(op, R1, R2);
+
+ if (op == BPF_ARSH)
+ reg = (s32)reg;
+ else
+ reg = (u32)reg;
+ __bpf_alu_result(&val, reg, imm, op);
+ val = (u32)val;
+ } else {
+ if (mode == BPF_K)
+ insn[i++] = BPF_ALU64_IMM(op, R1, imm);
+ else
+ insn[i++] = BPF_ALU64_REG(op, R1, R2);
+ __bpf_alu_result(&val, reg, imm, op);
+ }
+
+ /*
+ * When debugging a JIT that fails this test, one
+ * can write the immediate value to R0 here to find
+ * out which operand values that fail.
+ */
+
+ /* Load reference and check the result */
+ i += __bpf_ld_imm64(&insn[i], R4, val);
+ insn[i++] = BPF_JMP_REG(BPF_JEQ, R1, R4, 1);
+ insn[i++] = BPF_EXIT_INSN();
+ }
+ }
+
+ insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1);
+ insn[i++] = BPF_EXIT_INSN();
+
+ self->u.ptr.insns = insn;
+ self->u.ptr.len = len;
+ BUG_ON(i != len);
+
+ return 0;
+}
+
+static int bpf_fill_alu64_lsh_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift(self, BPF_LSH, BPF_K, false);
+}
+
+static int bpf_fill_alu64_rsh_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift(self, BPF_RSH, BPF_K, false);
+}
+
+static int bpf_fill_alu64_arsh_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift(self, BPF_ARSH, BPF_K, false);
+}
+
+static int bpf_fill_alu64_lsh_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift(self, BPF_LSH, BPF_X, false);
+}
+
+static int bpf_fill_alu64_rsh_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift(self, BPF_RSH, BPF_X, false);
+}
+
+static int bpf_fill_alu64_arsh_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift(self, BPF_ARSH, BPF_X, false);
+}
+
+static int bpf_fill_alu32_lsh_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift(self, BPF_LSH, BPF_K, true);
+}
+
+static int bpf_fill_alu32_rsh_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift(self, BPF_RSH, BPF_K, true);
+}
+
+static int bpf_fill_alu32_arsh_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift(self, BPF_ARSH, BPF_K, true);
+}
+
+static int bpf_fill_alu32_lsh_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift(self, BPF_LSH, BPF_X, true);
+}
+
+static int bpf_fill_alu32_rsh_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift(self, BPF_RSH, BPF_X, true);
+}
+
+static int bpf_fill_alu32_arsh_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift(self, BPF_ARSH, BPF_X, true);
+}
+
+/*
+ * Test an ALU register shift operation for all valid shift values
+ * for the case when the source and destination are the same.
+ */
+static int __bpf_fill_alu_shift_same_reg(struct bpf_test *self, u8 op,
+ bool alu32)
+{
+ int bits = alu32 ? 32 : 64;
+ int len = 3 + 6 * bits;
+ struct bpf_insn *insn;
+ int i = 0;
+ u64 val;
+
insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
if (!insn)
return -ENOMEM;
- insn[0] = BPF_ALU64_IMM(BPF_MOV, R0, 1);
- insn[1] = BPF_JMP_IMM(BPF_JEQ, R0, 1, len - 2 - 1);
+ insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 0);
+
+ for (val = 0; val < bits; val++) {
+ u64 res;
+
+ /* Perform operation */
+ insn[i++] = BPF_ALU64_IMM(BPF_MOV, R1, val);
+ if (alu32)
+ insn[i++] = BPF_ALU32_REG(op, R1, R1);
+ else
+ insn[i++] = BPF_ALU64_REG(op, R1, R1);
+
+ /* Compute the reference result */
+ __bpf_alu_result(&res, val, val, op);
+ if (alu32)
+ res = (u32)res;
+ i += __bpf_ld_imm64(&insn[i], R2, res);
+
+ /* Check the actual result */
+ insn[i++] = BPF_JMP_REG(BPF_JEQ, R1, R2, 1);
+ insn[i++] = BPF_EXIT_INSN();
+ }
+
+ insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1);
+ insn[i++] = BPF_EXIT_INSN();
+
+ self->u.ptr.insns = insn;
+ self->u.ptr.len = len;
+ BUG_ON(i != len);
+
+ return 0;
+}
+
+static int bpf_fill_alu64_lsh_same_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift_same_reg(self, BPF_LSH, false);
+}
+
+static int bpf_fill_alu64_rsh_same_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift_same_reg(self, BPF_RSH, false);
+}
+
+static int bpf_fill_alu64_arsh_same_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift_same_reg(self, BPF_ARSH, false);
+}
+
+static int bpf_fill_alu32_lsh_same_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift_same_reg(self, BPF_LSH, true);
+}
+
+static int bpf_fill_alu32_rsh_same_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift_same_reg(self, BPF_RSH, true);
+}
+
+static int bpf_fill_alu32_arsh_same_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu_shift_same_reg(self, BPF_ARSH, true);
+}
+
+/*
+ * Common operand pattern generator for exhaustive power-of-two magnitudes
+ * tests. The block size parameters can be adjusted to increase/reduce the
+ * number of combinatons tested and thereby execution speed and memory
+ * footprint.
+ */
+
+static inline s64 value(int msb, int delta, int sign)
+{
+ return sign * (1LL << msb) + delta;
+}
+
+static int __bpf_fill_pattern(struct bpf_test *self, void *arg,
+ int dbits, int sbits, int block1, int block2,
+ int (*emit)(struct bpf_test*, void*,
+ struct bpf_insn*, s64, s64))
+{
+ static const int sgn[][2] = {{1, 1}, {1, -1}, {-1, 1}, {-1, -1}};
+ struct bpf_insn *insns;
+ int di, si, bt, db, sb;
+ int count, len, k;
+ int extra = 1 + 2;
+ int i = 0;
+
+ /* Total number of iterations for the two pattern */
+ count = (dbits - 1) * (sbits - 1) * block1 * block1 * ARRAY_SIZE(sgn);
+ count += (max(dbits, sbits) - 1) * block2 * block2 * ARRAY_SIZE(sgn);
+
+ /* Compute the maximum number of insns and allocate the buffer */
+ len = extra + count * (*emit)(self, arg, NULL, 0, 0);
+ insns = kmalloc_array(len, sizeof(*insns), GFP_KERNEL);
+ if (!insns)
+ return -ENOMEM;
+
+ /* Add head instruction(s) */
+ insns[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 0);
/*
- * Fill with a complex 64-bit operation that expands to a lot of
- * instructions on 32-bit JITs. The large jump offset can then
- * overflow the conditional branch field size, triggering a branch
- * conversion mechanism in some JITs.
- *
- * Note: BPF_MAXINSNS of ALU64 MUL is enough to trigger such branch
- * conversion on the 32-bit MIPS JIT. For other JITs, the instruction
- * count and/or operation may need to be modified to trigger the
- * branch conversion.
+ * Pattern 1: all combinations of power-of-two magnitudes and sign,
+ * and with a block of contiguous values around each magnitude.
*/
- for (i = 2; i < len - 1; i++)
- insn[i] = BPF_ALU64_IMM(BPF_MUL, R0, (i << 16) + i);
+ for (di = 0; di < dbits - 1; di++) /* Dst magnitudes */
+ for (si = 0; si < sbits - 1; si++) /* Src magnitudes */
+ for (k = 0; k < ARRAY_SIZE(sgn); k++) /* Sign combos */
+ for (db = -(block1 / 2);
+ db < (block1 + 1) / 2; db++)
+ for (sb = -(block1 / 2);
+ sb < (block1 + 1) / 2; sb++) {
+ s64 dst, src;
+
+ dst = value(di, db, sgn[k][0]);
+ src = value(si, sb, sgn[k][1]);
+ i += (*emit)(self, arg,
+ &insns[i],
+ dst, src);
+ }
+ /*
+ * Pattern 2: all combinations for a larger block of values
+ * for each power-of-two magnitude and sign, where the magnitude is
+ * the same for both operands.
+ */
+ for (bt = 0; bt < max(dbits, sbits) - 1; bt++) /* Magnitude */
+ for (k = 0; k < ARRAY_SIZE(sgn); k++) /* Sign combos */
+ for (db = -(block2 / 2); db < (block2 + 1) / 2; db++)
+ for (sb = -(block2 / 2);
+ sb < (block2 + 1) / 2; sb++) {
+ s64 dst, src;
+
+ dst = value(bt % dbits, db, sgn[k][0]);
+ src = value(bt % sbits, sb, sgn[k][1]);
+ i += (*emit)(self, arg, &insns[i],
+ dst, src);
+ }
+
+ /* Append tail instructions */
+ insns[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1);
+ insns[i++] = BPF_EXIT_INSN();
+ BUG_ON(i > len);
+
+ self->u.ptr.insns = insns;
+ self->u.ptr.len = i;
- insn[len - 1] = BPF_EXIT_INSN();
+ return 0;
+}
+
+/*
+ * Block size parameters used in pattern tests below. une as needed to
+ * increase/reduce the number combinations tested, see following examples.
+ * block values per operand MSB
+ * ----------------------------------------
+ * 0 none
+ * 1 (1 << MSB)
+ * 2 (1 << MSB) + [-1, 0]
+ * 3 (1 << MSB) + [-1, 0, 1]
+ */
+#define PATTERN_BLOCK1 1
+#define PATTERN_BLOCK2 5
+
+/* Number of test runs for a pattern test */
+#define NR_PATTERN_RUNS 1
+
+/*
+ * Exhaustive tests of ALU operations for all combinations of power-of-two
+ * magnitudes of the operands, both for positive and negative values. The
+ * test is designed to verify e.g. the ALU and ALU64 operations for JITs that
+ * emit different code depending on the magnitude of the immediate value.
+ */
+static int __bpf_emit_alu64_imm(struct bpf_test *self, void *arg,
+ struct bpf_insn *insns, s64 dst, s64 imm)
+{
+ int op = *(int *)arg;
+ int i = 0;
+ u64 res;
+
+ if (!insns)
+ return 7;
+
+ if (__bpf_alu_result(&res, dst, (s32)imm, op)) {
+ i += __bpf_ld_imm64(&insns[i], R1, dst);
+ i += __bpf_ld_imm64(&insns[i], R3, res);
+ insns[i++] = BPF_ALU64_IMM(op, R1, imm);
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1);
+ insns[i++] = BPF_EXIT_INSN();
+ }
+
+ return i;
+}
+
+static int __bpf_emit_alu32_imm(struct bpf_test *self, void *arg,
+ struct bpf_insn *insns, s64 dst, s64 imm)
+{
+ int op = *(int *)arg;
+ int i = 0;
+ u64 res;
+
+ if (!insns)
+ return 7;
+
+ if (__bpf_alu_result(&res, (u32)dst, (u32)imm, op)) {
+ i += __bpf_ld_imm64(&insns[i], R1, dst);
+ i += __bpf_ld_imm64(&insns[i], R3, (u32)res);
+ insns[i++] = BPF_ALU32_IMM(op, R1, imm);
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1);
+ insns[i++] = BPF_EXIT_INSN();
+ }
+
+ return i;
+}
+
+static int __bpf_emit_alu64_reg(struct bpf_test *self, void *arg,
+ struct bpf_insn *insns, s64 dst, s64 src)
+{
+ int op = *(int *)arg;
+ int i = 0;
+ u64 res;
+
+ if (!insns)
+ return 9;
+
+ if (__bpf_alu_result(&res, dst, src, op)) {
+ i += __bpf_ld_imm64(&insns[i], R1, dst);
+ i += __bpf_ld_imm64(&insns[i], R2, src);
+ i += __bpf_ld_imm64(&insns[i], R3, res);
+ insns[i++] = BPF_ALU64_REG(op, R1, R2);
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1);
+ insns[i++] = BPF_EXIT_INSN();
+ }
+
+ return i;
+}
+
+static int __bpf_emit_alu32_reg(struct bpf_test *self, void *arg,
+ struct bpf_insn *insns, s64 dst, s64 src)
+{
+ int op = *(int *)arg;
+ int i = 0;
+ u64 res;
+
+ if (!insns)
+ return 9;
+
+ if (__bpf_alu_result(&res, (u32)dst, (u32)src, op)) {
+ i += __bpf_ld_imm64(&insns[i], R1, dst);
+ i += __bpf_ld_imm64(&insns[i], R2, src);
+ i += __bpf_ld_imm64(&insns[i], R3, (u32)res);
+ insns[i++] = BPF_ALU32_REG(op, R1, R2);
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1);
+ insns[i++] = BPF_EXIT_INSN();
+ }
+
+ return i;
+}
+
+static int __bpf_fill_alu64_imm(struct bpf_test *self, int op)
+{
+ return __bpf_fill_pattern(self, &op, 64, 32,
+ PATTERN_BLOCK1, PATTERN_BLOCK2,
+ &__bpf_emit_alu64_imm);
+}
+
+static int __bpf_fill_alu32_imm(struct bpf_test *self, int op)
+{
+ return __bpf_fill_pattern(self, &op, 64, 32,
+ PATTERN_BLOCK1, PATTERN_BLOCK2,
+ &__bpf_emit_alu32_imm);
+}
+
+static int __bpf_fill_alu64_reg(struct bpf_test *self, int op)
+{
+ return __bpf_fill_pattern(self, &op, 64, 64,
+ PATTERN_BLOCK1, PATTERN_BLOCK2,
+ &__bpf_emit_alu64_reg);
+}
+
+static int __bpf_fill_alu32_reg(struct bpf_test *self, int op)
+{
+ return __bpf_fill_pattern(self, &op, 64, 64,
+ PATTERN_BLOCK1, PATTERN_BLOCK2,
+ &__bpf_emit_alu32_reg);
+}
+
+/* ALU64 immediate operations */
+static int bpf_fill_alu64_mov_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_imm(self, BPF_MOV);
+}
+
+static int bpf_fill_alu64_and_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_imm(self, BPF_AND);
+}
+
+static int bpf_fill_alu64_or_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_imm(self, BPF_OR);
+}
+
+static int bpf_fill_alu64_xor_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_imm(self, BPF_XOR);
+}
+
+static int bpf_fill_alu64_add_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_imm(self, BPF_ADD);
+}
+
+static int bpf_fill_alu64_sub_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_imm(self, BPF_SUB);
+}
+
+static int bpf_fill_alu64_mul_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_imm(self, BPF_MUL);
+}
+
+static int bpf_fill_alu64_div_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_imm(self, BPF_DIV);
+}
+
+static int bpf_fill_alu64_mod_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_imm(self, BPF_MOD);
+}
+
+/* ALU32 immediate operations */
+static int bpf_fill_alu32_mov_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_imm(self, BPF_MOV);
+}
+
+static int bpf_fill_alu32_and_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_imm(self, BPF_AND);
+}
+
+static int bpf_fill_alu32_or_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_imm(self, BPF_OR);
+}
+
+static int bpf_fill_alu32_xor_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_imm(self, BPF_XOR);
+}
+
+static int bpf_fill_alu32_add_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_imm(self, BPF_ADD);
+}
+
+static int bpf_fill_alu32_sub_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_imm(self, BPF_SUB);
+}
+
+static int bpf_fill_alu32_mul_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_imm(self, BPF_MUL);
+}
+
+static int bpf_fill_alu32_div_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_imm(self, BPF_DIV);
+}
+
+static int bpf_fill_alu32_mod_imm(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_imm(self, BPF_MOD);
+}
+
+/* ALU64 register operations */
+static int bpf_fill_alu64_mov_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_reg(self, BPF_MOV);
+}
+
+static int bpf_fill_alu64_and_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_reg(self, BPF_AND);
+}
+
+static int bpf_fill_alu64_or_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_reg(self, BPF_OR);
+}
+
+static int bpf_fill_alu64_xor_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_reg(self, BPF_XOR);
+}
+
+static int bpf_fill_alu64_add_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_reg(self, BPF_ADD);
+}
+
+static int bpf_fill_alu64_sub_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_reg(self, BPF_SUB);
+}
+
+static int bpf_fill_alu64_mul_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_reg(self, BPF_MUL);
+}
+
+static int bpf_fill_alu64_div_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_reg(self, BPF_DIV);
+}
+
+static int bpf_fill_alu64_mod_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu64_reg(self, BPF_MOD);
+}
+
+/* ALU32 register operations */
+static int bpf_fill_alu32_mov_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_reg(self, BPF_MOV);
+}
+
+static int bpf_fill_alu32_and_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_reg(self, BPF_AND);
+}
+
+static int bpf_fill_alu32_or_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_reg(self, BPF_OR);
+}
+
+static int bpf_fill_alu32_xor_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_reg(self, BPF_XOR);
+}
+
+static int bpf_fill_alu32_add_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_reg(self, BPF_ADD);
+}
+
+static int bpf_fill_alu32_sub_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_reg(self, BPF_SUB);
+}
+
+static int bpf_fill_alu32_mul_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_reg(self, BPF_MUL);
+}
+
+static int bpf_fill_alu32_div_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_reg(self, BPF_DIV);
+}
+
+static int bpf_fill_alu32_mod_reg(struct bpf_test *self)
+{
+ return __bpf_fill_alu32_reg(self, BPF_MOD);
+}
+
+/*
+ * Test JITs that implement complex ALU operations as function
+ * calls, and must re-arrange operands for argument passing.
+ */
+static int __bpf_fill_alu_imm_regs(struct bpf_test *self, u8 op, bool alu32)
+{
+ int len = 2 + 10 * 10;
+ struct bpf_insn *insns;
+ u64 dst, res;
+ int i = 0;
+ u32 imm;
+ int rd;
+
+ insns = kmalloc_array(len, sizeof(*insns), GFP_KERNEL);
+ if (!insns)
+ return -ENOMEM;
+
+ /* Operand and result values according to operation */
+ if (alu32)
+ dst = 0x76543210U;
+ else
+ dst = 0x7edcba9876543210ULL;
+ imm = 0x01234567U;
+
+ if (op == BPF_LSH || op == BPF_RSH || op == BPF_ARSH)
+ imm &= 31;
+
+ __bpf_alu_result(&res, dst, imm, op);
+
+ if (alu32)
+ res = (u32)res;
+
+ /* Check all operand registers */
+ for (rd = R0; rd <= R9; rd++) {
+ i += __bpf_ld_imm64(&insns[i], rd, dst);
+
+ if (alu32)
+ insns[i++] = BPF_ALU32_IMM(op, rd, imm);
+ else
+ insns[i++] = BPF_ALU64_IMM(op, rd, imm);
+
+ insns[i++] = BPF_JMP32_IMM(BPF_JEQ, rd, res, 2);
+ insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
+ insns[i++] = BPF_EXIT_INSN();
+
+ insns[i++] = BPF_ALU64_IMM(BPF_RSH, rd, 32);
+ insns[i++] = BPF_JMP32_IMM(BPF_JEQ, rd, res >> 32, 2);
+ insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
+ insns[i++] = BPF_EXIT_INSN();
+ }
+
+ insns[i++] = BPF_MOV64_IMM(R0, 1);
+ insns[i++] = BPF_EXIT_INSN();
+
+ self->u.ptr.insns = insns;
+ self->u.ptr.len = len;
+ BUG_ON(i != len);
+
+ return 0;
+}
+
+/* ALU64 K registers */
+static int bpf_fill_alu64_mov_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_MOV, false);
+}
+
+static int bpf_fill_alu64_and_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_AND, false);
+}
+
+static int bpf_fill_alu64_or_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_OR, false);
+}
+
+static int bpf_fill_alu64_xor_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_XOR, false);
+}
+
+static int bpf_fill_alu64_lsh_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_LSH, false);
+}
+
+static int bpf_fill_alu64_rsh_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_RSH, false);
+}
+
+static int bpf_fill_alu64_arsh_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_ARSH, false);
+}
+
+static int bpf_fill_alu64_add_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_ADD, false);
+}
+
+static int bpf_fill_alu64_sub_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_SUB, false);
+}
+
+static int bpf_fill_alu64_mul_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_MUL, false);
+}
+
+static int bpf_fill_alu64_div_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_DIV, false);
+}
+
+static int bpf_fill_alu64_mod_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_MOD, false);
+}
+
+/* ALU32 K registers */
+static int bpf_fill_alu32_mov_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_MOV, true);
+}
+
+static int bpf_fill_alu32_and_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_AND, true);
+}
+
+static int bpf_fill_alu32_or_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_OR, true);
+}
+
+static int bpf_fill_alu32_xor_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_XOR, true);
+}
+
+static int bpf_fill_alu32_lsh_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_LSH, true);
+}
+
+static int bpf_fill_alu32_rsh_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_RSH, true);
+}
+
+static int bpf_fill_alu32_arsh_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_ARSH, true);
+}
+
+static int bpf_fill_alu32_add_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_ADD, true);
+}
+
+static int bpf_fill_alu32_sub_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_SUB, true);
+}
+
+static int bpf_fill_alu32_mul_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_MUL, true);
+}
+
+static int bpf_fill_alu32_div_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_DIV, true);
+}
+
+static int bpf_fill_alu32_mod_imm_regs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_imm_regs(self, BPF_MOD, true);
+}
+
+/*
+ * Test JITs that implement complex ALU operations as function
+ * calls, and must re-arrange operands for argument passing.
+ */
+static int __bpf_fill_alu_reg_pairs(struct bpf_test *self, u8 op, bool alu32)
+{
+ int len = 2 + 10 * 10 * 12;
+ u64 dst, src, res, same;
+ struct bpf_insn *insns;
+ int rd, rs;
+ int i = 0;
+
+ insns = kmalloc_array(len, sizeof(*insns), GFP_KERNEL);
+ if (!insns)
+ return -ENOMEM;
+
+ /* Operand and result values according to operation */
+ if (alu32) {
+ dst = 0x76543210U;
+ src = 0x01234567U;
+ } else {
+ dst = 0x7edcba9876543210ULL;
+ src = 0x0123456789abcdefULL;
+ }
+
+ if (op == BPF_LSH || op == BPF_RSH || op == BPF_ARSH)
+ src &= 31;
+
+ __bpf_alu_result(&res, dst, src, op);
+ __bpf_alu_result(&same, src, src, op);
+
+ if (alu32) {
+ res = (u32)res;
+ same = (u32)same;
+ }
+
+ /* Check all combinations of operand registers */
+ for (rd = R0; rd <= R9; rd++) {
+ for (rs = R0; rs <= R9; rs++) {
+ u64 val = rd == rs ? same : res;
+
+ i += __bpf_ld_imm64(&insns[i], rd, dst);
+ i += __bpf_ld_imm64(&insns[i], rs, src);
+
+ if (alu32)
+ insns[i++] = BPF_ALU32_REG(op, rd, rs);
+ else
+ insns[i++] = BPF_ALU64_REG(op, rd, rs);
+
+ insns[i++] = BPF_JMP32_IMM(BPF_JEQ, rd, val, 2);
+ insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
+ insns[i++] = BPF_EXIT_INSN();
+
+ insns[i++] = BPF_ALU64_IMM(BPF_RSH, rd, 32);
+ insns[i++] = BPF_JMP32_IMM(BPF_JEQ, rd, val >> 32, 2);
+ insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
+ insns[i++] = BPF_EXIT_INSN();
+ }
+ }
+
+ insns[i++] = BPF_MOV64_IMM(R0, 1);
+ insns[i++] = BPF_EXIT_INSN();
+
+ self->u.ptr.insns = insns;
+ self->u.ptr.len = len;
+ BUG_ON(i != len);
+
+ return 0;
+}
+
+/* ALU64 X register combinations */
+static int bpf_fill_alu64_mov_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_MOV, false);
+}
+
+static int bpf_fill_alu64_and_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_AND, false);
+}
+
+static int bpf_fill_alu64_or_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_OR, false);
+}
+
+static int bpf_fill_alu64_xor_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_XOR, false);
+}
+
+static int bpf_fill_alu64_lsh_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_LSH, false);
+}
+
+static int bpf_fill_alu64_rsh_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_RSH, false);
+}
+
+static int bpf_fill_alu64_arsh_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_ARSH, false);
+}
+
+static int bpf_fill_alu64_add_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_ADD, false);
+}
+
+static int bpf_fill_alu64_sub_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_SUB, false);
+}
+
+static int bpf_fill_alu64_mul_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_MUL, false);
+}
+
+static int bpf_fill_alu64_div_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_DIV, false);
+}
+
+static int bpf_fill_alu64_mod_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_MOD, false);
+}
+
+/* ALU32 X register combinations */
+static int bpf_fill_alu32_mov_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_MOV, true);
+}
+
+static int bpf_fill_alu32_and_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_AND, true);
+}
+
+static int bpf_fill_alu32_or_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_OR, true);
+}
+
+static int bpf_fill_alu32_xor_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_XOR, true);
+}
+
+static int bpf_fill_alu32_lsh_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_LSH, true);
+}
+
+static int bpf_fill_alu32_rsh_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_RSH, true);
+}
+
+static int bpf_fill_alu32_arsh_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_ARSH, true);
+}
+
+static int bpf_fill_alu32_add_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_ADD, true);
+}
+
+static int bpf_fill_alu32_sub_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_SUB, true);
+}
+
+static int bpf_fill_alu32_mul_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_MUL, true);
+}
+
+static int bpf_fill_alu32_div_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_DIV, true);
+}
+
+static int bpf_fill_alu32_mod_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_alu_reg_pairs(self, BPF_MOD, true);
+}
+
+/*
+ * Exhaustive tests of atomic operations for all power-of-two operand
+ * magnitudes, both for positive and negative values.
