summaryrefslogtreecommitdiff
path: root/mm/memory.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memory.c')
-rw-r--r--mm/memory.c1942
1 files changed, 1354 insertions, 588 deletions
diff --git a/mm/memory.c b/mm/memory.c
index 0bfc8b007c01..fb7b8dc75167 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -1,4 +1,3 @@
-
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/mm/memory.c
@@ -44,7 +43,6 @@
#include <linux/mm.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
-#include <linux/sched/coredump.h>
#include <linux/sched/numa_balancing.h>
#include <linux/sched/task.h>
#include <linux/hugetlb.h>
@@ -112,8 +110,10 @@ static bool vmf_pte_changed(struct vm_fault *vmf);
* Return true if the original pte was a uffd-wp pte marker (so the pte was
* wr-protected).
*/
-static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
+static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
{
+ if (!userfaultfd_wp(vmf->vma))
+ return false;
if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
return false;
@@ -363,6 +363,8 @@ void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
struct vm_area_struct *vma, unsigned long floor,
unsigned long ceiling, bool mm_wr_locked)
{
+ struct unlink_vma_file_batch vb;
+
do {
unsigned long addr = vma->vm_start;
struct vm_area_struct *next;
@@ -382,12 +384,15 @@ void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
if (mm_wr_locked)
vma_start_write(vma);
unlink_anon_vmas(vma);
- unlink_file_vma(vma);
if (is_vm_hugetlb_page(vma)) {
+ unlink_file_vma(vma);
hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
floor, next ? next->vm_start : ceiling);
} else {
+ unlink_file_vma_batch_init(&vb);
+ unlink_file_vma_batch_add(&vb, vma);
+
/*
* Optimization: gather nearby vmas into one call down
*/
@@ -400,8 +405,9 @@ void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
if (mm_wr_locked)
vma_start_write(vma);
unlink_anon_vmas(vma);
- unlink_file_vma(vma);
+ unlink_file_vma_batch_add(&vb, vma);
}
+ unlink_file_vma_batch_final(&vb);
free_pgd_range(tlb, addr, vma->vm_end,
floor, next ? next->vm_start : ceiling);
}
@@ -573,10 +579,13 @@ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
* VM_MIXEDMAP mappings can likewise contain memory with or without "struct
* page" backing, however the difference is that _all_ pages with a struct
* page (that is, those where pfn_valid is true) are refcounted and considered
- * normal pages by the VM. The disadvantage is that pages are refcounted
- * (which can be slower and simply not an option for some PFNMAP users). The
- * advantage is that we don't have to follow the strict linearity rule of
- * PFNMAP mappings in order to support COWable mappings.
+ * normal pages by the VM. The only exception are zeropages, which are
+ * *never* refcounted.
+ *
+ * The disadvantage is that pages are refcounted (which can be slower and
+ * simply not an option for some PFNMAP users). The advantage is that we
+ * don't have to follow the strict linearity rule of PFNMAP mappings in
+ * order to support COWable mappings.
*
*/
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
@@ -614,6 +623,8 @@ struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
if (vma->vm_flags & VM_MIXEDMAP) {
if (!pfn_valid(pfn))
return NULL;
+ if (is_zero_pfn(pfn))
+ return NULL;
goto out;
} else {
unsigned long off;
@@ -639,6 +650,7 @@ check_pfn:
* eg. VDSO mappings can cause them to exist.
*/
out:
+ VM_WARN_ON_ONCE(is_zero_pfn(pfn));
return pfn_to_page(pfn);
}
@@ -652,17 +664,16 @@ struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
return NULL;
}
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t pmd)
{
unsigned long pfn = pmd_pfn(pmd);
- /*
- * There is no pmd_special() but there may be special pmds, e.g.
- * in a direct-access (dax) mapping, so let's just replicate the
- * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
- */
+ /* Currently it's only used for huge pfnmaps */
+ if (unlikely(pmd_special(pmd)))
+ return NULL;
+
if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
if (vma->vm_flags & VM_MIXEDMAP) {
if (!pfn_valid(pfn))
@@ -806,9 +817,9 @@ copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
}
rss[MM_SWAPENTS]++;
} else if (is_migration_entry(entry)) {
- page = pfn_swap_entry_to_page(entry);
+ folio = pfn_swap_entry_folio(entry);
- rss[mm_counter(page)]++;
+ rss[mm_counter(folio)]++;
if (!is_readable_migration_entry(entry) &&
is_cow_mapping(vm_flags)) {
@@ -840,7 +851,7 @@ copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
* keep things as they are.