+ */
+
+static int __bpf_emit_atomic64(struct bpf_test *self, void *arg,
+ struct bpf_insn *insns, s64 dst, s64 src)
+{
+ int op = *(int *)arg;
+ u64 keep, fetch, res;
+ int i = 0;
+
+ if (!insns)
+ return 21;
+
+ switch (op) {
+ case BPF_XCHG:
+ res = src;
+ break;
+ default:
+ __bpf_alu_result(&res, dst, src, BPF_OP(op));
+ }
+
+ keep = 0x0123456789abcdefULL;
+ if (op & BPF_FETCH)
+ fetch = dst;
+ else
+ fetch = src;
+
+ i += __bpf_ld_imm64(&insns[i], R0, keep);
+ i += __bpf_ld_imm64(&insns[i], R1, dst);
+ i += __bpf_ld_imm64(&insns[i], R2, src);
+ i += __bpf_ld_imm64(&insns[i], R3, res);
+ i += __bpf_ld_imm64(&insns[i], R4, fetch);
+ i += __bpf_ld_imm64(&insns[i], R5, keep);
+
+ insns[i++] = BPF_STX_MEM(BPF_DW, R10, R1, -8);
+ insns[i++] = BPF_ATOMIC_OP(BPF_DW, op, R10, R2, -8);
+ insns[i++] = BPF_LDX_MEM(BPF_DW, R1, R10, -8);
+
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1);
+ insns[i++] = BPF_EXIT_INSN();
+
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R2, R4, 1);
+ insns[i++] = BPF_EXIT_INSN();
+
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R5, 1);
+ insns[i++] = BPF_EXIT_INSN();
+
+ return i;
+}
+
+static int __bpf_emit_atomic32(struct bpf_test *self, void *arg,
+ struct bpf_insn *insns, s64 dst, s64 src)
+{
+ int op = *(int *)arg;
+ u64 keep, fetch, res;
+ int i = 0;
+
+ if (!insns)
+ return 21;
+
+ switch (op) {
+ case BPF_XCHG:
+ res = src;
+ break;
+ default:
+ __bpf_alu_result(&res, (u32)dst, (u32)src, BPF_OP(op));
+ }
+
+ keep = 0x0123456789abcdefULL;
+ if (op & BPF_FETCH)
+ fetch = (u32)dst;
+ else
+ fetch = src;
+
+ i += __bpf_ld_imm64(&insns[i], R0, keep);
+ i += __bpf_ld_imm64(&insns[i], R1, (u32)dst);
+ i += __bpf_ld_imm64(&insns[i], R2, src);
+ i += __bpf_ld_imm64(&insns[i], R3, (u32)res);
+ i += __bpf_ld_imm64(&insns[i], R4, fetch);
+ i += __bpf_ld_imm64(&insns[i], R5, keep);
+
+ insns[i++] = BPF_STX_MEM(BPF_W, R10, R1, -4);
+ insns[i++] = BPF_ATOMIC_OP(BPF_W, op, R10, R2, -4);
+ insns[i++] = BPF_LDX_MEM(BPF_W, R1, R10, -4);
+
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 1);
+ insns[i++] = BPF_EXIT_INSN();
+
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R2, R4, 1);
+ insns[i++] = BPF_EXIT_INSN();
+
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R5, 1);
+ insns[i++] = BPF_EXIT_INSN();
+
+ return i;
+}
+
+static int __bpf_emit_cmpxchg64(struct bpf_test *self, void *arg,
+ struct bpf_insn *insns, s64 dst, s64 src)
+{
+ int i = 0;
+
+ if (!insns)
+ return 23;
+
+ i += __bpf_ld_imm64(&insns[i], R0, ~dst);
+ i += __bpf_ld_imm64(&insns[i], R1, dst);
+ i += __bpf_ld_imm64(&insns[i], R2, src);
+
+ /* Result unsuccessful */
+ insns[i++] = BPF_STX_MEM(BPF_DW, R10, R1, -8);
+ insns[i++] = BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -8);
+ insns[i++] = BPF_LDX_MEM(BPF_DW, R3, R10, -8);
+
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R1, R3, 2);
+ insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
+ insns[i++] = BPF_EXIT_INSN();
+
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R3, 2);
+ insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
+ insns[i++] = BPF_EXIT_INSN();
+
+ /* Result successful */
+ insns[i++] = BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -8);
+ insns[i++] = BPF_LDX_MEM(BPF_DW, R3, R10, -8);
+
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R2, R3, 2);
+ insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
+ insns[i++] = BPF_EXIT_INSN();
+
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R1, 2);
+ insns[i++] = BPF_MOV64_IMM(R0, __LINE__);
+ insns[i++] = BPF_EXIT_INSN();
+
+ return i;
+}
+
+static int __bpf_emit_cmpxchg32(struct bpf_test *self, void *arg,
+ struct bpf_insn *insns, s64 dst, s64 src)
+{
+ int i = 0;
+
+ if (!insns)
+ return 27;
+
+ i += __bpf_ld_imm64(&insns[i], R0, ~dst);
+ i += __bpf_ld_imm64(&insns[i], R1, (u32)dst);
+ i += __bpf_ld_imm64(&insns[i], R2, src);
+
+ /* Result unsuccessful */
+ insns[i++] = BPF_STX_MEM(BPF_W, R10, R1, -4);
+ insns[i++] = BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R2, -4);
+ insns[i++] = BPF_ZEXT_REG(R0), /* Zext always inserted by verifier */
+ insns[i++] = BPF_LDX_MEM(BPF_W, R3, R10, -4);
+
+ insns[i++] = BPF_JMP32_REG(BPF_JEQ, R1, R3, 2);
+ insns[i++] = BPF_MOV32_IMM(R0, __LINE__);
+ insns[i++] = BPF_EXIT_INSN();
+
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R3, 2);
+ insns[i++] = BPF_MOV32_IMM(R0, __LINE__);
+ insns[i++] = BPF_EXIT_INSN();
+
+ /* Result successful */
+ i += __bpf_ld_imm64(&insns[i], R0, dst);
+ insns[i++] = BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R2, -4);
+ insns[i++] = BPF_ZEXT_REG(R0), /* Zext always inserted by verifier */
+ insns[i++] = BPF_LDX_MEM(BPF_W, R3, R10, -4);
+
+ insns[i++] = BPF_JMP32_REG(BPF_JEQ, R2, R3, 2);
+ insns[i++] = BPF_MOV32_IMM(R0, __LINE__);
+ insns[i++] = BPF_EXIT_INSN();
+
+ insns[i++] = BPF_JMP_REG(BPF_JEQ, R0, R1, 2);
+ insns[i++] = BPF_MOV32_IMM(R0, __LINE__);
+ insns[i++] = BPF_EXIT_INSN();
+
+ return i;
+}
+
+static int __bpf_fill_atomic64(struct bpf_test *self, int op)
+{
+ return __bpf_fill_pattern(self, &op, 64, 64,
+ 0, PATTERN_BLOCK2,
+ &__bpf_emit_atomic64);
+}
+
+static int __bpf_fill_atomic32(struct bpf_test *self, int op)
+{
+ return __bpf_fill_pattern(self, &op, 64, 64,
+ 0, PATTERN_BLOCK2,
+ &__bpf_emit_atomic32);
+}
+
+/* 64-bit atomic operations */
+static int bpf_fill_atomic64_add(struct bpf_test *self)
+{
+ return __bpf_fill_atomic64(self, BPF_ADD);
+}
+
+static int bpf_fill_atomic64_and(struct bpf_test *self)
+{
+ return __bpf_fill_atomic64(self, BPF_AND);
+}
+
+static int bpf_fill_atomic64_or(struct bpf_test *self)
+{
+ return __bpf_fill_atomic64(self, BPF_OR);
+}
+
+static int bpf_fill_atomic64_xor(struct bpf_test *self)
+{
+ return __bpf_fill_atomic64(self, BPF_XOR);
+}
+
+static int bpf_fill_atomic64_add_fetch(struct bpf_test *self)
+{
+ return __bpf_fill_atomic64(self, BPF_ADD | BPF_FETCH);
+}
+
+static int bpf_fill_atomic64_and_fetch(struct bpf_test *self)
+{
+ return __bpf_fill_atomic64(self, BPF_AND | BPF_FETCH);
+}
+
+static int bpf_fill_atomic64_or_fetch(struct bpf_test *self)
+{
+ return __bpf_fill_atomic64(self, BPF_OR | BPF_FETCH);
+}
+
+static int bpf_fill_atomic64_xor_fetch(struct bpf_test *self)
+{
+ return __bpf_fill_atomic64(self, BPF_XOR | BPF_FETCH);
+}
+
+static int bpf_fill_atomic64_xchg(struct bpf_test *self)
+{
+ return __bpf_fill_atomic64(self, BPF_XCHG);
+}
+
+static int bpf_fill_cmpxchg64(struct bpf_test *self)
+{
+ return __bpf_fill_pattern(self, NULL, 64, 64, 0, PATTERN_BLOCK2,
+ &__bpf_emit_cmpxchg64);
+}
+
+/* 32-bit atomic operations */
+static int bpf_fill_atomic32_add(struct bpf_test *self)
+{
+ return __bpf_fill_atomic32(self, BPF_ADD);
+}
+
+static int bpf_fill_atomic32_and(struct bpf_test *self)
+{
+ return __bpf_fill_atomic32(self, BPF_AND);
+}
+
+static int bpf_fill_atomic32_or(struct bpf_test *self)
+{
+ return __bpf_fill_atomic32(self, BPF_OR);
+}
+
+static int bpf_fill_atomic32_xor(struct bpf_test *self)
+{
+ return __bpf_fill_atomic32(self, BPF_XOR);
+}
+
+static int bpf_fill_atomic32_add_fetch(struct bpf_test *self)
+{
+ return __bpf_fill_atomic32(self, BPF_ADD | BPF_FETCH);
+}
+
+static int bpf_fill_atomic32_and_fetch(struct bpf_test *self)
+{
+ return __bpf_fill_atomic32(self, BPF_AND | BPF_FETCH);
+}
+
+static int bpf_fill_atomic32_or_fetch(struct bpf_test *self)
+{
+ return __bpf_fill_atomic32(self, BPF_OR | BPF_FETCH);
+}
+
+static int bpf_fill_atomic32_xor_fetch(struct bpf_test *self)
+{
+ return __bpf_fill_atomic32(self, BPF_XOR | BPF_FETCH);
+}
+
+static int bpf_fill_atomic32_xchg(struct bpf_test *self)
+{
+ return __bpf_fill_atomic32(self, BPF_XCHG);
+}
+
+static int bpf_fill_cmpxchg32(struct bpf_test *self)
+{
+ return __bpf_fill_pattern(self, NULL, 64, 64, 0, PATTERN_BLOCK2,
+ &__bpf_emit_cmpxchg32);
+}
+
+/*
+ * Test JITs that implement ATOMIC operations as function calls or
+ * other primitives, and must re-arrange operands for argument passing.
+ */
+static int __bpf_fill_atomic_reg_pairs(struct bpf_test *self, u8 width, u8 op)
+{
+ struct bpf_insn *insn;
+ int len = 2 + 34 * 10 * 10;
+ u64 mem, upd, res;
+ int rd, rs, i = 0;
+
+ insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
+ if (!insn)
+ return -ENOMEM;
+
+ /* Operand and memory values */
+ if (width == BPF_DW) {
+ mem = 0x0123456789abcdefULL;
+ upd = 0xfedcba9876543210ULL;
+ } else { /* BPF_W */
+ mem = 0x01234567U;
+ upd = 0x76543210U;
+ }
+
+ /* Memory updated according to operation */
+ switch (op) {
+ case BPF_XCHG:
+ res = upd;
+ break;
+ case BPF_CMPXCHG:
+ res = mem;
+ break;
+ default:
+ __bpf_alu_result(&res, mem, upd, BPF_OP(op));
+ }
+
+ /* Test all operand registers */
+ for (rd = R0; rd <= R9; rd++) {
+ for (rs = R0; rs <= R9; rs++) {
+ u64 cmp, src;
+
+ /* Initialize value in memory */
+ i += __bpf_ld_imm64(&insn[i], R0, mem);
+ insn[i++] = BPF_STX_MEM(width, R10, R0, -8);
+
+ /* Initialize registers in order */
+ i += __bpf_ld_imm64(&insn[i], R0, ~mem);
+ i += __bpf_ld_imm64(&insn[i], rs, upd);
+ insn[i++] = BPF_MOV64_REG(rd, R10);
+
+ /* Perform atomic operation */
+ insn[i++] = BPF_ATOMIC_OP(width, op, rd, rs, -8);
+ if (op == BPF_CMPXCHG && width == BPF_W)
+ insn[i++] = BPF_ZEXT_REG(R0);
+
+ /* Check R0 register value */
+ if (op == BPF_CMPXCHG)
+ cmp = mem; /* Expect value from memory */
+ else if (R0 == rd || R0 == rs)
+ cmp = 0; /* Aliased, checked below */
+ else
+ cmp = ~mem; /* Expect value to be preserved */
+ if (cmp) {
+ insn[i++] = BPF_JMP32_IMM(BPF_JEQ, R0,
+ (u32)cmp, 2);
+ insn[i++] = BPF_MOV32_IMM(R0, __LINE__);
+ insn[i++] = BPF_EXIT_INSN();
+ insn[i++] = BPF_ALU64_IMM(BPF_RSH, R0, 32);
+ insn[i++] = BPF_JMP32_IMM(BPF_JEQ, R0,
+ cmp >> 32, 2);
+ insn[i++] = BPF_MOV32_IMM(R0, __LINE__);
+ insn[i++] = BPF_EXIT_INSN();
+ }
+
+ /* Check source register value */
+ if (rs == R0 && op == BPF_CMPXCHG)
+ src = 0; /* Aliased with R0, checked above */
+ else if (rs == rd && (op == BPF_CMPXCHG ||
+ !(op & BPF_FETCH)))
+ src = 0; /* Aliased with rd, checked below */
+ else if (op == BPF_CMPXCHG)
+ src = upd; /* Expect value to be preserved */
+ else if (op & BPF_FETCH)
+ src = mem; /* Expect fetched value from mem */
+ else /* no fetch */
+ src = upd; /* Expect value to be preserved */
+ if (src) {
+ insn[i++] = BPF_JMP32_IMM(BPF_JEQ, rs,
+ (u32)src, 2);
+ insn[i++] = BPF_MOV32_IMM(R0, __LINE__);
+ insn[i++] = BPF_EXIT_INSN();
+ insn[i++] = BPF_ALU64_IMM(BPF_RSH, rs, 32);
+ insn[i++] = BPF_JMP32_IMM(BPF_JEQ, rs,
+ src >> 32, 2);
+ insn[i++] = BPF_MOV32_IMM(R0, __LINE__);
+ insn[i++] = BPF_EXIT_INSN();
+ }
+
+ /* Check destination register value */
+ if (!(rd == R0 && op == BPF_CMPXCHG) &&
+ !(rd == rs && (op & BPF_FETCH))) {
+ insn[i++] = BPF_JMP_REG(BPF_JEQ, rd, R10, 2);
+ insn[i++] = BPF_MOV32_IMM(R0, __LINE__);
+ insn[i++] = BPF_EXIT_INSN();
+ }
+
+ /* Check value in memory */
+ if (rs != rd) { /* No aliasing */
+ i += __bpf_ld_imm64(&insn[i], R1, res);
+ } else if (op == BPF_XCHG) { /* Aliased, XCHG */
+ insn[i++] = BPF_MOV64_REG(R1, R10);
+ } else if (op == BPF_CMPXCHG) { /* Aliased, CMPXCHG */
+ i += __bpf_ld_imm64(&insn[i], R1, mem);
+ } else { /* Aliased, ALU oper */
+ i += __bpf_ld_imm64(&insn[i], R1, mem);
+ insn[i++] = BPF_ALU64_REG(BPF_OP(op), R1, R10);
+ }
+
+ insn[i++] = BPF_LDX_MEM(width, R0, R10, -8);
+ if (width == BPF_DW)
+ insn[i++] = BPF_JMP_REG(BPF_JEQ, R0, R1, 2);
+ else /* width == BPF_W */
+ insn[i++] = BPF_JMP32_REG(BPF_JEQ, R0, R1, 2);
+ insn[i++] = BPF_MOV32_IMM(R0, __LINE__);
+ insn[i++] = BPF_EXIT_INSN();
+ }
+ }
+
+ insn[i++] = BPF_MOV64_IMM(R0, 1);
+ insn[i++] = BPF_EXIT_INSN();
+
+ self->u.ptr.insns = insn;
+ self->u.ptr.len = i;
+ BUG_ON(i > len);
+
+ return 0;
+}
+
+/* 64-bit atomic register tests */
+static int bpf_fill_atomic64_add_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_ADD);
+}
+
+static int bpf_fill_atomic64_and_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_AND);
+}
+
+static int bpf_fill_atomic64_or_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_OR);
+}
+
+static int bpf_fill_atomic64_xor_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_XOR);
+}
+
+static int bpf_fill_atomic64_add_fetch_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_ADD | BPF_FETCH);
+}
+
+static int bpf_fill_atomic64_and_fetch_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_AND | BPF_FETCH);
+}
+
+static int bpf_fill_atomic64_or_fetch_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_OR | BPF_FETCH);
+}
+
+static int bpf_fill_atomic64_xor_fetch_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_XOR | BPF_FETCH);
+}
+
+static int bpf_fill_atomic64_xchg_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_XCHG);
+}
+
+static int bpf_fill_atomic64_cmpxchg_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_DW, BPF_CMPXCHG);
+}
+
+/* 32-bit atomic register tests */
+static int bpf_fill_atomic32_add_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_ADD);
+}
+
+static int bpf_fill_atomic32_and_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_AND);
+}
+
+static int bpf_fill_atomic32_or_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_OR);
+}
+
+static int bpf_fill_atomic32_xor_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_XOR);
+}
+
+static int bpf_fill_atomic32_add_fetch_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_ADD | BPF_FETCH);
+}
+
+static int bpf_fill_atomic32_and_fetch_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_AND | BPF_FETCH);
+}
+
+static int bpf_fill_atomic32_or_fetch_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_OR | BPF_FETCH);
+}
+
+static int bpf_fill_atomic32_xor_fetch_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_XOR | BPF_FETCH);
+}
+
+static int bpf_fill_atomic32_xchg_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_XCHG);
+}
+
+static int bpf_fill_atomic32_cmpxchg_reg_pairs(struct bpf_test *self)
+{
+ return __bpf_fill_atomic_reg_pairs(self, BPF_W, BPF_CMPXCHG);
+}
+
+/*
+ * Test the two-instruction 64-bit immediate load operation for all
+ * power-of-two magnitudes of the immediate operand. For each MSB, a block
+ * of immediate values centered around the power-of-two MSB are tested,
+ * both for positive and negative values. The test is designed to verify
+ * the operation for JITs that emit different code depending on the magnitude
+ * of the immediate value. This is often the case if the native instruction
+ * immediate field width is narrower than 32 bits.
+ */
+static int bpf_fill_ld_imm64_magn(struct bpf_test *self)
+{
+ int block = 64; /* Increase for more tests per MSB position */
+ int len = 3 + 8 * 63 * block * 2;
+ struct bpf_insn *insn;
+ int bit, adj, sign;
+ int i = 0;
+
+ insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
+ if (!insn)
+ return -ENOMEM;
+
+ insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 0);
+
+ for (bit = 0; bit <= 62; bit++) {
+ for (adj = -block / 2; adj < block / 2; adj++) {
+ for (sign = -1; sign <= 1; sign += 2) {
+ s64 imm = sign * ((1LL << bit) + adj);
+
+ /* Perform operation */
+ i += __bpf_ld_imm64(&insn[i], R1, imm);
+
+ /* Load reference */
+ insn[i++] = BPF_ALU32_IMM(BPF_MOV, R2, imm);
+ insn[i++] = BPF_ALU32_IMM(BPF_MOV, R3,
+ (u32)(imm >> 32));
+ insn[i++] = BPF_ALU64_IMM(BPF_LSH, R3, 32);
+ insn[i++] = BPF_ALU64_REG(BPF_OR, R2, R3);
+
+ /* Check result */
+ insn[i++] = BPF_JMP_REG(BPF_JEQ, R1, R2, 1);
+ insn[i++] = BPF_EXIT_INSN();
+ }
+ }
+ }
+
+ insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1);
+ insn[i++] = BPF_EXIT_INSN();
+
+ self->u.ptr.insns = insn;
+ self->u.ptr.len = len;
+ BUG_ON(i != len);
+
+ return 0;
+}
+
+/*
+ * Test the two-instruction 64-bit immediate load operation for different
+ * combinations of bytes. Each byte in the 64-bit word is constructed as
+ * (base & mask) | (rand() & ~mask), where rand() is a deterministic LCG.
+ * All patterns (base1, mask1) and (base2, mask2) bytes are tested.
+ */
+static int __bpf_fill_ld_imm64_bytes(struct bpf_test *self,
+ u8 base1, u8 mask1,
+ u8 base2, u8 mask2)
+{
+ struct bpf_insn *insn;
+ int len = 3 + 8 * BIT(8);
+ int pattern, index;
+ u32 rand = 1;
+ int i = 0;
+
+ insn = kmalloc_array(len, sizeof(*insn), GFP_KERNEL);
+ if (!insn)
+ return -ENOMEM;
+
+ insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 0);
+
+ for (pattern = 0; pattern < BIT(8); pattern++) {
+ u64 imm = 0;
+
+ for (index = 0; index < 8; index++) {
+ int byte;
+
+ if (pattern & BIT(index))
+ byte = (base1 & mask1) | (rand & ~mask1);
+ else
+ byte = (base2 & mask2) | (rand & ~mask2);
+ imm = (imm << 8) | byte;
+ }
+
+ /* Update our LCG */
+ rand = rand * 1664525 + 1013904223;
+
+ /* Perform operation */
+ i += __bpf_ld_imm64(&insn[i], R1, imm);
+
+ /* Load reference */
+ insn[i++] = BPF_ALU32_IMM(BPF_MOV, R2, imm);
+ insn[i++] = BPF_ALU32_IMM(BPF_MOV, R3, (u32)(imm >> 32));
+ insn[i++] = BPF_ALU64_IMM(BPF_LSH, R3, 32);
+ insn[i++] = BPF_ALU64_REG(BPF_OR, R2, R3);
+
+ /* Check result */
+ insn[i++] = BPF_JMP_REG(BPF_JEQ, R1, R2, 1);
+ insn[i++] = BPF_EXIT_INSN();
+ }
+
+ insn[i++] = BPF_ALU64_IMM(BPF_MOV, R0, 1);
+ insn[i++] = BPF_EXIT_INSN();
self->u.ptr.insns = insn;
self->u.ptr.len = len;
+ BUG_ON(i != len);
return 0;
}
+static int bpf_fill_ld_imm64_checker(struct bpf_test *self)
+{
+ return __bpf_fill_ld_imm64_bytes(self, 0, 0xff, 0xff, 0xff);
+}
+
+static int bpf_fill_ld_imm64_pos_neg(struct bpf_test *self)
+{
+ return __bpf_fill_ld_imm64_bytes(self, 1, 0x81, 0x80, 0x80);
+}
+
+static int bpf_fill_ld_imm64_pos_zero(struct bpf_test *self)
+{
+ return __bpf_fill_ld_imm64_bytes(self, 1, 0x81, 0, 0xff);
+}
+
+static int bpf_fill_ld_imm64_neg_zero(struct bpf_test *self)
+{
+ return __bpf_fill_ld_imm64_bytes(self, 0x80, 0x80, 0, 0xff);
+}
+
+/*
+ * Exhaustive tests of JMP operations for all combinations of power-of-two
+ * magnitudes of the operands, both for positive and negative values. The
+ * test is designed to verify e.g. the JMP and JMP32 operations for JITs that
+ * emit different code depending on the magnitude of the immediate value.
+ */
+
+static bool __bpf_match_jmp_cond(s64 v1, s64 v2, u8 op)
+{
+ switch (op) {
+ case BPF_JSET:
+ return !!(v1 & v2);
+ case BPF_JEQ:
+ return v1 == v2;
+ case BPF_JNE:
+ return v1 != v2;
+ case BPF_JGT:
+ return (u64)v1 > (u64)v2;
+ case BPF_JGE:
+ return (u64)v1 >= (u64)v2;
+ case BPF_JLT:
+ return (u64)v1 < (u64)v2;
+ case BPF_JLE:
+ return (u64)v1 <= (u64)v2;
+ case BPF_JSGT:
+ return v1 > v2;
+ case BPF_JSGE:
+ return v1 >= v2;
+ case BPF_JSLT:
+ return v1 < v2;
+ case BPF_JSLE:
+ return v1 <= v2;
+ }
+ return false;
+}
+
+static int __bpf_emit_jmp_imm(struct bpf_test *self, void *arg,
+ struct bpf_insn *insns, s64 dst, s64 imm)
+{
+ int op = *(int *)arg;
+
+ if (insns) {
+ bool match = __bpf_match_jmp_cond(dst, (s32)imm, op);
+ int i = 0;
+
+ insns[i++] = BPF_ALU32_IMM(BPF_MOV, R0, match);
+
+ i += __bpf_ld_imm64(&insns[i], R1, dst);
+ insns[i++] = BPF_JMP_IMM(op, R1, imm, 1);
+ if (!match)
+ insns[i++] = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
+ insns[i++] = BPF_EXIT_INSN();
+
+ return i;
+ }
+
+ return 5 + 1;
+}
+
+static int __bpf_emit_jmp32_imm(struct bpf_test *self, void *arg,
+ struct bpf_insn *insns, s64 dst, s64 imm)
+{
+ int op = *(int *)arg;
+
+ if (insns) {
+ bool match = __bpf_match_jmp_cond((s32)dst, (s32)imm, op);
+ int i = 0;
+
+ i += __bpf_ld_imm64(&insns[i], R1, dst);
+ insns[i++] = BPF_JMP32_IMM(op, R1, imm, 1);
+ if (!match)
+ insns[i++] = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
+ insns[i++] = BPF_EXIT_INSN();
+
+ return i;
+ }
+
+ return 5;
+}
+
+static int __bpf_emit_jmp_reg(struct bpf_test *self, void *arg,
+ struct bpf_insn *insns, s64 dst, s64 src)
+{
+ int op = *(int *)arg;
+
+ if (insns) {
+ bool match = __bpf_match_jmp_cond(dst, src, op);
+ int i = 0;
+
+ i += __bpf_ld_imm64(&insns[i], R1, dst);
+ i += __bpf_ld_imm64(&insns[i], R2, src);
+ insns[i++] = BPF_JMP_REG(op, R1, R2, 1);
+ if (!match)
+ insns[i++] = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
+ insns[i++] = BPF_EXIT_INSN();
+
+ return i;
+ }
+
+ return 7;
+}
+
+static int __bpf_emit_jmp32_reg(struct bpf_test *self, void *arg,
+ struct bpf_insn *insns, s64 dst, s64 src)
+{
+ int op = *(int *)arg;
+
+ if (insns) {
+ bool match = __bpf_match_jmp_cond((s32)dst, (s32)src, op);
+ int i = 0;
+
+ i += __bpf_ld_imm64(&insns[i], R1, dst);
+ i += __bpf_ld_imm64(&insns[i], R2, src);
+ insns[i++] = BPF_JMP32_REG(op, R1, R2, 1);
+ if (!match)
+ insns[i++] = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
+ insns[i++] = BPF_EXIT_INSN();
+
+ return i;
+ }
+
+ return 7;
+}
+
+static int __bpf_fill_jmp_imm(struct bpf_test *self, int op)
+{
+ return __bpf_fill_pattern(self, &op, 64, 32,
+ PATTERN_BLOCK1, PATTERN_BLOCK2,
+ &__bpf_emit_jmp_imm);
+}
+
+static int __bpf_fill_jmp32_imm(struct bpf_test *self, int op)
+{
+ return __bpf_fill_pattern(self, &op, 64, 32,
+ PATTERN_BLOCK1, PATTERN_BLOCK2,
+ &__bpf_emit_jmp32_imm);
+}
+
+static int __bpf_fill_jmp_reg(struct bpf_test *self, int op)
+{
+ return __bpf_fill_pattern(self, &op, 64, 64,
+ PATTERN_BLOCK1, PATTERN_BLOCK2,
+ &__bpf_emit_jmp_reg);
+}
+
+static int __bpf_fill_jmp32_reg(struct bpf_test *self, int op)
+{
+ return __bpf_fill_pattern(self, &op, 64, 64,
+ PATTERN_BLOCK1, PATTERN_BLOCK2,
+ &__bpf_emit_jmp32_reg);
+}
+
+/* JMP immediate tests */
+static int bpf_fill_jmp_jset_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_imm(self, BPF_JSET);
+}
+
+static int bpf_fill_jmp_jeq_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_imm(self, BPF_JEQ);
+}
+
+static int bpf_fill_jmp_jne_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_imm(self, BPF_JNE);
+}
+
+static int bpf_fill_jmp_jgt_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_imm(self, BPF_JGT);
+}
+
+static int bpf_fill_jmp_jge_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_imm(self, BPF_JGE);
+}
+
+static int bpf_fill_jmp_jlt_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_imm(self, BPF_JLT);
+}
+
+static int bpf_fill_jmp_jle_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_imm(self, BPF_JLE);
+}
+
+static int bpf_fill_jmp_jsgt_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_imm(self, BPF_JSGT);
+}
+
+static int bpf_fill_jmp_jsge_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_imm(self, BPF_JSGE);
+}
+
+static int bpf_fill_jmp_jslt_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_imm(self, BPF_JSLT);
+}
+
+static int bpf_fill_jmp_jsle_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_imm(self, BPF_JSLE);
+}
+
+/* JMP32 immediate tests */
+static int bpf_fill_jmp32_jset_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_imm(self, BPF_JSET);
+}
+
+static int bpf_fill_jmp32_jeq_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_imm(self, BPF_JEQ);
+}
+
+static int bpf_fill_jmp32_jne_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_imm(self, BPF_JNE);
+}
+
+static int bpf_fill_jmp32_jgt_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_imm(self, BPF_JGT);
+}
+
+static int bpf_fill_jmp32_jge_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_imm(self, BPF_JGE);
+}
+
+static int bpf_fill_jmp32_jlt_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_imm(self, BPF_JLT);
+}
+
+static int bpf_fill_jmp32_jle_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_imm(self, BPF_JLE);
+}
+
+static int bpf_fill_jmp32_jsgt_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_imm(self, BPF_JSGT);
+}
+
+static int bpf_fill_jmp32_jsge_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_imm(self, BPF_JSGE);
+}
+
+static int bpf_fill_jmp32_jslt_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_imm(self, BPF_JSLT);
+}
+
+static int bpf_fill_jmp32_jsle_imm(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_imm(self, BPF_JSLE);
+}
+
+/* JMP register tests */
+static int bpf_fill_jmp_jset_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_reg(self, BPF_JSET);
+}
+
+static int bpf_fill_jmp_jeq_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_reg(self, BPF_JEQ);
+}
+
+static int bpf_fill_jmp_jne_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_reg(self, BPF_JNE);
+}
+
+static int bpf_fill_jmp_jgt_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_reg(self, BPF_JGT);
+}
+
+static int bpf_fill_jmp_jge_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_reg(self, BPF_JGE);
+}
+
+static int bpf_fill_jmp_jlt_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_reg(self, BPF_JLT);
+}
+
+static int bpf_fill_jmp_jle_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_reg(self, BPF_JLE);
+}
+
+static int bpf_fill_jmp_jsgt_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_reg(self, BPF_JSGT);
+}
+
+static int bpf_fill_jmp_jsge_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_reg(self, BPF_JSGE);
+}
+
+static int bpf_fill_jmp_jslt_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_reg(self, BPF_JSLT);
+}
+
+static int bpf_fill_jmp_jsle_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp_reg(self, BPF_JSLE);
+}
+
+/* JMP32 register tests */
+static int bpf_fill_jmp32_jset_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_reg(self, BPF_JSET);
+}
+
+static int bpf_fill_jmp32_jeq_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_reg(self, BPF_JEQ);
+}
+
+static int bpf_fill_jmp32_jne_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_reg(self, BPF_JNE);
+}
+
+static int bpf_fill_jmp32_jgt_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_reg(self, BPF_JGT);
+}
+
+static int bpf_fill_jmp32_jge_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_reg(self, BPF_JGE);
+}
+
+static int bpf_fill_jmp32_jlt_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_reg(self, BPF_JLT);
+}
+
+static int bpf_fill_jmp32_jle_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_reg(self, BPF_JLE);
+}
+
+static int bpf_fill_jmp32_jsgt_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_reg(self, BPF_JSGT);
+}
+
+static int bpf_fill_jmp32_jsge_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_reg(self, BPF_JSGE);
+}
+
+static int bpf_fill_jmp32_jslt_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_reg(self, BPF_JSLT);
+}
+
+static int bpf_fill_jmp32_jsle_reg(struct bpf_test *self)
+{
+ return __bpf_fill_jmp32_reg(self, BPF_JSLE);
+}
+
+/*
+ * Set up a sequence of staggered jumps, forwards and backwards with
+ * increasing offset. This tests the conversion of relative jumps to
+ * JITed native jumps. On some architectures, for example MIPS, a large
+ * PC-relative jump offset may overflow the immediate field of the native
+ * conditional branch instruction, triggering a conversion to use an
+ * absolute jump instead. Since this changes the jump offsets, another
+ * offset computation pass is necessary, and that may in turn trigger
+ * another branch conversion. This jump sequence is particularly nasty
+ * in that regard.
+ *
+ * The sequence generation is parameterized by size and jump type.
+ * The size must be even, and the expected result is always size + 1.
+ * Below is an example with size=8 and result=9.
+ *
+ * ________________________Start
+ * R0 = 0
+ * R1 = r1
+ * R2 = r2
+ * ,------- JMP +4 * 3______________Preamble: 4 insns
+ * ,----------|-ind 0- if R0 != 7 JMP 8 * 3 + 1 <--------------------.
+ * | | R0 = 8 |
+ * | | JMP +7 * 3 ------------------------.
+ * | ,--------|-----1- if R0 != 5 JMP 7 * 3 + 1 <--------------. | |
+ * | | | R0 = 6 | | |
+ * | | | JMP +5 * 3 ------------------. | |
+ * | | ,------|-----2- if R0 != 3 JMP 6 * 3 + 1 <--------. | | | |
+ * | | | | R0 = 4 | | | | |
+ * | | | | JMP +3 * 3 ------------. | | | |
+ * | | | ,----|-----3- if R0 != 1 JMP 5 * 3 + 1 <--. | | | | | |
+ * | | | | | R0 = 2 | | | | | | |
+ * | | | | | JMP +1 * 3 ------. | | | | | |
+ * | | | | ,--t=====4> if R0 != 0 JMP 4 * 3 + 1 1 2 3 4 5 6 7 8 loc
+ * | | | | | R0 = 1 -1 +2 -3 +4 -5 +6 -7 +8 off
+ * | | | | | JMP -2 * 3 ---' | | | | | | |
+ * | | | | | ,------5- if R0 != 2 JMP 3 * 3 + 1 <-----' | | | | | |
+ * | | | | | | R0 = 3 | | | | | |
+ * | | | | | | JMP -4 * 3 ---------' | | | | |
+ * | | | | | | ,----6- if R0 != 4 JMP 2 * 3 + 1 <-----------' | | | |
+ * | | | | | | | R0 = 5 | | | |
+ * | | | | | | | JMP -6 * 3 ---------------' | | |
+ * | | | | | | | ,--7- if R0 != 6 JMP 1 * 3 + 1 <-----------------' | |
+ * | | | | | | | | R0 = 7 | |
+ * | | Error | | | JMP -8 * 3 ---------------------' |
+ * | | paths | | | ,8- if R0 != 8 JMP 0 * 3 + 1 <-----------------------'
+ * | | | | | | | | | R0 = 9__________________Sequence: 3 * size - 1 insns
+ * `-+-+-+-+-+-+-+-+-> EXIT____________________Return: 1 insn
+ *
+ */
+
+/* The maximum size parameter */
+#define MAX_STAGGERED_JMP_SIZE ((0x7fff / 3) & ~1)
+
+/* We use a reduced number of iterations to get a reasonable execution time */
+#define NR_STAGGERED_JMP_RUNS 10
+
+static int __bpf_fill_staggered_jumps(struct bpf_test *self,
+ const struct bpf_insn *jmp,
+ u64 r1, u64 r2)
+{
+ int size = self->test[0].result - 1;
+ int len = 4 + 3 * (size + 1);
+ struct bpf_insn *insns;
+ int off, ind;
+
+ insns = kmalloc_array(len, sizeof(*insns), GFP_KERNEL);
+ if (!insns)
+ return -ENOMEM;
+
+ /* Preamble */
+ insns[0] = BPF_ALU64_IMM(BPF_MOV, R0, 0);
+ insns[1] = BPF_ALU64_IMM(BPF_MOV, R1, r1);
+ insns[2] = BPF_ALU64_IMM(BPF_MOV, R2, r2);
+ insns[3] = BPF_JMP_IMM(BPF_JA, 0, 0, 3 * size / 2);
+
+ /* Sequence */
+ for (ind = 0, off = size; ind <= size; ind++, off -= 2) {
+ struct bpf_insn *ins = &insns[4 + 3 * ind];
+ int loc;
+
+ if (off == 0)
+ off--;
+
+ loc = abs(off);
+ ins[0] = BPF_JMP_IMM(BPF_JNE, R0, loc - 1,
+ 3 * (size - ind) + 1);
+ ins[1] = BPF_ALU64_IMM(BPF_MOV, R0, loc);
+ ins[2] = *jmp;
+ ins[2].off = 3 * (off - 1);
+ }
+
+ /* Return */
+ insns[len - 1] = BPF_EXIT_INSN();
+
+ self->u.ptr.insns = insns;
+ self->u.ptr.len = len;
+
+ return 0;
+}
+
+/* 64-bit unconditional jump */
+static int bpf_fill_staggered_ja(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 0, 0);
+}
+
+/* 64-bit immediate jumps */
+static int bpf_fill_staggered_jeq_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_IMM(BPF_JEQ, R1, 1234, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
+}
+
+static int bpf_fill_staggered_jne_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_IMM(BPF_JNE, R1, 1234, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 4321, 0);
+}
+
+static int bpf_fill_staggered_jset_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_IMM(BPF_JSET, R1, 0x82, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 0x86, 0);
+}
+
+static int bpf_fill_staggered_jgt_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_IMM(BPF_JGT, R1, 1234, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 0x80000000, 0);
+}
+
+static int bpf_fill_staggered_jge_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_IMM(BPF_JGE, R1, 1234, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
+}
+
+static int bpf_fill_staggered_jlt_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_IMM(BPF_JLT, R1, 0x80000000, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
+}
+
+static int bpf_fill_staggered_jle_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_IMM(BPF_JLE, R1, 1234, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
+}
+
+static int bpf_fill_staggered_jsgt_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_IMM(BPF_JSGT, R1, -2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -1, 0);
+}
+
+static int bpf_fill_staggered_jsge_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_IMM(BPF_JSGE, R1, -2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -2, 0);
+}
+
+static int bpf_fill_staggered_jslt_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_IMM(BPF_JSLT, R1, -1, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -2, 0);
+}
+
+static int bpf_fill_staggered_jsle_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_IMM(BPF_JSLE, R1, -1, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -1, 0);
+}
+
+/* 64-bit register jumps */
+static int bpf_fill_staggered_jeq_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_REG(BPF_JEQ, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234);
+}
+
+static int bpf_fill_staggered_jne_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_REG(BPF_JNE, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 4321, 1234);
+}
+
+static int bpf_fill_staggered_jset_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_REG(BPF_JSET, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 0x86, 0x82);
+}
+
+static int bpf_fill_staggered_jgt_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_REG(BPF_JGT, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 0x80000000, 1234);
+}
+
+static int bpf_fill_staggered_jge_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_REG(BPF_JGE, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234);
+}
+
+static int bpf_fill_staggered_jlt_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_REG(BPF_JLT, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0x80000000);
+}
+
+static int bpf_fill_staggered_jle_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_REG(BPF_JLE, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234);
+}
+
+static int bpf_fill_staggered_jsgt_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_REG(BPF_JSGT, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -1, -2);
+}
+
+static int bpf_fill_staggered_jsge_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_REG(BPF_JSGE, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -2, -2);
+}
+
+static int bpf_fill_staggered_jslt_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_REG(BPF_JSLT, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -2, -1);
+}
+
+static int bpf_fill_staggered_jsle_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP_REG(BPF_JSLE, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -1, -1);
+}
+
+/* 32-bit immediate jumps */
+static int bpf_fill_staggered_jeq32_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JEQ, R1, 1234, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
+}
+
+static int bpf_fill_staggered_jne32_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JNE, R1, 1234, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 4321, 0);
+}
+
+static int bpf_fill_staggered_jset32_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JSET, R1, 0x82, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 0x86, 0);
+}
+
+static int bpf_fill_staggered_jgt32_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JGT, R1, 1234, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 0x80000000, 0);
+}
+
+static int bpf_fill_staggered_jge32_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JGE, R1, 1234, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
+}
+
+static int bpf_fill_staggered_jlt32_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JLT, R1, 0x80000000, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
+}
+
+static int bpf_fill_staggered_jle32_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JLE, R1, 1234, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0);
+}
+
+static int bpf_fill_staggered_jsgt32_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JSGT, R1, -2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -1, 0);
+}
+
+static int bpf_fill_staggered_jsge32_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JSGE, R1, -2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -2, 0);
+}
+
+static int bpf_fill_staggered_jslt32_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JSLT, R1, -1, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -2, 0);
+}
+
+static int bpf_fill_staggered_jsle32_imm(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_IMM(BPF_JSLE, R1, -1, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -1, 0);
+}
+
+/* 32-bit register jumps */
+static int bpf_fill_staggered_jeq32_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_REG(BPF_JEQ, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234);
+}
+
+static int bpf_fill_staggered_jne32_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_REG(BPF_JNE, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 4321, 1234);
+}
+
+static int bpf_fill_staggered_jset32_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_REG(BPF_JSET, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 0x86, 0x82);
+}
+
+static int bpf_fill_staggered_jgt32_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_REG(BPF_JGT, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 0x80000000, 1234);
+}
+
+static int bpf_fill_staggered_jge32_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_REG(BPF_JGE, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234);
+}
+
+static int bpf_fill_staggered_jlt32_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_REG(BPF_JLT, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 0x80000000);
+}
+
+static int bpf_fill_staggered_jle32_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_REG(BPF_JLE, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, 1234, 1234);
+}
+
+static int bpf_fill_staggered_jsgt32_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_REG(BPF_JSGT, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -1, -2);
+}
+
+static int bpf_fill_staggered_jsge32_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_REG(BPF_JSGE, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -2, -2);
+}
+
+static int bpf_fill_staggered_jslt32_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_REG(BPF_JSLT, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -2, -1);
+}
+
+static int bpf_fill_staggered_jsle32_reg(struct bpf_test *self)
+{
+ struct bpf_insn jmp = BPF_JMP32_REG(BPF_JSLE, R1, R2, 0);
+
+ return __bpf_fill_staggered_jumps(self, &jmp, -1, -1);
+}
+
+
static struct bpf_test tests[] = {
{
"TAX",
@@ -1951,147 +4514,6 @@ static struct bpf_test tests[] = {
{ },
{ { 0, -1 } }
},
- {
- /*
- * Register (non-)clobbering test, in the case where a 32-bit
- * JIT implements complex ALU64 operations via function calls.
- * If so, the function call must be invisible in the eBPF
- * registers. The JIT must then save and restore relevant
- * registers during the call. The following tests check that
- * the eBPF registers retain their values after such a call.
- */
- "INT: Register clobbering, R1 updated",
- .u.insns_int = {
- BPF_ALU32_IMM(BPF_MOV, R0, 0),
- BPF_ALU32_IMM(BPF_MOV, R1, 123456789),
- BPF_ALU32_IMM(BPF_MOV, R2, 2),
- BPF_ALU32_IMM(BPF_MOV, R3, 3),
- BPF_ALU32_IMM(BPF_MOV, R4, 4),
- BPF_ALU32_IMM(BPF_MOV, R5, 5),
- BPF_ALU32_IMM(BPF_MOV, R6, 6),
- BPF_ALU32_IMM(BPF_MOV, R7, 7),
- BPF_ALU32_IMM(BPF_MOV, R8, 8),
- BPF_ALU32_IMM(BPF_MOV, R9, 9),
- BPF_ALU64_IMM(BPF_DIV, R1, 123456789),
- BPF_JMP_IMM(BPF_JNE, R0, 0, 10),
- BPF_JMP_IMM(BPF_JNE, R1, 1, 9),
- BPF_JMP_IMM(BPF_JNE, R2, 2, 8),
- BPF_JMP_IMM(BPF_JNE, R3, 3, 7),
- BPF_JMP_IMM(BPF_JNE, R4, 4, 6),
- BPF_JMP_IMM(BPF_JNE, R5, 5, 5),
- BPF_JMP_IMM(BPF_JNE, R6, 6, 4),
- BPF_JMP_IMM(BPF_JNE, R7, 7, 3),
- BPF_JMP_IMM(BPF_JNE, R8, 8, 2),
- BPF_JMP_IMM(BPF_JNE, R9, 9, 1),
- BPF_ALU32_IMM(BPF_MOV, R0, 1),
- BPF_EXIT_INSN(),
- },
- INTERNAL,
- { },
- { { 0, 1 } }
- },
- {
- "INT: Register clobbering, R2 updated",
- .u.insns_int = {
- BPF_ALU32_IMM(BPF_MOV, R0, 0),
- BPF_ALU32_IMM(BPF_MOV, R1, 1),
- BPF_ALU32_IMM(BPF_MOV, R2, 2 * 123456789),
- BPF_ALU32_IMM(BPF_MOV, R3, 3),
- BPF_ALU32_IMM(BPF_MOV, R4, 4),
- BPF_ALU32_IMM(BPF_MOV, R5, 5),
- BPF_ALU32_IMM(BPF_MOV, R6, 6),
- BPF_ALU32_IMM(BPF_MOV, R7, 7),
- BPF_ALU32_IMM(BPF_MOV, R8, 8),
- BPF_ALU32_IMM(BPF_MOV, R9, 9),
- BPF_ALU64_IMM(BPF_DIV, R2, 123456789),
- BPF_JMP_IMM(BPF_JNE, R0, 0, 10),
- BPF_JMP_IMM(BPF_JNE, R1, 1, 9),
- BPF_JMP_IMM(BPF_JNE, R2, 2, 8),
- BPF_JMP_IMM(BPF_JNE, R3, 3, 7),
- BPF_JMP_IMM(BPF_JNE, R4, 4, 6),
- BPF_JMP_IMM(BPF_JNE, R5, 5, 5),
- BPF_JMP_IMM(BPF_JNE, R6, 6, 4),
- BPF_JMP_IMM(BPF_JNE, R7, 7, 3),
- BPF_JMP_IMM(BPF_JNE, R8, 8, 2),
- BPF_JMP_IMM(BPF_JNE, R9, 9, 1),
- BPF_ALU32_IMM(BPF_MOV, R0, 1),
- BPF_EXIT_INSN(),
- },
- INTERNAL,
- { },
- { { 0, 1 } }
- },
- {
- /*
- * Test 32-bit JITs that implement complex ALU64 operations as
- * function calls R0 = f(R1, R2), and must re-arrange operands.
- */
-#define NUMER 0xfedcba9876543210ULL
-#define DENOM 0x0123456789abcdefULL
- "ALU64_DIV X: Operand register permutations",
- .u.insns_int = {
- /* R0 / R2 */
- BPF_LD_IMM64(R0, NUMER),
- BPF_LD_IMM64(R2, DENOM),
- BPF_ALU64_REG(BPF_DIV, R0, R2),
- BPF_JMP_IMM(BPF_JEQ, R0, NUMER / DENOM, 1),
- BPF_EXIT_INSN(),
- /* R1 / R0 */
- BPF_LD_IMM64(R1, NUMER),
- BPF_LD_IMM64(R0, DENOM),
- BPF_ALU64_REG(BPF_DIV, R1, R0),
- BPF_JMP_IMM(BPF_JEQ, R1, NUMER / DENOM, 1),
- BPF_EXIT_INSN(),
- /* R0 / R1 */
- BPF_LD_IMM64(R0, NUMER),
- BPF_LD_IMM64(R1, DENOM),
- BPF_ALU64_REG(BPF_DIV, R0, R1),
- BPF_JMP_IMM(BPF_JEQ, R0, NUMER / DENOM, 1),
- BPF_EXIT_INSN(),
- /* R2 / R0 */
- BPF_LD_IMM64(R2, NUMER),
- BPF_LD_IMM64(R0, DENOM),
- BPF_ALU64_REG(BPF_DIV, R2, R0),
- BPF_JMP_IMM(BPF_JEQ, R2, NUMER / DENOM, 1),
- BPF_EXIT_INSN(),
- /* R2 / R1 */
- BPF_LD_IMM64(R2, NUMER),
- BPF_LD_IMM64(R1, DENOM),
- BPF_ALU64_REG(BPF_DIV, R2, R1),
- BPF_JMP_IMM(BPF_JEQ, R2, NUMER / DENOM, 1),
- BPF_EXIT_INSN(),
- /* R1 / R2 */
- BPF_LD_IMM64(R1, NUMER),
- BPF_LD_IMM64(R2, DENOM),
- BPF_ALU64_REG(BPF_DIV, R1, R2),
- BPF_JMP_IMM(BPF_JEQ, R1, NUMER / DENOM, 1),
- BPF_EXIT_INSN(),
- /* R1 / R1 */
- BPF_LD_IMM64(R1, NUMER),
- BPF_ALU64_REG(BPF_DIV, R1, R1),
- BPF_JMP_IMM(BPF_JEQ, R1, 1, 1),
- BPF_EXIT_INSN(),
- /* R2 / R2 */
- BPF_LD_IMM64(R2, DENOM),
- BPF_ALU64_REG(BPF_DIV, R2, R2),
- BPF_JMP_IMM(BPF_JEQ, R2, 1, 1),
- BPF_EXIT_INSN(),
- /* R3 / R4 */
- BPF_LD_IMM64(R3, NUMER),
- BPF_LD_IMM64(R4, DENOM),
- BPF_ALU64_REG(BPF_DIV, R3, R4),
- BPF_JMP_IMM(BPF_JEQ, R3, NUMER / DENOM, 1),
- BPF_EXIT_INSN(),
- /* Successful return */
- BPF_LD_IMM64(R0, 1),
- BPF_EXIT_INSN(),
- },
- INTERNAL,
- { },
- { { 0, 1 } },
-#undef NUMER
-#undef DENOM
- },
#ifdef CONFIG_32BIT
{
"INT: 32-bit context pointer word order and zero-extension",
@@ -5255,6 +7677,67 @@ static struct bpf_test tests[] = {
{ },
{ { 0, (u32) cpu_to_be64(0x0123456789abcdefLL) } },
},
+ {
+ "ALU_END_FROM_BE 64: 0x0123456789abcdef >> 32 -> 0x01234567",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
+ BPF_ENDIAN(BPF_FROM_BE, R0, 64),
+ BPF_ALU64_IMM(BPF_RSH, R0, 32),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, (u32) (cpu_to_be64(0x0123456789abcdefLL) >> 32) } },
+ },
+ /* BPF_ALU | BPF_END | BPF_FROM_BE, reversed */
+ {
+ "ALU_END_FROM_BE 16: 0xfedcba9876543210 -> 0x3210",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
+ BPF_ENDIAN(BPF_FROM_BE, R0, 16),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, cpu_to_be16(0x3210) } },
+ },
+ {
+ "ALU_END_FROM_BE 32: 0xfedcba9876543210 -> 0x76543210",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
+ BPF_ENDIAN(BPF_FROM_BE, R0, 32),
+ BPF_ALU64_REG(BPF_MOV, R1, R0),
+ BPF_ALU64_IMM(BPF_RSH, R1, 32),
+ BPF_ALU32_REG(BPF_ADD, R0, R1), /* R1 = 0 */
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, cpu_to_be32(0x76543210) } },
+ },
+ {
+ "ALU_END_FROM_BE 64: 0xfedcba9876543210 -> 0x76543210",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
+ BPF_ENDIAN(BPF_FROM_BE, R0, 64),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, (u32) cpu_to_be64(0xfedcba9876543210ULL) } },
+ },
+ {
+ "ALU_END_FROM_BE 64: 0xfedcba9876543210 >> 32 -> 0xfedcba98",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
+ BPF_ENDIAN(BPF_FROM_BE, R0, 64),
+ BPF_ALU64_IMM(BPF_RSH, R0, 32),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, (u32) (cpu_to_be64(0xfedcba9876543210ULL) >> 32) } },
+ },
/* BPF_ALU | BPF_END | BPF_FROM_LE */
{
"ALU_END_FROM_LE 16: 0x0123456789abcdef -> 0xefcd",
@@ -5292,6 +7775,321 @@ static struct bpf_test tests[] = {
{ },
{ { 0, (u32) cpu_to_le64(0x0123456789abcdefLL) } },
},
+ {
+ "ALU_END_FROM_LE 64: 0x0123456789abcdef >> 32 -> 0xefcdab89",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0x0123456789abcdefLL),
+ BPF_ENDIAN(BPF_FROM_LE, R0, 64),
+ BPF_ALU64_IMM(BPF_RSH, R0, 32),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, (u32) (cpu_to_le64(0x0123456789abcdefLL) >> 32) } },
+ },
+ /* BPF_ALU | BPF_END | BPF_FROM_LE, reversed */
+ {
+ "ALU_END_FROM_LE 16: 0xfedcba9876543210 -> 0x1032",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
+ BPF_ENDIAN(BPF_FROM_LE, R0, 16),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, cpu_to_le16(0x3210) } },
+ },
+ {
+ "ALU_END_FROM_LE 32: 0xfedcba9876543210 -> 0x10325476",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
+ BPF_ENDIAN(BPF_FROM_LE, R0, 32),
+ BPF_ALU64_REG(BPF_MOV, R1, R0),
+ BPF_ALU64_IMM(BPF_RSH, R1, 32),
+ BPF_ALU32_REG(BPF_ADD, R0, R1), /* R1 = 0 */
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, cpu_to_le32(0x76543210) } },
+ },
+ {
+ "ALU_END_FROM_LE 64: 0xfedcba9876543210 -> 0x10325476",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
+ BPF_ENDIAN(BPF_FROM_LE, R0, 64),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, (u32) cpu_to_le64(0xfedcba9876543210ULL) } },
+ },
+ {
+ "ALU_END_FROM_LE 64: 0xfedcba9876543210 >> 32 -> 0x98badcfe",
+ .u.insns_int = {
+ BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
+ BPF_ENDIAN(BPF_FROM_LE, R0, 64),
+ BPF_ALU64_IMM(BPF_RSH, R0, 32),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, (u32) (cpu_to_le64(0xfedcba9876543210ULL) >> 32) } },
+ },
+ /* BPF_LDX_MEM B/H/W/DW */
+ {
+ "BPF_LDX_MEM | BPF_B",
+ .u.insns_int = {
+ BPF_LD_IMM64(R1, 0x0102030405060708ULL),
+ BPF_LD_IMM64(R2, 0x0000000000000008ULL),
+ BPF_STX_MEM(BPF_DW, R10, R1, -8),
+#ifdef __BIG_ENDIAN
+ BPF_LDX_MEM(BPF_B, R0, R10, -1),
+#else
+ BPF_LDX_MEM(BPF_B, R0, R10, -8),
+#endif
+ BPF_JMP_REG(BPF_JNE, R0, R2, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ .stack_depth = 8,
+ },
+ {
+ "BPF_LDX_MEM | BPF_B, MSB set",
+ .u.insns_int = {
+ BPF_LD_IMM64(R1, 0x8182838485868788ULL),
+ BPF_LD_IMM64(R2, 0x0000000000000088ULL),
+ BPF_STX_MEM(BPF_DW, R10, R1, -8),
+#ifdef __BIG_ENDIAN
+ BPF_LDX_MEM(BPF_B, R0, R10, -1),
+#else
+ BPF_LDX_MEM(BPF_B, R0, R10, -8),
+#endif
+ BPF_JMP_REG(BPF_JNE, R0, R2, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ .stack_depth = 8,
+ },
+ {
+ "BPF_LDX_MEM | BPF_H",
+ .u.insns_int = {
+ BPF_LD_IMM64(R1, 0x0102030405060708ULL),
+ BPF_LD_IMM64(R2, 0x0000000000000708ULL),
+ BPF_STX_MEM(BPF_DW, R10, R1, -8),
+#ifdef __BIG_ENDIAN
+ BPF_LDX_MEM(BPF_H, R0, R10, -2),
+#else
+ BPF_LDX_MEM(BPF_H, R0, R10, -8),
+#endif
+ BPF_JMP_REG(BPF_JNE, R0, R2, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ .stack_depth = 8,
+ },
+ {
+ "BPF_LDX_MEM | BPF_H, MSB set",
+ .u.insns_int = {
+ BPF_LD_IMM64(R1, 0x8182838485868788ULL),
+ BPF_LD_IMM64(R2, 0x0000000000008788ULL),
+ BPF_STX_MEM(BPF_DW, R10, R1, -8),
+#ifdef __BIG_ENDIAN
+ BPF_LDX_MEM(BPF_H, R0, R10, -2),
+#else
+ BPF_LDX_MEM(BPF_H, R0, R10, -8),
+#endif
+ BPF_JMP_REG(BPF_JNE, R0, R2, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ .stack_depth = 8,
+ },
+ {
+ "BPF_LDX_MEM | BPF_W",
+ .u.insns_int = {
+ BPF_LD_IMM64(R1, 0x0102030405060708ULL),
+ BPF_LD_IMM64(R2, 0x0000000005060708ULL),
+ BPF_STX_MEM(BPF_DW, R10, R1, -8),
+#ifdef __BIG_ENDIAN
+ BPF_LDX_MEM(BPF_W, R0, R10, -4),
+#else
+ BPF_LDX_MEM(BPF_W, R0, R10, -8),
+#endif
+ BPF_JMP_REG(BPF_JNE, R0, R2, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ .stack_depth = 8,
+ },
+ {
+ "BPF_LDX_MEM | BPF_W, MSB set",
+ .u.insns_int = {
+ BPF_LD_IMM64(R1, 0x8182838485868788ULL),
+ BPF_LD_IMM64(R2, 0x0000000085868788ULL),
+ BPF_STX_MEM(BPF_DW, R10, R1, -8),
+#ifdef __BIG_ENDIAN
+ BPF_LDX_MEM(BPF_W, R0, R10, -4),
+#else
+ BPF_LDX_MEM(BPF_W, R0, R10, -8),
+#endif
+ BPF_JMP_REG(BPF_JNE, R0, R2, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ .stack_depth = 8,
+ },
+ /* BPF_STX_MEM B/H/W/DW */
+ {
+ "BPF_STX_MEM | BPF_B",
+ .u.insns_int = {
+ BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL),
+ BPF_LD_IMM64(R2, 0x0102030405060708ULL),
+ BPF_LD_IMM64(R3, 0x8090a0b0c0d0e008ULL),
+ BPF_STX_MEM(BPF_DW, R10, R1, -8),
+#ifdef __BIG_ENDIAN
+ BPF_STX_MEM(BPF_B, R10, R2, -1),
+#else
+ BPF_STX_MEM(BPF_B, R10, R2, -8),
+#endif
+ BPF_LDX_MEM(BPF_DW, R0, R10, -8),
+ BPF_JMP_REG(BPF_JNE, R0, R3, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ .stack_depth = 8,
+ },
+ {
+ "BPF_STX_MEM | BPF_B, MSB set",
+ .u.insns_int = {
+ BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL),
+ BPF_LD_IMM64(R2, 0x8182838485868788ULL),
+ BPF_LD_IMM64(R3, 0x8090a0b0c0d0e088ULL),
+ BPF_STX_MEM(BPF_DW, R10, R1, -8),
+#ifdef __BIG_ENDIAN
+ BPF_STX_MEM(BPF_B, R10, R2, -1),
+#else
+ BPF_STX_MEM(BPF_B, R10, R2, -8),
+#endif
+ BPF_LDX_MEM(BPF_DW, R0, R10, -8),
+ BPF_JMP_REG(BPF_JNE, R0, R3, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ .stack_depth = 8,
+ },
+ {
+ "BPF_STX_MEM | BPF_H",
+ .u.insns_int = {
+ BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL),
+ BPF_LD_IMM64(R2, 0x0102030405060708ULL),
+ BPF_LD_IMM64(R3, 0x8090a0b0c0d00708ULL),
+ BPF_STX_MEM(BPF_DW, R10, R1, -8),
+#ifdef __BIG_ENDIAN
+ BPF_STX_MEM(BPF_H, R10, R2, -2),
+#else
+ BPF_STX_MEM(BPF_H, R10, R2, -8),
+#endif
+ BPF_LDX_MEM(BPF_DW, R0, R10, -8),
+ BPF_JMP_REG(BPF_JNE, R0, R3, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ .stack_depth = 8,
+ },
+ {
+ "BPF_STX_MEM | BPF_H, MSB set",
+ .u.insns_int = {
+ BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL),
+ BPF_LD_IMM64(R2, 0x8182838485868788ULL),
+ BPF_LD_IMM64(R3, 0x8090a0b0c0d08788ULL),
+ BPF_STX_MEM(BPF_DW, R10, R1, -8),
+#ifdef __BIG_ENDIAN
+ BPF_STX_MEM(BPF_H, R10, R2, -2),
+#else
+ BPF_STX_MEM(BPF_H, R10, R2, -8),
+#endif
+ BPF_LDX_MEM(BPF_DW, R0, R10, -8),
+ BPF_JMP_REG(BPF_JNE, R0, R3, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ .stack_depth = 8,
+ },
+ {
+ "BPF_STX_MEM | BPF_W",
+ .u.insns_int = {
+ BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL),
+ BPF_LD_IMM64(R2, 0x0102030405060708ULL),
+ BPF_LD_IMM64(R3, 0x8090a0b005060708ULL),
+ BPF_STX_MEM(BPF_DW, R10, R1, -8),
+#ifdef __BIG_ENDIAN
+ BPF_STX_MEM(BPF_W, R10, R2, -4),
+#else
+ BPF_STX_MEM(BPF_W, R10, R2, -8),
+#endif
+ BPF_LDX_MEM(BPF_DW, R0, R10, -8),
+ BPF_JMP_REG(BPF_JNE, R0, R3, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ .stack_depth = 8,
+ },
+ {
+ "BPF_STX_MEM | BPF_W, MSB set",
+ .u.insns_int = {
+ BPF_LD_IMM64(R1, 0x8090a0b0c0d0e0f0ULL),
+ BPF_LD_IMM64(R2, 0x8182838485868788ULL),
+ BPF_LD_IMM64(R3, 0x8090a0b085868788ULL),
+ BPF_STX_MEM(BPF_DW, R10, R1, -8),
+#ifdef __BIG_ENDIAN
+ BPF_STX_MEM(BPF_W, R10, R2, -4),
+#else
+ BPF_STX_MEM(BPF_W, R10, R2, -8),
+#endif
+ BPF_LDX_MEM(BPF_DW, R0, R10, -8),
+ BPF_JMP_REG(BPF_JNE, R0, R3, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ .stack_depth = 8,
+ },
/* BPF_ST(X) | BPF_MEM | BPF_B/H/W/DW */
{
"ST_MEM_B: Store/Load byte: max negative",
@@ -5529,15 +8327,20 @@ static struct bpf_test tests[] = {
* Individual tests are expanded from template macros for all
* combinations of ALU operation, word size and fetching.
*/
+#define BPF_ATOMIC_POISON(width) ((width) == BPF_W ? (0xbaadf00dULL << 32) : 0)
+
#define BPF_ATOMIC_OP_TEST1(width, op, logic, old, update, result) \
{ \
"BPF_ATOMIC | " #width ", " #op ": Test: " \
#old " " #logic " " #update " = " #result, \
.u.insns_int = { \
- BPF_ALU32_IMM(BPF_MOV, R5, update), \
+ BPF_LD_IMM64(R5, (update) | BPF_ATOMIC_POISON(width)), \
BPF_ST_MEM(width, R10, -40, old), \
BPF_ATOMIC_OP(width, op, R10, R5, -40), \
BPF_LDX_MEM(width, R0, R10, -40), \
+ BPF_ALU64_REG(BPF_MOV, R1, R0), \
+ BPF_ALU64_IMM(BPF_RSH, R1, 32), \
+ BPF_ALU64_REG(BPF_OR, R0, R1), \
BPF_EXIT_INSN(), \
}, \
INTERNAL, \
@@ -5551,11 +8354,14 @@ static struct bpf_test tests[] = {
#old " " #logic " " #update " = " #result, \
.u.insns_int = { \
BPF_ALU64_REG(BPF_MOV, R1, R10), \
- BPF_ALU32_IMM(BPF_MOV, R0, update), \
+ BPF_LD_IMM64(R0, (update) | BPF_ATOMIC_POISON(width)), \
BPF_ST_MEM(BPF_W, R10, -40, old), \
BPF_ATOMIC_OP(width, op, R10, R0, -40), \
BPF_ALU64_REG(BPF_MOV, R0, R10), \
BPF_ALU64_REG(BPF_SUB, R0, R1), \
+ BPF_ALU64_REG(BPF_MOV, R1, R0), \
+ BPF_ALU64_IMM(BPF_RSH, R1, 32), \
+ BPF_ALU64_REG(BPF_OR, R0, R1), \
BPF_EXIT_INSN(), \
}, \
INTERNAL, \
@@ -5569,10 +8375,13 @@ static struct bpf_test tests[] = {
#old " " #logic " " #update " = " #result, \
.u.insns_int = { \
BPF_ALU64_REG(BPF_MOV, R0, R10), \
- BPF_ALU32_IMM(BPF_MOV, R1, update), \
+ BPF_LD_IMM64(R1, (update) | BPF_ATOMIC_POISON(width)), \
BPF_ST_MEM(width, R10, -40, old), \
BPF_ATOMIC_OP(width, op, R10, R1, -40), \
BPF_ALU64_REG(BPF_SUB, R0, R10), \
+ BPF_ALU64_REG(BPF_MOV, R1, R0), \
+ BPF_ALU64_IMM(BPF_RSH, R1, 32), \
+ BPF_ALU64_REG(BPF_OR, R0, R1), \
BPF_EXIT_INSN(), \
}, \
INTERNAL, \
@@ -5585,10 +8394,10 @@ static struct bpf_test tests[] = {
"BPF_ATOMIC | " #width ", " #op ": Test fetch: " \
#old " " #logic " " #update " = " #result, \
.u.insns_int = { \
- BPF_ALU32_IMM(BPF_MOV, R3, update), \
+ BPF_LD_IMM64(R3, (update) | BPF_ATOMIC_POISON(width)), \
BPF_ST_MEM(width, R10, -40, old), \
BPF_ATOMIC_OP(width, op, R10, R3, -40), \
- BPF_ALU64_REG(BPF_MOV, R0, R3), \
+ BPF_ALU32_REG(BPF_MOV, R0, R3), \
BPF_EXIT_INSN(), \
}, \
INTERNAL, \
@@ -5686,6 +8495,7 @@ static struct bpf_test tests[] = {
BPF_ATOMIC_OP_TEST2(BPF_DW, BPF_XCHG, xchg, 0x12, 0xab, 0xab),
BPF_ATOMIC_OP_TEST3(BPF_DW, BPF_XCHG, xchg, 0x12, 0xab, 0xab),
BPF_ATOMIC_OP_TEST4(BPF_DW, BPF_XCHG, xchg, 0x12, 0xab, 0xab),
+#undef BPF_ATOMIC_POISON
#undef BPF_ATOMIC_OP_TEST1
#undef BPF_ATOMIC_OP_TEST2
#undef BPF_ATOMIC_OP_TEST3
@@ -5770,7 +8580,7 @@ static struct bpf_test tests[] = {
"BPF_ATOMIC | BPF_DW, BPF_CMPXCHG: Test successful return",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x0123456789abcdefULL),
- BPF_LD_IMM64(R2, 0xfecdba9876543210ULL),
+ BPF_LD_IMM64(R2, 0xfedcba9876543210ULL),
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_STX_MEM(BPF_DW, R10, R1, -40),
BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -40),
@@ -5787,7 +8597,7 @@ static struct bpf_test tests[] = {
"BPF_ATOMIC | BPF_DW, BPF_CMPXCHG: Test successful store",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x0123456789abcdefULL),
- BPF_LD_IMM64(R2, 0xfecdba9876543210ULL),
+ BPF_LD_IMM64(R2, 0xfedcba9876543210ULL),
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_STX_MEM(BPF_DW, R10, R0, -40),
BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -40),
@@ -5805,7 +8615,7 @@ static struct bpf_test tests[] = {
"BPF_ATOMIC | BPF_DW, BPF_CMPXCHG: Test failure return",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x0123456789abcdefULL),
- BPF_LD_IMM64(R2, 0xfecdba9876543210ULL),
+ BPF_LD_IMM64(R2, 0xfedcba9876543210ULL),
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_ALU64_IMM(BPF_ADD, R0, 1),
BPF_STX_MEM(BPF_DW, R10, R1, -40),
@@ -5823,7 +8633,7 @@ static struct bpf_test tests[] = {
"BPF_ATOMIC | BPF_DW, BPF_CMPXCHG: Test failure store",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x0123456789abcdefULL),
- BPF_LD_IMM64(R2, 0xfecdba9876543210ULL),
+ BPF_LD_IMM64(R2, 0xfedcba9876543210ULL),
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_ALU64_IMM(BPF_ADD, R0, 1),
BPF_STX_MEM(BPF_DW, R10, R1, -40),
@@ -5842,11 +8652,11 @@ static struct bpf_test tests[] = {
"BPF_ATOMIC | BPF_DW, BPF_CMPXCHG: Test side effects",
.u.insns_int = {
BPF_LD_IMM64(R1, 0x0123456789abcdefULL),
- BPF_LD_IMM64(R2, 0xfecdba9876543210ULL),
+ BPF_LD_IMM64(R2, 0xfedcba9876543210ULL),
BPF_ALU64_REG(BPF_MOV, R0, R1),
BPF_STX_MEM(BPF_DW, R10, R1, -40),
BPF_ATOMIC_OP(BPF_DW, BPF_CMPXCHG, R10, R2, -40),
- BPF_LD_IMM64(R0, 0xfecdba9876543210ULL),
+ BPF_LD_IMM64(R0, 0xfedcba9876543210ULL),
BPF_JMP_REG(BPF_JNE, R0, R2, 1),
BPF_ALU64_REG(BPF_SUB, R0, R2),
BPF_EXIT_INSN(),
@@ -7192,14 +10002,6 @@ static struct bpf_test tests[] = {
{ },
{ { 0, 1 } },
},
- { /* Mainly checking JIT here. */
- "BPF_MAXINSNS: Very long conditional jump",
- { },
- INTERNAL | FLAG_NO_DATA,
- { },
- { { 0, 1 } },
- .fill_helper = bpf_fill_long_jmp,
- },
{
"JMP_JA: Jump, gap, jump, ...",
{ },
@@ -8413,6 +11215,2841 @@ static struct bpf_test tests[] = {
{},
{ { 0, 2 } },
},
+ /* BPF_LDX_MEM with operand aliasing */
+ {
+ "LDX_MEM_B: operand register aliasing",
+ .u.insns_int = {
+ BPF_ST_MEM(BPF_B, R10, -8, 123),
+ BPF_MOV64_REG(R0, R10),
+ BPF_LDX_MEM(BPF_B, R0, R0, -8),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 123 } },
+ .stack_depth = 8,
+ },
+ {
+ "LDX_MEM_H: operand register aliasing",
+ .u.insns_int = {
+ BPF_ST_MEM(BPF_H, R10, -8, 12345),
+ BPF_MOV64_REG(R0, R10),
+ BPF_LDX_MEM(BPF_H, R0, R0, -8),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 12345 } },
+ .stack_depth = 8,
+ },
+ {
+ "LDX_MEM_W: operand register aliasing",
+ .u.insns_int = {
+ BPF_ST_MEM(BPF_W, R10, -8, 123456789),
+ BPF_MOV64_REG(R0, R10),
+ BPF_LDX_MEM(BPF_W, R0, R0, -8),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 123456789 } },
+ .stack_depth = 8,
+ },
+ {
+ "LDX_MEM_DW: operand register aliasing",
+ .u.insns_int = {
+ BPF_LD_IMM64(R1, 0x123456789abcdefULL),
+ BPF_STX_MEM(BPF_DW, R10, R1, -8),
+ BPF_MOV64_REG(R0, R10),
+ BPF_LDX_MEM(BPF_DW, R0, R0, -8),
+ BPF_ALU64_REG(BPF_SUB, R0, R1),
+ BPF_MOV64_REG(R1, R0),
+ BPF_ALU64_IMM(BPF_RSH, R1, 32),
+ BPF_ALU64_REG(BPF_OR, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ .stack_depth = 8,
+ },
+ /*
+ * Register (non-)clobbering tests for the case where a JIT implements
+ * complex ALU or ATOMIC operations via function calls. If so, the
+ * function call must be transparent to the eBPF registers. The JIT
+ * must therefore save and restore relevant registers across the call.
+ * The following tests check that the eBPF registers retain their
+ * values after such an operation. Mainly intended for complex ALU
+ * and atomic operation, but we run it for all. You never know...
+ *
+ * Note that each operations should be tested twice with different
+ * destinations, to check preservation for all registers.
+ */
+#define BPF_TEST_CLOBBER_ALU(alu, op, dst, src) \
+ { \
+ #alu "_" #op " to " #dst ": no clobbering", \
+ .u.insns_int = { \
+ BPF_ALU64_IMM(BPF_MOV, R0, R0), \
+ BPF_ALU64_IMM(BPF_MOV, R1, R1), \
+ BPF_ALU64_IMM(BPF_MOV, R2, R2), \
+ BPF_ALU64_IMM(BPF_MOV, R3, R3), \
+ BPF_ALU64_IMM(BPF_MOV, R4, R4), \
+ BPF_ALU64_IMM(BPF_MOV, R5, R5), \
+ BPF_ALU64_IMM(BPF_MOV, R6, R6), \
+ BPF_ALU64_IMM(BPF_MOV, R7, R7), \
+ BPF_ALU64_IMM(BPF_MOV, R8, R8), \
+ BPF_ALU64_IMM(BPF_MOV, R9, R9), \
+ BPF_##alu(BPF_ ##op, dst, src), \
+ BPF_ALU32_IMM(BPF_MOV, dst, dst), \
+ BPF_JMP_IMM(BPF_JNE, R0, R0, 10), \
+ BPF_JMP_IMM(BPF_JNE, R1, R1, 9), \
+ BPF_JMP_IMM(BPF_JNE, R2, R2, 8), \
+ BPF_JMP_IMM(BPF_JNE, R3, R3, 7), \
+ BPF_JMP_IMM(BPF_JNE, R4, R4, 6), \
+ BPF_JMP_IMM(BPF_JNE, R5, R5, 5), \
+ BPF_JMP_IMM(BPF_JNE, R6, R6, 4), \
+ BPF_JMP_IMM(BPF_JNE, R7, R7, 3), \
+ BPF_JMP_IMM(BPF_JNE, R8, R8, 2), \
+ BPF_JMP_IMM(BPF_JNE, R9, R9, 1), \
+ BPF_ALU64_IMM(BPF_MOV, R0, 1), \
+ BPF_EXIT_INSN(), \
+ }, \
+ INTERNAL, \
+ { }, \
+ { { 0, 1 } } \
+ }
+ /* ALU64 operations, register clobbering */
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, AND, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, AND, R9, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, OR, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, OR, R9, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, XOR, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, XOR, R9, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, LSH, R8, 12),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, LSH, R9, 12),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, RSH, R8, 12),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, RSH, R9, 12),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, ARSH, R8, 12),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, ARSH, R9, 12),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, ADD, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, ADD, R9, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, SUB, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, SUB, R9, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, MUL, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, MUL, R9, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, DIV, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, DIV, R9, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, MOD, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU64_IMM, MOD, R9, 123456789),
+ /* ALU32 immediate operations, register clobbering */
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, AND, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, AND, R9, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, OR, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, OR, R9, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, XOR, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, XOR, R9, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, LSH, R8, 12),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, LSH, R9, 12),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, RSH, R8, 12),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, RSH, R9, 12),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, ARSH, R8, 12),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, ARSH, R9, 12),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, ADD, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, ADD, R9, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, SUB, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, SUB, R9, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, MUL, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, MUL, R9, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, DIV, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, DIV, R9, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, MOD, R8, 123456789),
+ BPF_TEST_CLOBBER_ALU(ALU32_IMM, MOD, R9, 123456789),
+ /* ALU64 register operations, register clobbering */
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, AND, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, AND, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, OR, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, OR, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, XOR, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, XOR, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, LSH, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, LSH, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, RSH, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, RSH, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, ARSH, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, ARSH, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, ADD, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, ADD, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, SUB, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, SUB, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, MUL, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, MUL, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, DIV, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, DIV, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, MOD, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU64_REG, MOD, R9, R1),
+ /* ALU32 register operations, register clobbering */
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, AND, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, AND, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, OR, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, OR, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, XOR, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, XOR, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, LSH, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, LSH, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, RSH, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, RSH, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, ARSH, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, ARSH, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, ADD, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, ADD, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, SUB, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, SUB, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, MUL, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, MUL, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, DIV, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, DIV, R9, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, MOD, R8, R1),
+ BPF_TEST_CLOBBER_ALU(ALU32_REG, MOD, R9, R1),
+#undef BPF_TEST_CLOBBER_ALU
+#define BPF_TEST_CLOBBER_ATOMIC(width, op) \
+ { \
+ "Atomic_" #width " " #op ": no clobbering", \
+ .u.insns_int = { \
+ BPF_ALU64_IMM(BPF_MOV, R0, 0), \
+ BPF_ALU64_IMM(BPF_MOV, R1, 1), \
+ BPF_ALU64_IMM(BPF_MOV, R2, 2), \
+ BPF_ALU64_IMM(BPF_MOV, R3, 3), \
+ BPF_ALU64_IMM(BPF_MOV, R4, 4), \
+ BPF_ALU64_IMM(BPF_MOV, R5, 5), \
+ BPF_ALU64_IMM(BPF_MOV, R6, 6), \
+ BPF_ALU64_IMM(BPF_MOV, R7, 7), \
+ BPF_ALU64_IMM(BPF_MOV, R8, 8), \
+ BPF_ALU64_IMM(BPF_MOV, R9, 9), \
+ BPF_ST_MEM(width, R10, -8, \
+ (op) == BPF_CMPXCHG ? 0 : \
+ (op) & BPF_FETCH ? 1 : 0), \
+ BPF_ATOMIC_OP(width, op, R10, R1, -8), \
+ BPF_JMP_IMM(BPF_JNE, R0, 0, 10), \
+ BPF_JMP_IMM(BPF_JNE, R1, 1, 9), \
+ BPF_JMP_IMM(BPF_JNE, R2, 2, 8), \
+ BPF_JMP_IMM(BPF_JNE, R3, 3, 7), \
+ BPF_JMP_IMM(BPF_JNE, R4, 4, 6), \
+ BPF_JMP_IMM(BPF_JNE, R5, 5, 5), \
+ BPF_JMP_IMM(BPF_JNE, R6, 6, 4), \
+ BPF_JMP_IMM(BPF_JNE, R7, 7, 3), \
+ BPF_JMP_IMM(BPF_JNE, R8, 8, 2), \
+ BPF_JMP_IMM(BPF_JNE, R9, 9, 1), \
+ BPF_ALU64_IMM(BPF_MOV, R0, 1), \
+ BPF_EXIT_INSN(), \
+ }, \
+ INTERNAL, \
+ { }, \
+ { { 0, 1 } }, \
+ .stack_depth = 8, \
+ }
+ /* 64-bit atomic operations, register clobbering */
+ BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_ADD),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_AND),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_OR),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_XOR),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_ADD | BPF_FETCH),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_AND | BPF_FETCH),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_OR | BPF_FETCH),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_XOR | BPF_FETCH),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_XCHG),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_DW, BPF_CMPXCHG),
+ /* 32-bit atomic operations, register clobbering */
+ BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_ADD),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_AND),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_OR),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_XOR),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_ADD | BPF_FETCH),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_AND | BPF_FETCH),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_OR | BPF_FETCH),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_XOR | BPF_FETCH),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_XCHG),
+ BPF_TEST_CLOBBER_ATOMIC(BPF_W, BPF_CMPXCHG),
+#undef BPF_TEST_CLOBBER_ATOMIC
+ /* Checking that ALU32 src is not zero extended in place */
+#define BPF_ALU32_SRC_ZEXT(op) \
+ { \
+ "ALU32_" #op "_X: src preserved in zext", \
+ .u.insns_int = { \
+ BPF_LD_IMM64(R1, 0x0123456789acbdefULL),\
+ BPF_LD_IMM64(R2, 0xfedcba9876543210ULL),\
+ BPF_ALU64_REG(BPF_MOV, R0, R1), \
+ BPF_ALU32_REG(BPF_##op, R2, R1), \
+ BPF_ALU64_REG(BPF_SUB, R0, R1), \
+ BPF_ALU64_REG(BPF_MOV, R1, R0), \
+ BPF_ALU64_IMM(BPF_RSH, R1, 32), \
+ BPF_ALU64_REG(BPF_OR, R0, R1), \
+ BPF_EXIT_INSN(), \
+ }, \
+ INTERNAL, \
+ { }, \
+ { { 0, 0 } }, \
+ }
+ BPF_ALU32_SRC_ZEXT(MOV),
+ BPF_ALU32_SRC_ZEXT(AND),
+ BPF_ALU32_SRC_ZEXT(OR),
+ BPF_ALU32_SRC_ZEXT(XOR),
+ BPF_ALU32_SRC_ZEXT(ADD),
+ BPF_ALU32_SRC_ZEXT(SUB),
+ BPF_ALU32_SRC_ZEXT(MUL),
+ BPF_ALU32_SRC_ZEXT(DIV),
+ BPF_ALU32_SRC_ZEXT(MOD),
+#undef BPF_ALU32_SRC_ZEXT
+ /* Checking that ATOMIC32 src is not zero extended in place */
+#define BPF_ATOMIC32_SRC_ZEXT(op) \
+ { \
+ "ATOMIC_W_" #op ": src preserved in zext", \
+ .u.insns_int = { \
+ BPF_LD_IMM64(R0, 0x0123456789acbdefULL), \
+ BPF_ALU64_REG(BPF_MOV, R1, R0), \
+ BPF_ST_MEM(BPF_W, R10, -4, 0), \
+ BPF_ATOMIC_OP(BPF_W, BPF_##op, R10, R1, -4), \
+ BPF_ALU64_REG(BPF_SUB, R0, R1), \
+ BPF_ALU64_REG(BPF_MOV, R1, R0), \
+ BPF_ALU64_IMM(BPF_RSH, R1, 32), \
+ BPF_ALU64_REG(BPF_OR, R0, R1), \
+ BPF_EXIT_INSN(), \
+ }, \
+ INTERNAL, \
+ { }, \
+ { { 0, 0 } }, \
+ .stack_depth = 8, \
+ }
+ BPF_ATOMIC32_SRC_ZEXT(ADD),
+ BPF_ATOMIC32_SRC_ZEXT(AND),
+ BPF_ATOMIC32_SRC_ZEXT(OR),
+ BPF_ATOMIC32_SRC_ZEXT(XOR),
+#undef BPF_ATOMIC32_SRC_ZEXT
+ /* Checking that CMPXCHG32 src is not zero extended in place */
+ {
+ "ATOMIC_W_CMPXCHG: src preserved in zext",
+ .u.insns_int = {
+ BPF_LD_IMM64(R1, 0x0123456789acbdefULL),
+ BPF_ALU64_REG(BPF_MOV, R2, R1),
+ BPF_ALU64_REG(BPF_MOV, R0, 0),
+ BPF_ST_MEM(BPF_W, R10, -4, 0),
+ BPF_ATOMIC_OP(BPF_W, BPF_CMPXCHG, R10, R1, -4),
+ BPF_ALU64_REG(BPF_SUB, R1, R2),
+ BPF_ALU64_REG(BPF_MOV, R2, R1),
+ BPF_ALU64_IMM(BPF_RSH, R2, 32),
+ BPF_ALU64_REG(BPF_OR, R1, R2),
+ BPF_ALU64_REG(BPF_MOV, R0, R1),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL,
+ { },
+ { { 0, 0 } },
+ .stack_depth = 8,
+ },
+ /* Checking that JMP32 immediate src is not zero extended in place */
+#define BPF_JMP32_IMM_ZEXT(op) \
+ { \
+ "JMP32_" #op "_K: operand preserved in zext", \
+ .u.insns_int = { \
+ BPF_LD_IMM64(R0, 0x0123456789acbdefULL),\
+ BPF_ALU64_REG(BPF_MOV, R1, R0), \
+ BPF_JMP32_IMM(BPF_##op, R0, 1234, 1), \
+ BPF_JMP_A(0), /* Nop */ \
+ BPF_ALU64_REG(BPF_SUB, R0, R1), \
+ BPF_ALU64_REG(BPF_MOV, R1, R0), \
+ BPF_ALU64_IMM(BPF_RSH, R1, 32), \
+ BPF_ALU64_REG(BPF_OR, R0, R1), \
+ BPF_EXIT_INSN(), \
+ }, \
+ INTERNAL, \
+ { }, \
+ { { 0, 0 } }, \
+ }
+ BPF_JMP32_IMM_ZEXT(JEQ),
+ BPF_JMP32_IMM_ZEXT(JNE),
+ BPF_JMP32_IMM_ZEXT(JSET),
+ BPF_JMP32_IMM_ZEXT(JGT),
+ BPF_JMP32_IMM_ZEXT(JGE),
+ BPF_JMP32_IMM_ZEXT(JLT),
+ BPF_JMP32_IMM_ZEXT(JLE),
+ BPF_JMP32_IMM_ZEXT(JSGT),
+ BPF_JMP32_IMM_ZEXT(JSGE),
+ BPF_JMP32_IMM_ZEXT(JSGT),
+ BPF_JMP32_IMM_ZEXT(JSLT),
+ BPF_JMP32_IMM_ZEXT(JSLE),
+#undef BPF_JMP2_IMM_ZEXT
+ /* Checking that JMP32 dst & src are not zero extended in place */
+#define BPF_JMP32_REG_ZEXT(op) \
+ { \
+ "JMP32_" #op "_X: operands preserved in zext", \
+ .u.insns_int = { \
+ BPF_LD_IMM64(R0, 0x0123456789acbdefULL),\
+ BPF_LD_IMM64(R1, 0xfedcba9876543210ULL),\
+ BPF_ALU64_REG(BPF_MOV, R2, R0), \
+ BPF_ALU64_REG(BPF_MOV, R3, R1), \
+ BPF_JMP32_IMM(BPF_##op, R0, R1, 1), \
+ BPF_JMP_A(0), /* Nop */ \
+ BPF_ALU64_REG(BPF_SUB, R0, R2), \
+ BPF_ALU64_REG(BPF_SUB, R1, R3), \
+ BPF_ALU64_REG(BPF_OR, R0, R1), \
+ BPF_ALU64_REG(BPF_MOV, R1, R0), \
+ BPF_ALU64_IMM(BPF_RSH, R1, 32), \
+ BPF_ALU64_REG(BPF_OR, R0, R1), \
+ BPF_EXIT_INSN(), \
+ }, \
+ INTERNAL, \
+ { }, \
+ { { 0, 0 } }, \
+ }
+ BPF_JMP32_REG_ZEXT(JEQ),
+ BPF_JMP32_REG_ZEXT(JNE),
+ BPF_JMP32_REG_ZEXT(JSET),
+ BPF_JMP32_REG_ZEXT(JGT),
+ BPF_JMP32_REG_ZEXT(JGE),
+ BPF_JMP32_REG_ZEXT(JLT),
+ BPF_JMP32_REG_ZEXT(JLE),
+ BPF_JMP32_REG_ZEXT(JSGT),
+ BPF_JMP32_REG_ZEXT(JSGE),
+ BPF_JMP32_REG_ZEXT(JSGT),
+ BPF_JMP32_REG_ZEXT(JSLT),
+ BPF_JMP32_REG_ZEXT(JSLE),
+#undef BPF_JMP2_REG_ZEXT
+ /* ALU64 K register combinations */
+ {
+ "ALU64_MOV_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_mov_imm_regs,
+ },
+ {
+ "ALU64_AND_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_and_imm_regs,
+ },
+ {
+ "ALU64_OR_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_or_imm_regs,
+ },
+ {
+ "ALU64_XOR_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_xor_imm_regs,
+ },
+ {
+ "ALU64_LSH_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_lsh_imm_regs,
+ },
+ {
+ "ALU64_RSH_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_rsh_imm_regs,
+ },
+ {
+ "ALU64_ARSH_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_arsh_imm_regs,
+ },
+ {
+ "ALU64_ADD_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_add_imm_regs,
+ },
+ {
+ "ALU64_SUB_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_sub_imm_regs,
+ },
+ {
+ "ALU64_MUL_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_mul_imm_regs,
+ },
+ {
+ "ALU64_DIV_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_div_imm_regs,
+ },
+ {
+ "ALU64_MOD_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_mod_imm_regs,
+ },
+ /* ALU32 K registers */
+ {
+ "ALU32_MOV_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_mov_imm_regs,
+ },
+ {
+ "ALU32_AND_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_and_imm_regs,
+ },
+ {
+ "ALU32_OR_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_or_imm_regs,
+ },
+ {
+ "ALU32_XOR_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_xor_imm_regs,
+ },
+ {
+ "ALU32_LSH_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_lsh_imm_regs,
+ },
+ {
+ "ALU32_RSH_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_rsh_imm_regs,
+ },
+ {
+ "ALU32_ARSH_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_arsh_imm_regs,
+ },
+ {
+ "ALU32_ADD_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_add_imm_regs,
+ },
+ {
+ "ALU32_SUB_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_sub_imm_regs,
+ },
+ {
+ "ALU32_MUL_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_mul_imm_regs,
+ },
+ {
+ "ALU32_DIV_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_div_imm_regs,
+ },
+ {
+ "ALU32_MOD_K: registers",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_mod_imm_regs,
+ },
+ /* ALU64 X register combinations */
+ {
+ "ALU64_MOV_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_mov_reg_pairs,
+ },
+ {
+ "ALU64_AND_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_and_reg_pairs,
+ },
+ {
+ "ALU64_OR_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_or_reg_pairs,
+ },
+ {
+ "ALU64_XOR_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_xor_reg_pairs,
+ },
+ {
+ "ALU64_LSH_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_lsh_reg_pairs,
+ },
+ {
+ "ALU64_RSH_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_rsh_reg_pairs,
+ },
+ {
+ "ALU64_ARSH_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_arsh_reg_pairs,
+ },
+ {
+ "ALU64_ADD_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_add_reg_pairs,
+ },
+ {
+ "ALU64_SUB_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_sub_reg_pairs,
+ },
+ {
+ "ALU64_MUL_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_mul_reg_pairs,
+ },
+ {
+ "ALU64_DIV_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_div_reg_pairs,
+ },
+ {
+ "ALU64_MOD_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_mod_reg_pairs,
+ },
+ /* ALU32 X register combinations */
+ {
+ "ALU32_MOV_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_mov_reg_pairs,
+ },
+ {
+ "ALU32_AND_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_and_reg_pairs,
+ },
+ {
+ "ALU32_OR_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_or_reg_pairs,
+ },
+ {
+ "ALU32_XOR_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_xor_reg_pairs,
+ },
+ {
+ "ALU32_LSH_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_lsh_reg_pairs,
+ },
+ {
+ "ALU32_RSH_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_rsh_reg_pairs,
+ },
+ {
+ "ALU32_ARSH_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_arsh_reg_pairs,
+ },
+ {
+ "ALU32_ADD_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_add_reg_pairs,
+ },
+ {
+ "ALU32_SUB_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_sub_reg_pairs,
+ },
+ {
+ "ALU32_MUL_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_mul_reg_pairs,
+ },
+ {
+ "ALU32_DIV_X: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_div_reg_pairs,
+ },
+ {
+ "ALU32_MOD_X register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_mod_reg_pairs,
+ },
+ /* Exhaustive test of ALU64 shift operations */
+ {
+ "ALU64_LSH_K: all shift values",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_lsh_imm,
+ },
+ {
+ "ALU64_RSH_K: all shift values",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_rsh_imm,
+ },
+ {
+ "ALU64_ARSH_K: all shift values",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_arsh_imm,
+ },
+ {
+ "ALU64_LSH_X: all shift values",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_lsh_reg,
+ },
+ {
+ "ALU64_RSH_X: all shift values",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_rsh_reg,
+ },
+ {
+ "ALU64_ARSH_X: all shift values",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_arsh_reg,
+ },
+ /* Exhaustive test of ALU32 shift operations */
+ {
+ "ALU32_LSH_K: all shift values",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_lsh_imm,
+ },
+ {
+ "ALU32_RSH_K: all shift values",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_rsh_imm,
+ },
+ {
+ "ALU32_ARSH_K: all shift values",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_arsh_imm,
+ },
+ {
+ "ALU32_LSH_X: all shift values",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_lsh_reg,
+ },
+ {
+ "ALU32_RSH_X: all shift values",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_rsh_reg,
+ },
+ {
+ "ALU32_ARSH_X: all shift values",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_arsh_reg,
+ },
+ /*
+ * Exhaustive test of ALU64 shift operations when
+ * source and destination register are the same.
+ */
+ {
+ "ALU64_LSH_X: all shift values with the same register",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_lsh_same_reg,
+ },
+ {
+ "ALU64_RSH_X: all shift values with the same register",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_rsh_same_reg,
+ },
+ {
+ "ALU64_ARSH_X: all shift values with the same register",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_arsh_same_reg,
+ },
+ /*
+ * Exhaustive test of ALU32 shift operations when
+ * source and destination register are the same.
+ */
+ {
+ "ALU32_LSH_X: all shift values with the same register",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_lsh_same_reg,
+ },
+ {
+ "ALU32_RSH_X: all shift values with the same register",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_rsh_same_reg,
+ },
+ {
+ "ALU32_ARSH_X: all shift values with the same register",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_arsh_same_reg,
+ },
+ /* ALU64 immediate magnitudes */
+ {
+ "ALU64_MOV_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_mov_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_AND_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_and_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_OR_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_or_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_XOR_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_xor_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_ADD_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_add_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_SUB_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_sub_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_MUL_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_mul_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_DIV_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_div_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_MOD_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_mod_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ /* ALU32 immediate magnitudes */
+ {
+ "ALU32_MOV_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_mov_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_AND_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_and_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_OR_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_or_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_XOR_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_xor_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_ADD_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_add_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_SUB_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_sub_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_MUL_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_mul_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_DIV_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_div_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_MOD_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_mod_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ /* ALU64 register magnitudes */
+ {
+ "ALU64_MOV_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_mov_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_AND_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_and_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_OR_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_or_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_XOR_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_xor_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_ADD_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_add_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_SUB_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_sub_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_MUL_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_mul_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_DIV_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_div_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU64_MOD_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu64_mod_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ /* ALU32 register magnitudes */
+ {
+ "ALU32_MOV_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_mov_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_AND_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_and_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_OR_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_or_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_XOR_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_xor_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_ADD_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_add_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_SUB_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_sub_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_MUL_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_mul_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_DIV_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_div_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ALU32_MOD_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_alu32_mod_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ /* LD_IMM64 immediate magnitudes and byte patterns */
+ {
+ "LD_IMM64: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_ld_imm64_magn,
+ },
+ {
+ "LD_IMM64: checker byte patterns",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_ld_imm64_checker,
+ },
+ {
+ "LD_IMM64: random positive and zero byte patterns",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_ld_imm64_pos_zero,
+ },
+ {
+ "LD_IMM64: random negative and zero byte patterns",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_ld_imm64_neg_zero,
+ },
+ {
+ "LD_IMM64: random positive and negative byte patterns",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_ld_imm64_pos_neg,
+ },
+ /* 64-bit ATOMIC register combinations */
+ {
+ "ATOMIC_DW_ADD: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_add_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_DW_AND: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_and_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_DW_OR: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_or_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_DW_XOR: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_xor_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_DW_ADD_FETCH: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_add_fetch_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_DW_AND_FETCH: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_and_fetch_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_DW_OR_FETCH: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_or_fetch_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_DW_XOR_FETCH: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_xor_fetch_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_DW_XCHG: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_xchg_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_DW_CMPXCHG: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_cmpxchg_reg_pairs,
+ .stack_depth = 8,
+ },
+ /* 32-bit ATOMIC register combinations */
+ {
+ "ATOMIC_W_ADD: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_add_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_W_AND: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_and_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_W_OR: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_or_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_W_XOR: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_xor_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_W_ADD_FETCH: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_add_fetch_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_W_AND_FETCH: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_and_fetch_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_W_OR_FETCH: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_or_fetch_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_W_XOR_FETCH: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_xor_fetch_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_W_XCHG: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_xchg_reg_pairs,
+ .stack_depth = 8,
+ },
+ {
+ "ATOMIC_W_CMPXCHG: register combinations",
+ { },
+ INTERNAL,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_cmpxchg_reg_pairs,
+ .stack_depth = 8,
+ },
+ /* 64-bit ATOMIC magnitudes */
+ {
+ "ATOMIC_DW_ADD: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_add,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_DW_AND: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_and,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_DW_OR: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_or,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_DW_XOR: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_xor,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_DW_ADD_FETCH: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_add_fetch,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_DW_AND_FETCH: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_and_fetch,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_DW_OR_FETCH: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_or_fetch,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_DW_XOR_FETCH: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_xor_fetch,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_DW_XCHG: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic64_xchg,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_DW_CMPXCHG: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_cmpxchg64,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ /* 64-bit atomic magnitudes */
+ {
+ "ATOMIC_W_ADD: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_add,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_W_AND: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_and,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_W_OR: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_or,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_W_XOR: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_xor,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_W_ADD_FETCH: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_add_fetch,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_W_AND_FETCH: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_and_fetch,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_W_OR_FETCH: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_or_fetch,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_W_XOR_FETCH: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_xor_fetch,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_W_XCHG: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_atomic32_xchg,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "ATOMIC_W_CMPXCHG: all operand magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_cmpxchg32,
+ .stack_depth = 8,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ /* JMP immediate magnitudes */
+ {
+ "JMP_JSET_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jset_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JEQ_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jeq_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JNE_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jne_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JGT_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jgt_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JGE_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jge_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JLT_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jlt_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JLE_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jle_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JSGT_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jsgt_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JSGE_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jsge_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JSLT_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jslt_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JSLE_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jsle_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ /* JMP register magnitudes */
+ {
+ "JMP_JSET_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jset_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JEQ_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jeq_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JNE_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jne_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JGT_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jgt_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JGE_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jge_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JLT_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jlt_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JLE_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jle_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JSGT_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jsgt_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JSGE_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jsge_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JSLT_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jslt_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP_JSLE_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp_jsle_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ /* JMP32 immediate magnitudes */
+ {
+ "JMP32_JSET_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jset_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JEQ_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jeq_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JNE_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jne_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JGT_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jgt_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JGE_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jge_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JLT_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jlt_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JLE_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jle_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JSGT_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jsgt_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JSGE_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jsge_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JSLT_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jslt_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JSLE_K: all immediate value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jsle_imm,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ /* JMP32 register magnitudes */
+ {
+ "JMP32_JSET_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jset_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JEQ_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jeq_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JNE_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jne_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JGT_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jgt_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JGE_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jge_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JLT_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jlt_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JLE_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jle_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JSGT_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jsgt_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JSGE_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jsge_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JSLT_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jslt_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ {
+ "JMP32_JSLE_X: all register value magnitudes",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_jmp32_jsle_reg,
+ .nr_testruns = NR_PATTERN_RUNS,
+ },
+ /* Conditional jumps with constant decision */
+ {
+ "JMP_JSET_K: imm = 0 -> never taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP_IMM(BPF_JSET, R1, 0, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 0 } },
+ },
+ {
+ "JMP_JLT_K: imm = 0 -> never taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP_IMM(BPF_JLT, R1, 0, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 0 } },
+ },
+ {
+ "JMP_JGE_K: imm = 0 -> always taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP_IMM(BPF_JGE, R1, 0, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JGT_K: imm = 0xffffffff -> never taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP_IMM(BPF_JGT, R1, U32_MAX, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 0 } },
+ },
+ {
+ "JMP_JLE_K: imm = 0xffffffff -> always taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP_IMM(BPF_JLE, R1, U32_MAX, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP32_JSGT_K: imm = 0x7fffffff -> never taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP32_IMM(BPF_JSGT, R1, S32_MAX, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 0 } },
+ },
+ {
+ "JMP32_JSGE_K: imm = -0x80000000 -> always taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP32_IMM(BPF_JSGE, R1, S32_MIN, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP32_JSLT_K: imm = -0x80000000 -> never taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP32_IMM(BPF_JSLT, R1, S32_MIN, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 0 } },
+ },
+ {
+ "JMP32_JSLE_K: imm = 0x7fffffff -> always taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP32_IMM(BPF_JSLE, R1, S32_MAX, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JEQ_X: dst = src -> always taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP_REG(BPF_JEQ, R1, R1, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JGE_X: dst = src -> always taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP_REG(BPF_JGE, R1, R1, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JLE_X: dst = src -> always taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP_REG(BPF_JLE, R1, R1, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JSGE_X: dst = src -> always taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP_REG(BPF_JSGE, R1, R1, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JSLE_X: dst = src -> always taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP_REG(BPF_JSLE, R1, R1, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ },
+ {
+ "JMP_JNE_X: dst = src -> never taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP_REG(BPF_JNE, R1, R1, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 0 } },
+ },
+ {
+ "JMP_JGT_X: dst = src -> never taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP_REG(BPF_JGT, R1, R1, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 0 } },
+ },
+ {
+ "JMP_JLT_X: dst = src -> never taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP_REG(BPF_JLT, R1, R1, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 0 } },
+ },
+ {
+ "JMP_JSGT_X: dst = src -> never taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP_REG(BPF_JSGT, R1, R1, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 0 } },
+ },
+ {
+ "JMP_JSLT_X: dst = src -> never taken",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 1),
+ BPF_JMP_REG(BPF_JSLT, R1, R1, 1),
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_EXIT_INSN(),
+ },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 0 } },
+ },
+ /* Short relative jumps */
+ {
+ "Short relative jump: offset=0",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_JMP_IMM(BPF_JEQ, R0, 0, 0),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, -1),
+ },
+ INTERNAL | FLAG_NO_DATA | FLAG_VERIFIER_ZEXT,
+ { },
+ { { 0, 0 } },
+ },
+ {
+ "Short relative jump: offset=1",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_JMP_IMM(BPF_JEQ, R0, 0, 1),
+ BPF_ALU32_IMM(BPF_ADD, R0, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, -1),
+ },
+ INTERNAL | FLAG_NO_DATA | FLAG_VERIFIER_ZEXT,
+ { },
+ { { 0, 0 } },
+ },
+ {
+ "Short relative jump: offset=2",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_JMP_IMM(BPF_JEQ, R0, 0, 2),
+ BPF_ALU32_IMM(BPF_ADD, R0, 1),
+ BPF_ALU32_IMM(BPF_ADD, R0, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, -1),
+ },
+ INTERNAL | FLAG_NO_DATA | FLAG_VERIFIER_ZEXT,
+ { },
+ { { 0, 0 } },
+ },
+ {
+ "Short relative jump: offset=3",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_JMP_IMM(BPF_JEQ, R0, 0, 3),
+ BPF_ALU32_IMM(BPF_ADD, R0, 1),
+ BPF_ALU32_IMM(BPF_ADD, R0, 1),
+ BPF_ALU32_IMM(BPF_ADD, R0, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, -1),
+ },
+ INTERNAL | FLAG_NO_DATA | FLAG_VERIFIER_ZEXT,
+ { },
+ { { 0, 0 } },
+ },
+ {
+ "Short relative jump: offset=4",
+ .u.insns_int = {
+ BPF_ALU64_IMM(BPF_MOV, R0, 0),
+ BPF_JMP_IMM(BPF_JEQ, R0, 0, 4),
+ BPF_ALU32_IMM(BPF_ADD, R0, 1),
+ BPF_ALU32_IMM(BPF_ADD, R0, 1),
+ BPF_ALU32_IMM(BPF_ADD, R0, 1),
+ BPF_ALU32_IMM(BPF_ADD, R0, 1),
+ BPF_EXIT_INSN(),
+ BPF_ALU32_IMM(BPF_MOV, R0, -1),
+ },
+ INTERNAL | FLAG_NO_DATA | FLAG_VERIFIER_ZEXT,
+ { },
+ { { 0, 0 } },
+ },
+ /* Conditional branch conversions */
+ {
+ "Long conditional jump: taken at runtime",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_max_jmp_taken,
+ },
+ {
+ "Long conditional jump: not taken at runtime",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 2 } },
+ .fill_helper = bpf_fill_max_jmp_not_taken,
+ },
+ {
+ "Long conditional jump: always taken, known at JIT time",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 1 } },
+ .fill_helper = bpf_fill_max_jmp_always_taken,
+ },
+ {
+ "Long conditional jump: never taken, known at JIT time",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, 2 } },
+ .fill_helper = bpf_fill_max_jmp_never_taken,
+ },
+ /* Staggered jump sequences, immediate */
+ {
+ "Staggered jumps: JMP_JA",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_ja,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JEQ_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jeq_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JNE_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jne_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JSET_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jset_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JGT_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jgt_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JGE_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jge_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JLT_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jlt_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JLE_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jle_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JSGT_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jsgt_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JSGE_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jsge_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JSLT_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jslt_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JSLE_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jsle_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ /* Staggered jump sequences, register */
+ {
+ "Staggered jumps: JMP_JEQ_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jeq_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JNE_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jne_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JSET_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jset_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JGT_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jgt_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JGE_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jge_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JLT_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jlt_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JLE_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jle_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JSGT_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jsgt_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JSGE_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jsge_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JSLT_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jslt_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP_JSLE_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jsle_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ /* Staggered jump sequences, JMP32 immediate */
+ {
+ "Staggered jumps: JMP32_JEQ_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jeq32_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JNE_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jne32_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JSET_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jset32_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JGT_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jgt32_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JGE_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jge32_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JLT_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jlt32_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JLE_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jle32_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JSGT_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jsgt32_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JSGE_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jsge32_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JSLT_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jslt32_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JSLE_K",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jsle32_imm,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ /* Staggered jump sequences, JMP32 register */
+ {
+ "Staggered jumps: JMP32_JEQ_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jeq32_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JNE_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jne32_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JSET_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jset32_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JGT_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jgt32_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JGE_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jge32_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JLT_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jlt32_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JLE_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jle32_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JSGT_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jsgt32_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JSGE_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jsge32_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JSLT_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jslt32_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
+ {
+ "Staggered jumps: JMP32_JSLE_X",
+ { },
+ INTERNAL | FLAG_NO_DATA,
+ { },
+ { { 0, MAX_STAGGERED_JMP_SIZE + 1 } },
+ .fill_helper = bpf_fill_staggered_jsle32_reg,
+ .nr_testruns = NR_STAGGERED_JMP_RUNS,
+ },
};
static struct net_device dev;
@@ -8576,6 +14213,8 @@ static struct bpf_prog *generate_filter(int which, int *err)
fp->type = BPF_PROG_TYPE_SOCKET_FILTER;
memcpy(fp->insnsi, fptr, fp->len * sizeof(struct bpf_insn));
fp->aux->stack_depth = tests[which].stack_depth;
+ fp->aux->verifier_zext = !!(tests[which].aux &
+ FLAG_VERIFIER_ZEXT);
/* We cannot error here as we don't need type compatibility
* checks.
@@ -8631,6 +14270,9 @@ static int run_one(const struct bpf_prog *fp, struct bpf_test *test)
{
int err_cnt = 0, i, runs = MAX_TESTRUNS;
+ if (test->nr_testruns)
+ runs = min(test->nr_testruns, MAX_TESTRUNS);
+
for (i = 0; i < MAX_SUBTESTS; i++) {
void *data;
u64 duration;
@@ -8674,86 +14316,9 @@ module_param_string(test_name, test_name, sizeof(test_name), 0);
static int test_id = -1;
module_param(test_id, int, 0);
-static int test_range[2] = { 0, ARRAY_SIZE(tests) - 1 };
+static int test_range[2] = { 0, INT_MAX };
module_param_array(test_range, int, NULL, 0);
-static __init int find_test_index(const char *test_name)
-{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(tests); i++) {
- if (!strcmp(tests[i].descr, test_name))
- return i;
- }
- return -1;
-}
-
-static __init int prepare_bpf_tests(void)
-{
- int i;
-
- if (test_id >= 0) {
- /*
- * if a test_id was specified, use test_range to
- * cover only that test.
- */
- if (test_id >= ARRAY_SIZE(tests)) {
- pr_err("test_bpf: invalid test_id specified.\n");
- return -EINVAL;
- }
-
- test_range[0] = test_id;
- test_range[1] = test_id;
- } else if (*test_name) {
- /*
- * if a test_name was specified, find it and setup
- * test_range to cover only that test.
- */
- int idx = find_test_index(test_name);
-
- if (idx < 0) {
- pr_err("test_bpf: no test named '%s' found.\n",
- test_name);
- return -EINVAL;
- }
- test_range[0] = idx;
- test_range[1] = idx;
- } else {
- /*
- * check that the supplied test_range is valid.
- */
- if (test_range[0] >= ARRAY_SIZE(tests) ||
- test_range[1] >= ARRAY_SIZE(tests) ||
- test_range[0] < 0 || test_range[1] < 0) {
- pr_err("test_bpf: test_range is out of bound.\n");
- return -EINVAL;
- }
-
- if (test_range[1] < test_range[0]) {
- pr_err("test_bpf: test_range is ending before it starts.\n");
- return -EINVAL;
- }
- }
-
- for (i = 0; i < ARRAY_SIZE(tests); i++) {
- if (tests[i].fill_helper &&
- tests[i].fill_helper(&tests[i]) < 0)
- return -ENOMEM;
- }
-
- return 0;
-}
-
-static __init void destroy_bpf_tests(void)
-{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(tests); i++) {
- if (tests[i].fill_helper)
- kfree(tests[i].u.ptr.insns);
- }
-}
-
static bool exclude_test(int test_id)
{
return test_id < test_range[0] || test_id > test_range[1];
@@ -8800,6 +14365,7 @@ static __init struct sk_buff *build_test_skb(void)
skb_shinfo(skb[0])->gso_type |= SKB_GSO_DODGY;
skb_shinfo(skb[0])->gso_segs = 0;
skb_shinfo(skb[0])->frag_list = skb[1];
+ skb_shinfo(skb[0])->hwtstamps.hwtstamp = 1000;
/* adjust skb[0]'s len */
skb[0]->len += skb[1]->len;
@@ -8924,6 +14490,10 @@ static __init int test_skb_segment(void)
for (i = 0; i < ARRAY_SIZE(skb_segment_tests); i++) {
const struct skb_segment_test *test = &skb_segment_tests[i];
+ cond_resched();
+ if (exclude_test(i))
+ continue;
+
pr_info("#%d %s ", i, test->descr);
if (test_skb_segment_single(test)) {
@@ -8955,7 +14525,19 @@ static __init int test_bpf(void)
pr_info("#%d %s ", i, tests[i].descr);
+ if (tests[i].fill_helper &&
+ tests[i].fill_helper(&tests[i]) < 0) {
+ pr_cont("FAIL to prog_fill\n");
+ continue;
+ }
+
fp = generate_filter(i, &err);
+
+ if (tests[i].fill_helper) {
+ kfree(tests[i].u.ptr.insns);
+ tests[i].u.ptr.insns = NULL;
+ }
+
if (fp == NULL) {
if (err == 0) {
pass_cnt++;
@@ -8992,10 +14574,15 @@ static __init int test_bpf(void)
struct tail_call_test {
const char *descr;
struct bpf_insn insns[MAX_INSNS];
+ int flags;
int result;
int stack_depth;
};
+/* Flags that can be passed to tail call test cases */
+#define FLAG_NEED_STATE BIT(0)
+#define FLAG_RESULT_IN_STATE BIT(1)
+
/*
* Magic marker used in test snippets for tail calls below.
* BPF_LD/MOV to R2 and R2 with this immediate value is replaced
@@ -9016,6 +14603,30 @@ struct tail_call_test {
BPF_JMP_IMM(BPF_TAIL_CALL, 0, 0, 0)
/*
+ * A test function to be called from a BPF program, clobbering a lot of
+ * CPU registers in the process. A JITed BPF program calling this function
+ * must save and restore any caller-saved registers it uses for internal
+ * state, for example the current tail call count.
+ */
+BPF_CALL_1(bpf_test_func, u64, arg)
+{
+ char buf[64];
+ long a = 0;
+ long b = 1;
+ long c = 2;
+ long d = 3;
+ long e = 4;
+ long f = 5;
+ long g = 6;
+ long h = 7;
+
+ return snprintf(buf, sizeof(buf),
+ "%ld %lu %lx %ld %lu %lx %ld %lu %x",
+ a, b, c, d, e, f, g, h, (int)arg);
+}
+#define BPF_FUNC_test_func __BPF_FUNC_MAX_ID
+
+/*
* Tail call tests. Each test case may call any other test in the table,
* including itself, specified as a relative index offset from the calling
* test. The index TAIL_CALL_NULL can be used to specify a NULL target
@@ -9065,32 +14676,60 @@ static struct tail_call_test tail_call_tests[] = {
{
"Tail call error path, max count reached",
.insns = {
- BPF_ALU64_IMM(BPF_ADD, R1, 1),
- BPF_ALU64_REG(BPF_MOV, R0, R1),
+ BPF_LDX_MEM(BPF_W, R2, R1, 0),
+ BPF_ALU64_IMM(BPF_ADD, R2, 1),
+ BPF_STX_MEM(BPF_W, R1, R2, 0),
TAIL_CALL(0),
BPF_EXIT_INSN(),
},
- .result = MAX_TAIL_CALL_CNT + 1,
+ .flags = FLAG_NEED_STATE | FLAG_RESULT_IN_STATE,
+ .result = (MAX_TAIL_CALL_CNT + 1 + 1) * MAX_TESTRUNS,
+ },
+ {
+ "Tail call count preserved across function calls",
+ .insns = {
+ BPF_LDX_MEM(BPF_W, R2, R1, 0),
+ BPF_ALU64_IMM(BPF_ADD, R2, 1),
+ BPF_STX_MEM(BPF_W, R1, R2, 0),
+ BPF_STX_MEM(BPF_DW, R10, R1, -8),
+ BPF_CALL_REL(BPF_FUNC_get_numa_node_id),
+ BPF_CALL_REL(BPF_FUNC_ktime_get_ns),
+ BPF_CALL_REL(BPF_FUNC_ktime_get_boot_ns),
+ BPF_CALL_REL(BPF_FUNC_ktime_get_coarse_ns),
+ BPF_CALL_REL(BPF_FUNC_jiffies64),
+ BPF_CALL_REL(BPF_FUNC_test_func),
+ BPF_LDX_MEM(BPF_DW, R1, R10, -8),
+ BPF_ALU32_REG(BPF_MOV, R0, R1),
+ TAIL_CALL(0),
+ BPF_EXIT_INSN(),
+ },
+ .stack_depth = 8,
+ .flags = FLAG_NEED_STATE | FLAG_RESULT_IN_STATE,
+ .result = (MAX_TAIL_CALL_CNT + 1 + 1) * MAX_TESTRUNS,
},
{
"Tail call error path, NULL target",
.insns = {
- BPF_ALU64_IMM(BPF_MOV, R0, -1),
+ BPF_LDX_MEM(BPF_W, R2, R1, 0),
+ BPF_ALU64_IMM(BPF_ADD, R2, 1),
+ BPF_STX_MEM(BPF_W, R1, R2, 0),
TAIL_CALL(TAIL_CALL_NULL),
- BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
- .result = 1,
+ .flags = FLAG_NEED_STATE | FLAG_RESULT_IN_STATE,
+ .result = MAX_TESTRUNS,
},
{
"Tail call error path, index out of range",
.insns = {
- BPF_ALU64_IMM(BPF_MOV, R0, -1),
+ BPF_LDX_MEM(BPF_W, R2, R1, 0),
+ BPF_ALU64_IMM(BPF_ADD, R2, 1),
+ BPF_STX_MEM(BPF_W, R1, R2, 0),
TAIL_CALL(TAIL_CALL_INVALID),
- BPF_ALU64_IMM(BPF_MOV, R0, 1),
BPF_EXIT_INSN(),
},
- .result = 1,
+ .flags = FLAG_NEED_STATE | FLAG_RESULT_IN_STATE,
+ .result = MAX_TESTRUNS,
},
};
@@ -9146,17 +14785,19 @@ static __init int prepare_tail_call_tests(struct bpf_array **pprogs)
/* Relocate runtime tail call offsets and addresses */
for (i = 0; i < len; i++) {
struct bpf_insn *insn = &fp->insnsi[i];
-
- if (insn->imm != TAIL_CALL_MARKER)
- continue;
+ long addr = 0;
switch (insn->code) {
case BPF_LD | BPF_DW | BPF_IMM:
+ if (insn->imm != TAIL_CALL_MARKER)
+ break;
insn[0].imm = (u32)(long)progs;
insn[1].imm = ((u64)(long)progs) >> 32;
break;
case BPF_ALU | BPF_MOV | BPF_K:
+ if (insn->imm != TAIL_CALL_MARKER)
+ break;
if (insn->off == TAIL_CALL_NULL)
insn->imm = ntests;
else if (insn->off == TAIL_CALL_INVALID)
@@ -9164,6 +14805,38 @@ static __init int prepare_tail_call_tests(struct bpf_array **pprogs)
else
insn->imm = which + insn->off;
insn->off = 0;
+ break;
+
+ case BPF_JMP | BPF_CALL:
+ if (insn->src_reg != BPF_PSEUDO_CALL)
+ break;
+ switch (insn->imm) {
+ case BPF_FUNC_get_numa_node_id:
+ addr = (long)&numa_node_id;
+ break;
+ case BPF_FUNC_ktime_get_ns:
+ addr = (long)&ktime_get_ns;
+ break;
+ case BPF_FUNC_ktime_get_boot_ns:
+ addr = (long)&ktime_get_boot_fast_ns;
+ break;
+ case BPF_FUNC_ktime_get_coarse_ns:
+ addr = (long)&ktime_get_coarse_ns;
+ break;
+ case BPF_FUNC_jiffies64:
+ addr = (long)&get_jiffies_64;
+ break;
+ case BPF_FUNC_test_func:
+ addr = (long)&bpf_test_func;
+ break;
+ default:
+ err = -EFAULT;
+ goto out_err;
+ }
+ *insn = BPF_EMIT_CALL(addr);
+ if ((long)__bpf_call_base + insn->imm != addr)
+ *insn = BPF_JMP_A(0); /* Skip: NOP */
+ break;
}
}
@@ -9196,10 +14869,14 @@ static __init int test_tail_calls(struct bpf_array *progs)
for (i = 0; i < ARRAY_SIZE(tail_call_tests); i++) {
struct tail_call_test *test = &tail_call_tests[i];
struct bpf_prog *fp = progs->ptrs[i];
+ int *data = NULL;
+ int state = 0;
u64 duration;
int ret;
cond_resched();
+ if (exclude_test(i))
+ continue;
pr_info("#%d %s ", i, test->descr);
if (!fp) {
@@ -9212,7 +14889,11 @@ static __init int test_tail_calls(struct bpf_array *progs)
if (fp->jited)
jit_cnt++;
- ret = __run_one(fp, NULL, MAX_TESTRUNS, &duration);
+ if (test->flags & FLAG_NEED_STATE)
+ data = &state;
+ ret = __run_one(fp, data, MAX_TESTRUNS, &duration);
+ if (test->flags & FLAG_RESULT_IN_STATE)
+ ret = state;
if (ret == test->result) {
pr_cont("%lld PASS", duration);
pass_cnt++;
@@ -9228,29 +14909,144 @@ static __init int test_tail_calls(struct bpf_array *progs)
return err_cnt ? -EINVAL : 0;
}
+static char test_suite[32];
+module_param_string(test_suite, test_suite, sizeof(test_suite), 0);
+
+static __init int find_test_index(const char *test_name)
+{
+ int i;
+
+ if (!strcmp(test_suite, "test_bpf")) {
+ for (i = 0; i < ARRAY_SIZE(tests); i++) {
+ if (!strcmp(tests[i].descr, test_name))
+ return i;
+ }
+ }
+
+ if (!strcmp(test_suite, "test_tail_calls")) {
+ for (i = 0; i < ARRAY_SIZE(tail_call_tests); i++) {
+ if (!strcmp(tail_call_tests[i].descr, test_name))
+ return i;
+ }
+ }
+
+ if (!strcmp(test_suite, "test_skb_segment")) {
+ for (i = 0; i < ARRAY_SIZE(skb_segment_tests); i++) {
+ if (!strcmp(skb_segment_tests[i].descr, test_name))
+ return i;
+ }
+ }
+
+ return -1;
+}
+
+static __init int prepare_test_range(void)
+{
+ int valid_range;
+
+ if (!strcmp(test_suite, "test_bpf"))
+ valid_range = ARRAY_SIZE(tests);
+ else if (!strcmp(test_suite, "test_tail_calls"))
+ valid_range = ARRAY_SIZE(tail_call_tests);
+ else if (!strcmp(test_suite, "test_skb_segment"))
+ valid_range = ARRAY_SIZE(skb_segment_tests);
+ else
+ return 0;
+
+ if (test_id >= 0) {
+ /*
+ * if a test_id was specified, use test_range to
+ * cover only that test.
+ */
+ if (test_id >= valid_range) {
+ pr_err("test_bpf: invalid test_id specified for '%s' suite.\n",
+ test_suite);
+ return -EINVAL;
+ }
+
+ test_range[0] = test_id;
+ test_range[1] = test_id;
+ } else if (*test_name) {
+ /*
+ * if a test_name was specified, find it and setup
+ * test_range to cover only that test.
+ */
+ int idx = find_test_index(test_name);
+
+ if (idx < 0) {
+ pr_err("test_bpf: no test named '%s' found for '%s' suite.\n",
+ test_name, test_suite);
+ return -EINVAL;
+ }
+ test_range[0] = idx;
+ test_range[1] = idx;
+ } else if (test_range[0] != 0 || test_range[1] != INT_MAX) {
+ /*
+ * check that the supplied test_range is valid.
+ */
+ if (test_range[0] < 0 || test_range[1] >= valid_range) {
+ pr_err("test_bpf: test_range is out of bound for '%s' suite.\n",
+ test_suite);
+ return -EINVAL;
+ }
+
+ if (test_range[1] < test_range[0]) {
+ pr_err("test_bpf: test_range is ending before it starts.\n");
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
static int __init test_bpf_init(void)
{
struct bpf_array *progs = NULL;
int ret;
- ret = prepare_bpf_tests();
+ if (strlen(test_suite) &&
+ strcmp(test_suite, "test_bpf") &&
+ strcmp(test_suite, "test_tail_calls") &&
+ strcmp(test_suite, "test_skb_segment")) {
+ pr_err("test_bpf: invalid test_suite '%s' specified.\n", test_suite);
+ return -EINVAL;
+ }
+
+ /*
+ * if test_suite is not specified, but test_id, test_name or test_range
+ * is specified, set 'test_bpf' as the default test suite.
+ */
+ if (!strlen(test_suite) &&
+ (test_id != -1 || strlen(test_name) ||
+ (test_range[0] != 0 || test_range[1] != INT_MAX))) {
+ pr_info("test_bpf: set 'test_bpf' as the default test_suite.\n");
+ strscpy(test_suite, "test_bpf", sizeof(test_suite));
+ }
+
+ ret = prepare_test_range();
if (ret < 0)
return ret;
- ret = test_bpf();
- destroy_bpf_tests();
- if (ret)
- return ret;
+ if (!strlen(test_suite) || !strcmp(test_suite, "test_bpf")) {
+ ret = test_bpf();
+ if (ret)
+ return ret;
+ }
- ret = prepare_tail_call_tests(&progs);
- if (ret)
- return ret;
- ret = test_tail_calls(progs);
- destroy_tail_call_tests(progs);
- if (ret)
- return ret;
+ if (!strlen(test_suite) || !strcmp(test_suite, "test_tail_calls")) {
+ ret = prepare_tail_call_tests(&progs);
+ if (ret)
+ return ret;
+ ret = test_tail_calls(progs);
+ destroy_tail_call_tests(progs);
+ if (ret)
+ return ret;
+ }
+
+ if (!strlen(test_suite) || !strcmp(test_suite, "test_skb_segment"))
+ return test_skb_segment();
- return test_skb_segment();
+ return 0;
}
static void __exit test_bpf_exit(void)
diff --git a/lib/test_fortify/read_overflow-memchr.c b/lib/test_fortify/read_overflow-memchr.c
new file mode 100644
index 000000000000..2743084b32af
--- /dev/null
+++ b/lib/test_fortify/read_overflow-memchr.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ memchr(small, 0x7A, sizeof(small) + 1)
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/read_overflow-memchr_inv.c b/lib/test_fortify/read_overflow-memchr_inv.c
new file mode 100644
index 000000000000..b26e1f1bc217
--- /dev/null
+++ b/lib/test_fortify/read_overflow-memchr_inv.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ memchr_inv(small, 0x7A, sizeof(small) + 1)
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/read_overflow-memcmp.c b/lib/test_fortify/read_overflow-memcmp.c
new file mode 100644
index 000000000000..d5d301ff64ef
--- /dev/null
+++ b/lib/test_fortify/read_overflow-memcmp.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ memcmp(small, large, sizeof(small) + 1)
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/read_overflow-memscan.c b/lib/test_fortify/read_overflow-memscan.c
new file mode 100644
index 000000000000..c1a97f2df0f0
--- /dev/null
+++ b/lib/test_fortify/read_overflow-memscan.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ memscan(small, 0x7A, sizeof(small) + 1)
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/read_overflow2-memcmp.c b/lib/test_fortify/read_overflow2-memcmp.c
new file mode 100644
index 000000000000..c6091e640f76
--- /dev/null
+++ b/lib/test_fortify/read_overflow2-memcmp.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ memcmp(large, small, sizeof(small) + 1)
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/read_overflow2-memcpy.c b/lib/test_fortify/read_overflow2-memcpy.c
new file mode 100644
index 000000000000..07b62e56cf16
--- /dev/null
+++ b/lib/test_fortify/read_overflow2-memcpy.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ memcpy(large, instance.buf, sizeof(large))
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/read_overflow2-memmove.c b/lib/test_fortify/read_overflow2-memmove.c
new file mode 100644
index 000000000000..34edfab040a3
--- /dev/null
+++ b/lib/test_fortify/read_overflow2-memmove.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ memmove(large, instance.buf, sizeof(large))
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/test_fortify.h b/lib/test_fortify/test_fortify.h
new file mode 100644
index 000000000000..d22664fff197
--- /dev/null
+++ b/lib/test_fortify/test_fortify.h
@@ -0,0 +1,35 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+#include <linux/kernel.h>
+#include <linux/printk.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+
+void do_fortify_tests(void);
+
+#define __BUF_SMALL 16
+#define __BUF_LARGE 32
+struct fortify_object {
+ int a;
+ char buf[__BUF_SMALL];
+ int c;
+};
+
+#define LITERAL_SMALL "AAAAAAAAAAAAAAA"
+#define LITERAL_LARGE "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
+const char small_src[__BUF_SMALL] = LITERAL_SMALL;
+const char large_src[__BUF_LARGE] = LITERAL_LARGE;
+
+char small[__BUF_SMALL];
+char large[__BUF_LARGE];
+struct fortify_object instance;
+size_t size;
+
+void do_fortify_tests(void)
+{
+ /* Normal initializations. */
+ memset(&instance, 0x32, sizeof(instance));
+ memset(small, 0xA5, sizeof(small));
+ memset(large, 0x5A, sizeof(large));
+
+ TEST;
+}
diff --git a/lib/test_fortify/write_overflow-memcpy.c b/lib/test_fortify/write_overflow-memcpy.c
new file mode 100644
index 000000000000..3b3984e428fb
--- /dev/null
+++ b/lib/test_fortify/write_overflow-memcpy.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ memcpy(instance.buf, large_src, sizeof(large_src))
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/write_overflow-memmove.c b/lib/test_fortify/write_overflow-memmove.c
new file mode 100644
index 000000000000..640437c3b3e0
--- /dev/null
+++ b/lib/test_fortify/write_overflow-memmove.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ memmove(instance.buf, large_src, sizeof(large_src))
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/write_overflow-memset.c b/lib/test_fortify/write_overflow-memset.c
new file mode 100644
index 000000000000..36e34908cfb3
--- /dev/null
+++ b/lib/test_fortify/write_overflow-memset.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ memset(instance.buf, 0x5A, sizeof(large_src))
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/write_overflow-strcpy-lit.c b/lib/test_fortify/write_overflow-strcpy-lit.c
new file mode 100644
index 000000000000..51effb3e50f9
--- /dev/null
+++ b/lib/test_fortify/write_overflow-strcpy-lit.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ strcpy(small, LITERAL_LARGE)
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/write_overflow-strcpy.c b/lib/test_fortify/write_overflow-strcpy.c
new file mode 100644
index 000000000000..84f1c56a64c8
--- /dev/null
+++ b/lib/test_fortify/write_overflow-strcpy.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ strcpy(small, large_src)
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/write_overflow-strlcpy-src.c b/lib/test_fortify/write_overflow-strlcpy-src.c
new file mode 100644
index 000000000000..91bf83ebd34a
--- /dev/null
+++ b/lib/test_fortify/write_overflow-strlcpy-src.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ strlcpy(small, large_src, sizeof(small) + 1)
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/write_overflow-strlcpy.c b/lib/test_fortify/write_overflow-strlcpy.c
new file mode 100644
index 000000000000..1883db7c0cd6
--- /dev/null
+++ b/lib/test_fortify/write_overflow-strlcpy.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ strlcpy(instance.buf, large_src, sizeof(instance.buf) + 1)
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/write_overflow-strncpy-src.c b/lib/test_fortify/write_overflow-strncpy-src.c
new file mode 100644
index 000000000000..8dcfb8c788dd
--- /dev/null
+++ b/lib/test_fortify/write_overflow-strncpy-src.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ strncpy(small, large_src, sizeof(small) + 1)
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/write_overflow-strncpy.c b/lib/test_fortify/write_overflow-strncpy.c
new file mode 100644
index 000000000000..b85f079c815d
--- /dev/null
+++ b/lib/test_fortify/write_overflow-strncpy.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ strncpy(instance.buf, large_src, sizeof(instance.buf) + 1)
+
+#include "test_fortify.h"
diff --git a/lib/test_fortify/write_overflow-strscpy.c b/lib/test_fortify/write_overflow-strscpy.c
new file mode 100644
index 000000000000..38feddf377dc
--- /dev/null
+++ b/lib/test_fortify/write_overflow-strscpy.c
@@ -0,0 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-only
+#define TEST \
+ strscpy(instance.buf, large_src, sizeof(instance.buf) + 1)
+
+#include "test_fortify.h"
diff --git a/lib/test_kasan.c b/lib/test_kasan.c
index 8835e0784578..ebed755ebf34 100644
--- a/lib/test_kasan.c
+++ b/lib/test_kasan.c
@@ -88,7 +88,7 @@ static void kasan_test_exit(struct kunit *test)
*/
#define KUNIT_EXPECT_KASAN_FAIL(test, expression) do { \
if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \
- !kasan_async_mode_enabled()) \
+ kasan_sync_fault_possible()) \
migrate_disable(); \
KUNIT_EXPECT_FALSE(test, READ_ONCE(fail_data.report_found)); \
barrier(); \
diff --git a/lib/test_kprobes.c b/lib/test_kprobes.c
new file mode 100644
index 000000000000..a5edc2ebc947
--- /dev/null
+++ b/lib/test_kprobes.c
@@ -0,0 +1,371 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * test_kprobes.c - simple sanity test for *probes
+ *
+ * Copyright IBM Corp. 2008
+ */
+
+#include <linux/kernel.h>
+#include <linux/kprobes.h>
+#include <linux/random.h>
+#include <kunit/test.h>
+
+#define div_factor 3
+
+static u32 rand1, preh_val, posth_val;
+static u32 (*target)(u32 value);
+static u32 (*target2)(u32 value);
+static struct kunit *current_test;
+
+static unsigned long (*internal_target)(void);
+static unsigned long (*stacktrace_target)(void);
+static unsigned long (*stacktrace_driver)(void);
+static unsigned long target_return_address[2];
+
+static noinline u32 kprobe_target(u32 value)
+{
+ return (value / div_factor);
+}
+
+static int kp_pre_handler(struct kprobe *p, struct pt_regs *regs)
+{
+ KUNIT_EXPECT_FALSE(current_test, preemptible());
+ preh_val = (rand1 / div_factor);
+ return 0;
+}
+
+static void kp_post_handler(struct kprobe *p, struct pt_regs *regs,
+ unsigned long flags)
+{
+ KUNIT_EXPECT_FALSE(current_test, preemptible());
+ KUNIT_EXPECT_EQ(current_test, preh_val, (rand1 / div_factor));
+ posth_val = preh_val + div_factor;
+}
+
+static struct kprobe kp = {
+ .symbol_name = "kprobe_target",
+ .pre_handler = kp_pre_handler,
+ .post_handler = kp_post_handler
+};
+
+static void test_kprobe(struct kunit *test)
+{
+ current_test = test;
+ KUNIT_EXPECT_EQ(test, 0, register_kprobe(&kp));
+ target(rand1);
+ unregister_kprobe(&kp);
+ KUNIT_EXPECT_NE(test, 0, preh_val);
+ KUNIT_EXPECT_NE(test, 0, posth_val);
+}
+
+static noinline u32 kprobe_target2(u32 value)
+{
+ return (value / div_factor) + 1;
+}
+
+static noinline unsigned long kprobe_stacktrace_internal_target(void)
+{
+ if (!target_return_address[0])
+ target_return_address[0] = (unsigned long)__builtin_return_address(0);
+ return target_return_address[0];
+}
+
+static noinline unsigned long kprobe_stacktrace_target(void)
+{
+ if (!target_return_address[1])
+ target_return_address[1] = (unsigned long)__builtin_return_address(0);
+
+ if (internal_target)
+ internal_target();
+
+ return target_return_address[1];
+}
+
+static noinline unsigned long kprobe_stacktrace_driver(void)
+{
+ if (stacktrace_target)
+ stacktrace_target();
+
+ /* This is for preventing inlining the function */
+ return (unsigned long)__builtin_return_address(0);
+}
+
+static int kp_pre_handler2(struct kprobe *p, struct pt_regs *regs)
+{
+ preh_val = (rand1 / div_factor) + 1;
+ return 0;
+}
+
+static void kp_post_handler2(struct kprobe *p, struct pt_regs *regs,
+ unsigned long flags)
+{
+ KUNIT_EXPECT_EQ(current_test, preh_val, (rand1 / div_factor) + 1);
+ posth_val = preh_val + div_factor;
+}
+
+static struct kprobe kp2 = {
+ .symbol_name = "kprobe_target2",
+ .pre_handler = kp_pre_handler2,
+ .post_handler = kp_post_handler2
+};
+
+static void test_kprobes(struct kunit *test)
+{
+ struct kprobe *kps[2] = {&kp, &kp2};
+
+ current_test = test;
+
+ /* addr and flags should be cleard for reusing kprobe. */
+ kp.addr = NULL;
+ kp.flags = 0;
+
+ KUNIT_EXPECT_EQ(test, 0, register_kprobes(kps, 2));
+ preh_val = 0;
+ posth_val = 0;
+ target(rand1);
+
+ KUNIT_EXPECT_NE(test, 0, preh_val);
+ KUNIT_EXPECT_NE(test, 0, posth_val);
+
+ preh_val = 0;
+ posth_val = 0;
+ target2(rand1);
+
+ KUNIT_EXPECT_NE(test, 0, preh_val);
+ KUNIT_EXPECT_NE(test, 0, posth_val);
+ unregister_kprobes(kps, 2);
+}
+
+#ifdef CONFIG_KRETPROBES
+static u32 krph_val;
+
+static int entry_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
+{
+ KUNIT_EXPECT_FALSE(current_test, preemptible());
+ krph_val = (rand1 / div_factor);
+ return 0;
+}
+
+static int return_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
+{
+ unsigned long ret = regs_return_value(regs);
+
+ KUNIT_EXPECT_FALSE(current_test, preemptible());
+ KUNIT_EXPECT_EQ(current_test, ret, rand1 / div_factor);
+ KUNIT_EXPECT_NE(current_test, krph_val, 0);
+ krph_val = rand1;
+ return 0;
+}
+
+static struct kretprobe rp = {
+ .handler = return_handler,
+ .entry_handler = entry_handler,
+ .kp.symbol_name = "kprobe_target"
+};
+
+static void test_kretprobe(struct kunit *test)
+{
+ current_test = test;
+ KUNIT_EXPECT_EQ(test, 0, register_kretprobe(&rp));
+ target(rand1);
+ unregister_kretprobe(&rp);
+ KUNIT_EXPECT_EQ(test, krph_val, rand1);
+}
+
+static int return_handler2(struct kretprobe_instance *ri, struct pt_regs *regs)
+{
+ unsigned long ret = regs_return_value(regs);
+
+ KUNIT_EXPECT_EQ(current_test, ret, (rand1 / div_factor) + 1);
+ KUNIT_EXPECT_NE(current_test, krph_val, 0);
+ krph_val = rand1;
+ return 0;
+}
+
+static struct kretprobe rp2 = {
+ .handler = return_handler2,
+ .entry_handler = entry_handler,
+ .kp.symbol_name = "kprobe_target2"
+};
+
+static void test_kretprobes(struct kunit *test)
+{
+ struct kretprobe *rps[2] = {&rp, &rp2};
+
+ current_test = test;
+ /* addr and flags should be cleard for reusing kprobe. */
+ rp.kp.addr = NULL;
+ rp.kp.flags = 0;
+ KUNIT_EXPECT_EQ(test, 0, register_kretprobes(rps, 2));
+
+ krph_val = 0;
+ target(rand1);
+ KUNIT_EXPECT_EQ(test, krph_val, rand1);
+
+ krph_val = 0;
+ target2(rand1);
+ KUNIT_EXPECT_EQ(test, krph_val, rand1);
+ unregister_kretprobes(rps, 2);
+}
+
+#ifdef CONFIG_ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
+#define STACK_BUF_SIZE 16
+static unsigned long stack_buf[STACK_BUF_SIZE];
+
+static int stacktrace_return_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
+{
+ unsigned long retval = regs_return_value(regs);
+ int i, ret;
+
+ KUNIT_EXPECT_FALSE(current_test, preemptible());
+ KUNIT_EXPECT_EQ(current_test, retval, target_return_address[1]);
+
+ /*
+ * Test stacktrace inside the kretprobe handler, this will involves
+ * kretprobe trampoline, but must include correct return address
+ * of the target function.
+ */
+ ret = stack_trace_save(stack_buf, STACK_BUF_SIZE, 0);
+ KUNIT_EXPECT_NE(current_test, ret, 0);
+
+ for (i = 0; i < ret; i++) {
+ if (stack_buf[i] == target_return_address[1])
+ break;
+ }
+ KUNIT_EXPECT_NE(current_test, i, ret);
+
+#if !IS_MODULE(CONFIG_KPROBES_SANITY_TEST)
+ /*
+ * Test stacktrace from pt_regs at the return address. Thus the stack
+ * trace must start from the target return address.
+ */
+ ret = stack_trace_save_regs(regs, stack_buf, STACK_BUF_SIZE, 0);
+ KUNIT_EXPECT_NE(current_test, ret, 0);
+ KUNIT_EXPECT_EQ(current_test, stack_buf[0], target_return_address[1]);
+#endif
+
+ return 0;
+}
+
+static struct kretprobe rp3 = {
+ .handler = stacktrace_return_handler,
+ .kp.symbol_name = "kprobe_stacktrace_target"
+};
+
+static void test_stacktrace_on_kretprobe(struct kunit *test)
+{
+ unsigned long myretaddr = (unsigned long)__builtin_return_address(0);
+
+ current_test = test;
+ rp3.kp.addr = NULL;
+ rp3.kp.flags = 0;
+
+ /*
+ * Run the stacktrace_driver() to record correct return address in
+ * stacktrace_target() and ensure stacktrace_driver() call is not
+ * inlined by checking the return address of stacktrace_driver()
+ * and the return address of this function is different.
+ */
+ KUNIT_ASSERT_NE(test, myretaddr, stacktrace_driver());
+
+ KUNIT_ASSERT_EQ(test, 0, register_kretprobe(&rp3));
+ KUNIT_ASSERT_NE(test, myretaddr, stacktrace_driver());
+ unregister_kretprobe(&rp3);
+}
+
+static int stacktrace_internal_return_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
+{
+ unsigned long retval = regs_return_value(regs);
+ int i, ret;
+
+ KUNIT_EXPECT_FALSE(current_test, preemptible());
+ KUNIT_EXPECT_EQ(current_test, retval, target_return_address[0]);
+
+ /*
+ * Test stacktrace inside the kretprobe handler for nested case.
+ * The unwinder will find the kretprobe_trampoline address on the
+ * return address, and kretprobe must solve that.
+ */
+ ret = stack_trace_save(stack_buf, STACK_BUF_SIZE, 0);
+ KUNIT_EXPECT_NE(current_test, ret, 0);
+
+ for (i = 0; i < ret - 1; i++) {
+ if (stack_buf[i] == target_return_address[0]) {
+ KUNIT_EXPECT_EQ(current_test, stack_buf[i + 1], target_return_address[1]);
+ break;
+ }
+ }
+ KUNIT_EXPECT_NE(current_test, i, ret);
+
+#if !IS_MODULE(CONFIG_KPROBES_SANITY_TEST)
+ /* Ditto for the regs version. */
+ ret = stack_trace_save_regs(regs, stack_buf, STACK_BUF_SIZE, 0);
+ KUNIT_EXPECT_NE(current_test, ret, 0);
+ KUNIT_EXPECT_EQ(current_test, stack_buf[0], target_return_address[0]);
+ KUNIT_EXPECT_EQ(current_test, stack_buf[1], target_return_address[1]);
+#endif
+
+ return 0;
+}
+
+static struct kretprobe rp4 = {
+ .handler = stacktrace_internal_return_handler,
+ .kp.symbol_name = "kprobe_stacktrace_internal_target"
+};
+
+static void test_stacktrace_on_nested_kretprobe(struct kunit *test)
+{
+ unsigned long myretaddr = (unsigned long)__builtin_return_address(0);
+ struct kretprobe *rps[2] = {&rp3, &rp4};
+
+ current_test = test;
+ rp3.kp.addr = NULL;
+ rp3.kp.flags = 0;
+
+ //KUNIT_ASSERT_NE(test, myretaddr, stacktrace_driver());
+
+ KUNIT_ASSERT_EQ(test, 0, register_kretprobes(rps, 2));
+ KUNIT_ASSERT_NE(test, myretaddr, stacktrace_driver());
+ unregister_kretprobes(rps, 2);
+}
+#endif /* CONFIG_ARCH_CORRECT_STACKTRACE_ON_KRETPROBE */
+
+#endif /* CONFIG_KRETPROBES */
+
+static int kprobes_test_init(struct kunit *test)
+{
+ target = kprobe_target;
+ target2 = kprobe_target2;
+ stacktrace_target = kprobe_stacktrace_target;
+ internal_target = kprobe_stacktrace_internal_target;
+ stacktrace_driver = kprobe_stacktrace_driver;
+
+ do {
+ rand1 = prandom_u32();
+ } while (rand1 <= div_factor);
+ return 0;
+}
+
+static struct kunit_case kprobes_testcases[] = {
+ KUNIT_CASE(test_kprobe),
+ KUNIT_CASE(test_kprobes),
+#ifdef CONFIG_KRETPROBES
+ KUNIT_CASE(test_kretprobe),
+ KUNIT_CASE(test_kretprobes),
+#ifdef CONFIG_ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
+ KUNIT_CASE(test_stacktrace_on_kretprobe),
+ KUNIT_CASE(test_stacktrace_on_nested_kretprobe),
+#endif
+#endif
+ {}
+};
+
+static struct kunit_suite kprobes_test_suite = {
+ .name = "kprobes_test",
+ .init = kprobes_test_init,
+ .test_cases = kprobes_testcases,
+};
+
+kunit_test_suites(&kprobes_test_suite);
+
+MODULE_LICENSE("GPL");
diff --git a/lib/test_printf.c b/lib/test_printf.c
index 55082432f37e..07309c45f327 100644
--- a/lib/test_printf.c
+++ b/lib/test_printf.c
@@ -586,70 +586,59 @@ struct page_flags_test {
int width;
int shift;
int mask;
- unsigned long value;
const char *fmt;
const char *name;
};
-static struct page_flags_test pft[] = {
+static const struct page_flags_test pft[] = {
{SECTIONS_WIDTH, SECTIONS_PGSHIFT, SECTIONS_MASK,
- 0, "%d", "section"},
+ "%d", "section"},
{NODES_WIDTH, NODES_PGSHIFT, NODES_MASK,
- 0, "%d", "node"},
+ "%d", "node"},
{ZONES_WIDTH, ZONES_PGSHIFT, ZONES_MASK,
- 0, "%d", "zone"},
+ "%d", "zone"},
{LAST_CPUPID_WIDTH, LAST_CPUPID_PGSHIFT, LAST_CPUPID_MASK,
- 0, "%#x", "lastcpupid"},
+ "%#x", "lastcpupid"},
{KASAN_TAG_WIDTH, KASAN_TAG_PGSHIFT, KASAN_TAG_MASK,
- 0, "%#x", "kasantag"},
+ "%#x", "kasantag"},
};
static void __init
page_flags_test(int section, int node, int zone, int last_cpupid,
- int kasan_tag, int flags, const char *name, char *cmp_buf)
+ int kasan_tag, unsigned long flags, const char *name,
+ char *cmp_buf)
{
unsigned long values[] = {section, node, zone, last_cpupid, kasan_tag};
- unsigned long page_flags = 0;
- unsigned long size = 0;
+ unsigned long size;
bool append = false;
int i;
- flags &= PAGEFLAGS_MASK;
- if (flags) {
- page_flags |= flags;
- snprintf(cmp_buf + size, BUF_SIZE - size, "%s", name);
- size = strlen(cmp_buf);
-#if SECTIONS_WIDTH || NODES_WIDTH || ZONES_WIDTH || \
- LAST_CPUPID_WIDTH || KASAN_TAG_WIDTH
- /* Other information also included in page flags */
- snprintf(cmp_buf + size, BUF_SIZE - size, "|");
- size = strlen(cmp_buf);
-#endif
- }
+ for (i = 0; i < ARRAY_SIZE(values); i++)
+ flags |= (values[i] & pft[i].mask) << pft[i].shift;
- /* Set the test value */
- for (i = 0; i < ARRAY_SIZE(pft); i++)
- pft[i].value = values[i];
+ size = scnprintf(cmp_buf, BUF_SIZE, "%#lx(", flags);
+ if (flags & PAGEFLAGS_MASK) {
+ size += scnprintf(cmp_buf + size, BUF_SIZE - size, "%s", name);
+ append = true;
+ }
for (i = 0; i < ARRAY_SIZE(pft); i++) {
if (!pft[i].width)
continue;
- if (append) {
- snprintf(cmp_buf + size, BUF_SIZE - size, "|");
- size = strlen(cmp_buf);
- }
+ if (append)
+ size += scnprintf(cmp_buf + size, BUF_SIZE - size, "|");
- page_flags |= (pft[i].value & pft[i].mask) << pft[i].shift;
- snprintf(cmp_buf + size, BUF_SIZE - size, "%s=", pft[i].name);
- size = strlen(cmp_buf);
- snprintf(cmp_buf + size, BUF_SIZE - size, pft[i].fmt,
- pft[i].value & pft[i].mask);
- size = strlen(cmp_buf);
+ size += scnprintf(cmp_buf + size, BUF_SIZE - size, "%s=",
+ pft[i].name);
+ size += scnprintf(cmp_buf + size, BUF_SIZE - size, pft[i].fmt,
+ values[i] & pft[i].mask);
append = true;
}
- test(cmp_buf, "%pGp", &page_flags);
+ snprintf(cmp_buf + size, BUF_SIZE - size, ")");
+
+ test(cmp_buf, "%pGp", &flags);
}
static void __init
diff --git a/lib/vsprintf.c b/lib/vsprintf.c
index d7ad44f2c8f5..f90f91d83920 100644
--- a/lib/vsprintf.c
+++ b/lib/vsprintf.c
@@ -408,8 +408,9 @@ int num_to_str(char *buf, int size, unsigned long long num, unsigned int width)
#define SMALL 32 /* use lowercase in hex (must be 32 == 0x20) */
#define SPECIAL 64 /* prefix hex with "0x", octal with "0" */
+static_assert(SIGN == 1);
static_assert(ZEROPAD == ('0' - ' '));
-static_assert(SMALL == ' ');
+static_assert(SMALL == ('a' ^ 'A'));
enum format_type {
FORMAT_TYPE_NONE, /* Just a string part */
@@ -2023,6 +2024,11 @@ char *format_page_flags(char *buf, char *end, unsigned long flags)
bool append = false;
int i;
+ buf = number(buf, end, flags, default_flag_spec);
+ if (buf < end)
+ *buf = '(';
+ buf++;
+
/* Page flags from the main area. */
if (main_flags) {
buf = format_flags(buf, end, main_flags, pageflag_names);
@@ -2051,6 +2057,9 @@ char *format_page_flags(char *buf, char *end, unsigned long flags)
append = true;
}
+ if (buf < end)
+ *buf = ')';
+ buf++;
return buf;
}
diff --git a/lib/xz/Kconfig b/lib/xz/Kconfig
index 5cb50245a878..adce22ac18d6 100644
--- a/lib/xz/Kconfig
+++ b/lib/xz/Kconfig
@@ -39,6 +39,19 @@ config XZ_DEC_SPARC
default y
select XZ_DEC_BCJ
+config XZ_DEC_MICROLZMA
+ bool "MicroLZMA decoder"
+ default n
+ help
+ MicroLZMA is a header format variant where the first byte
+ of a raw LZMA stream (without the end of stream marker) has
+ been replaced with a bitwise-negation of the lc/lp/pb
+ properties byte. MicroLZMA was created to be used in EROFS
+ but can be used by other things too where wasting minimal
+ amount of space for headers is important.
+
+ Unless you know that you need this, say N.
+
endif
config XZ_DEC_BCJ
diff --git a/lib/xz/xz_dec_lzma2.c b/lib/xz/xz_dec_lzma2.c
index 7a6781e3f47b..27ce34520e78 100644
--- a/lib/xz/xz_dec_lzma2.c
+++ b/lib/xz/xz_dec_lzma2.c
@@ -248,6 +248,10 @@ struct lzma2_dec {
* before the first LZMA chunk.
*/
bool need_props;
+
+#ifdef XZ_DEC_MICROLZMA
+ bool pedantic_microlzma;
+#endif
};
struct xz_dec_lzma2 {
@@ -387,7 +391,14 @@ static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
*left -= copy_size;
- memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
+ /*
+ * If doing in-place decompression in single-call mode and the
+ * uncompressed size of the file is larger than the caller
+ * thought (i.e. it is invalid input!), the buffers below may
+ * overlap and cause undefined behavior with memcpy().
+ * With valid inputs memcpy() would be fine here.
+ */
+ memmove(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
dict->pos += copy_size;
if (dict->full < dict->pos)
@@ -397,7 +408,11 @@ static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
if (dict->pos == dict->end)
dict->pos = 0;
- memcpy(b->out + b->out_pos, b->in + b->in_pos,
+ /*
+ * Like above but for multi-call mode: use memmove()
+ * to avoid undefined behavior with invalid input.
+ */
+ memmove(b->out + b->out_pos, b->in + b->in_pos,
copy_size);
}
@@ -408,6 +423,12 @@ static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
}
}
+#ifdef XZ_DEC_MICROLZMA
+# define DICT_FLUSH_SUPPORTS_SKIPPING true
+#else
+# define DICT_FLUSH_SUPPORTS_SKIPPING false
+#endif
+
/*
* Flush pending data from dictionary to b->out. It is assumed that there is
* enough space in b->out. This is guaranteed because caller uses dict_limit()
@@ -421,8 +442,19 @@ static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
if (dict->pos == dict->end)
dict->pos = 0;
- memcpy(b->out + b->out_pos, dict->buf + dict->start,
- copy_size);
+ /*
+ * These buffers cannot overlap even if doing in-place
+ * decompression because in multi-call mode dict->buf
+ * has been allocated by us in this file; it's not
+ * provided by the caller like in single-call mode.
+ *
+ * With MicroLZMA, b->out can be NULL to skip bytes that
+ * the caller doesn't need. This cannot be done with XZ
+ * because it would break BCJ filters.
+ */
+ if (!DICT_FLUSH_SUPPORTS_SKIPPING || b->out != NULL)
+ memcpy(b->out + b->out_pos, dict->buf + dict->start,
+ copy_size);
}
dict->start = dict->pos;
@@ -488,7 +520,7 @@ static __always_inline void rc_normalize(struct rc_dec *rc)
* functions so that the compiler is supposed to be able to more easily avoid
* an extra branch. In this particular version of the LZMA decoder, this
* doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
- * on x86). Using a non-splitted version results in nicer looking code too.
+ * on x86). Using a non-split version results in nicer looking code too.
*
* NOTE: This must return an int. Do not make it return a bool or the speed
* of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
@@ -774,6 +806,7 @@ static void lzma_reset(struct xz_dec_lzma2 *s)
s->lzma.rep1 = 0;
s->lzma.rep2 = 0;
s->lzma.rep3 = 0;
+ s->lzma.len = 0;
/*
* All probabilities are initialized to the same value. This hack
@@ -1157,8 +1190,6 @@ XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
}
}
- s->lzma.len = 0;
-
s->lzma2.sequence = SEQ_CONTROL;
s->lzma2.need_dict_reset = true;
@@ -1174,3 +1205,140 @@ XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
kfree(s);
}
+
+#ifdef XZ_DEC_MICROLZMA
+/* This is a wrapper struct to have a nice struct name in the public API. */
+struct xz_dec_microlzma {
+ struct xz_dec_lzma2 s;
+};
+
+enum xz_ret xz_dec_microlzma_run(struct xz_dec_microlzma *s_ptr,
+ struct xz_buf *b)
+{
+ struct xz_dec_lzma2 *s = &s_ptr->s;
+
+ /*
+ * sequence is SEQ_PROPERTIES before the first input byte,
+ * SEQ_LZMA_PREPARE until a total of five bytes have been read,
+ * and SEQ_LZMA_RUN for the rest of the input stream.
+ */
+ if (s->lzma2.sequence != SEQ_LZMA_RUN) {
+ if (s->lzma2.sequence == SEQ_PROPERTIES) {
+ /* One byte is needed for the props. */
+ if (b->in_pos >= b->in_size)
+ return XZ_OK;
+
+ /*
+ * Don't increment b->in_pos here. The same byte is
+ * also passed to rc_read_init() which will ignore it.
+ */
+ if (!lzma_props(s, ~b->in[b->in_pos]))
+ return XZ_DATA_ERROR;
+
+ s->lzma2.sequence = SEQ_LZMA_PREPARE;
+ }
+
+ /*
+ * xz_dec_microlzma_reset() doesn't validate the compressed
+ * size so we do it here. We have to limit the maximum size
+ * to avoid integer overflows in lzma2_lzma(). 3 GiB is a nice
+ * round number and much more than users of this code should
+ * ever need.
+ */
+ if (s->lzma2.compressed < RC_INIT_BYTES
+ || s->lzma2.compressed > (3U << 30))
+ return XZ_DATA_ERROR;
+
+ if (!rc_read_init(&s->rc, b))
+ return XZ_OK;
+
+ s->lzma2.compressed -= RC_INIT_BYTES;
+ s->lzma2.sequence = SEQ_LZMA_RUN;
+
+ dict_reset(&s->dict, b);
+ }
+
+ /* This is to allow increasing b->out_size between calls. */
+ if (DEC_IS_SINGLE(s->dict.mode))
+ s->dict.end = b->out_size - b->out_pos;
+
+ while (true) {
+ dict_limit(&s->dict, min_t(size_t, b->out_size - b->out_pos,
+ s->lzma2.uncompressed));
+
+ if (!lzma2_lzma(s, b))
+ return XZ_DATA_ERROR;
+
+ s->lzma2.uncompressed -= dict_flush(&s->dict, b);
+
+ if (s->lzma2.uncompressed == 0) {
+ if (s->lzma2.pedantic_microlzma) {
+ if (s->lzma2.compressed > 0 || s->lzma.len > 0
+ || !rc_is_finished(&s->rc))
+ return XZ_DATA_ERROR;
+ }
+
+ return XZ_STREAM_END;
+ }
+
+ if (b->out_pos == b->out_size)
+ return XZ_OK;
+
+ if (b->in_pos == b->in_size
+ && s->temp.size < s->lzma2.compressed)
+ return XZ_OK;
+ }
+}
+
+struct xz_dec_microlzma *xz_dec_microlzma_alloc(enum xz_mode mode,
+ uint32_t dict_size)
+{
+ struct xz_dec_microlzma *s;
+
+ /* Restrict dict_size to the same range as in the LZMA2 code. */
+ if (dict_size < 4096 || dict_size > (3U << 30))
+ return NULL;
+
+ s = kmalloc(sizeof(*s), GFP_KERNEL);
+ if (s == NULL)
+ return NULL;
+
+ s->s.dict.mode = mode;
+ s->s.dict.size = dict_size;
+
+ if (DEC_IS_MULTI(mode)) {
+ s->s.dict.end = dict_size;
+
+ s->s.dict.buf = vmalloc(dict_size);
+ if (s->s.dict.buf == NULL) {
+ kfree(s);
+ return NULL;
+ }
+ }
+
+ return s;
+}
+
+void xz_dec_microlzma_reset(struct xz_dec_microlzma *s, uint32_t comp_size,
+ uint32_t uncomp_size, int uncomp_size_is_exact)
+{
+ /*
+ * comp_size is validated in xz_dec_microlzma_run().
+ * uncomp_size can safely be anything.
+ */
+ s->s.lzma2.compressed = comp_size;
+ s->s.lzma2.uncompressed = uncomp_size;
+ s->s.lzma2.pedantic_microlzma = uncomp_size_is_exact;
+
+ s->s.lzma2.sequence = SEQ_PROPERTIES;
+ s->s.temp.size = 0;
+}
+
+void xz_dec_microlzma_end(struct xz_dec_microlzma *s)
+{
+ if (DEC_IS_MULTI(s->s.dict.mode))
+ vfree(s->s.dict.buf);
+
+ kfree(s);
+}
+#endif
diff --git a/lib/xz/xz_dec_stream.c b/lib/xz/xz_dec_stream.c
index fea86deaaa01..683570b93a8c 100644
--- a/lib/xz/xz_dec_stream.c
+++ b/lib/xz/xz_dec_stream.c
@@ -402,12 +402,12 @@ static enum xz_ret dec_stream_header(struct xz_dec *s)
* we will accept other check types too, but then the check won't
* be verified and a warning (XZ_UNSUPPORTED_CHECK) will be given.
*/
+ if (s->temp.buf[HEADER_MAGIC_SIZE + 1] > XZ_CHECK_MAX)
+ return XZ_OPTIONS_ERROR;
+
s->check_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];
#ifdef XZ_DEC_ANY_CHECK
- if (s->check_type > XZ_CHECK_MAX)
- return XZ_OPTIONS_ERROR;
-
if (s->check_type > XZ_CHECK_CRC32)
return XZ_UNSUPPORTED_CHECK;
#else
diff --git a/lib/xz/xz_dec_syms.c b/lib/xz/xz_dec_syms.c
index 32eb3c03aede..61098c67a413 100644
--- a/lib/xz/xz_dec_syms.c
+++ b/lib/xz/xz_dec_syms.c
@@ -15,8 +15,15 @@ EXPORT_SYMBOL(xz_dec_reset);
EXPORT_SYMBOL(xz_dec_run);
EXPORT_SYMBOL(xz_dec_end);
+#ifdef CONFIG_XZ_DEC_MICROLZMA
+EXPORT_SYMBOL(xz_dec_microlzma_alloc);
+EXPORT_SYMBOL(xz_dec_microlzma_reset);
+EXPORT_SYMBOL(xz_dec_microlzma_run);
+EXPORT_SYMBOL(xz_dec_microlzma_end);
+#endif
+
MODULE_DESCRIPTION("XZ decompressor");
-MODULE_VERSION("1.0");
+MODULE_VERSION("1.1");
MODULE_AUTHOR("Lasse Collin <lasse.collin@tukaani.org> and Igor Pavlov");
/*
diff --git a/lib/xz/xz_private.h b/lib/xz/xz_private.h
index 09360ebb510e..bf1e94ec7873 100644
--- a/lib/xz/xz_private.h
+++ b/lib/xz/xz_private.h
@@ -37,6 +37,9 @@
# ifdef CONFIG_XZ_DEC_SPARC
# define XZ_DEC_SPARC
# endif
+# ifdef CONFIG_XZ_DEC_MICROLZMA
+# define XZ_DEC_MICROLZMA
+# endif
# define memeq(a, b, size) (memcmp(a, b, size) == 0)
# define memzero(buf, size) memset(buf, 0, size)
# endif