*/
folio_get(folio);
- rss[mm_counter(page)]++;
+ rss[mm_counter(folio)]++;
/* Cannot fail as these pages cannot get pinned. */
folio_try_dup_anon_rmap_pte(folio, page, src_vma);
@@ -913,10 +924,13 @@ copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma
* We have a prealloc page, all good! Take it
* over and copy the page & arm it.
*/
+
+ if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
+ return -EHWPOISON;
+
*prealloc = NULL;
- copy_user_highpage(&new_folio->page, page, addr, src_vma);
__folio_mark_uptodate(new_folio);
- folio_add_new_anon_rmap(new_folio, dst_vma, addr);
+ folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
folio_add_lru_vma(new_folio, dst_vma);
rss[MM_ANONPAGES]++;
@@ -930,68 +944,111 @@ copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma
return 0;
}
+static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
+ struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
+ pte_t pte, unsigned long addr, int nr)
+{
+ struct mm_struct *src_mm = src_vma->vm_mm;
+
+ /* If it's a COW mapping, write protect it both processes. */
+ if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
+ wrprotect_ptes(src_mm, addr, src_pte, nr);
+ pte = pte_wrprotect(pte);
+ }
+
+ /* If it's a shared mapping, mark it clean in the child. */
+ if (src_vma->vm_flags & VM_SHARED)
+ pte = pte_mkclean(pte);
+ pte = pte_mkold(pte);
+
+ if (!userfaultfd_wp(dst_vma))
+ pte = pte_clear_uffd_wp(pte);
+
+ set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
+}
+
/*
- * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
- * is required to copy this pte.
+ * Copy one present PTE, trying to batch-process subsequent PTEs that map
+ * consecutive pages of the same folio by copying them as well.
+ *
+ * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
+ * Otherwise, returns the number of copied PTEs (at least 1).
*/
static inline int
-copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
- pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
- struct folio **prealloc)
+copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
+ pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
+ int max_nr, int *rss, struct folio **prealloc)
{
- struct mm_struct *src_mm = src_vma->vm_mm;
- unsigned long vm_flags = src_vma->vm_flags;
- pte_t pte = ptep_get(src_pte);
struct page *page;
struct folio *folio;
+ bool any_writable;
+ fpb_t flags = 0;
+ int err, nr;
page = vm_normal_page(src_vma, addr, pte);
- if (page)
- folio = page_folio(page);
- if (page && folio_test_anon(folio)) {
+ if (unlikely(!page))
+ goto copy_pte;
+
+ folio = page_folio(page);
+
+ /*
+ * If we likely have to copy, just don't bother with batching. Make
+ * sure that the common "small folio" case is as fast as possible
+ * by keeping the batching logic separate.
+ */
+ if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
+ if (src_vma->vm_flags & VM_SHARED)
+ flags |= FPB_IGNORE_DIRTY;
+ if (!vma_soft_dirty_enabled(src_vma))
+ flags |= FPB_IGNORE_SOFT_DIRTY;
+
+ nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
+ &any_writable, NULL, NULL);
+ folio_ref_add(folio, nr);
+ if (folio_test_anon(folio)) {
+ if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
+ nr, src_vma))) {
+ folio_ref_sub(folio, nr);
+ return -EAGAIN;
+ }
+ rss[MM_ANONPAGES] += nr;
+ VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
+ } else {
+ folio_dup_file_rmap_ptes(folio, page, nr);
+ rss[mm_counter_file(folio)] += nr;
+ }
+ if (any_writable)
+ pte = pte_mkwrite(pte, src_vma);
+ __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
+ addr, nr);
+ return nr;
+ }
+
+ folio_get(folio);
+ if (folio_test_anon(folio)) {
/*
* If this page may have been pinned by the parent process,
* copy the page immediately for the child so that we'll always
* guarantee the pinned page won't be randomly replaced in the
* future.
*/
- folio_get(folio);
if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
/* Page may be pinned, we have to copy. */
folio_put(folio);
- return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
- addr, rss, prealloc, page);
+ err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
+ addr, rss, prealloc, page);
+ return err ? err : 1;
}
rss[MM_ANONPAGES]++;
- } else if (page) {
- folio_get(folio);
+ VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
+ } else {
folio_dup_file_rmap_pte(folio, page);
- rss[mm_counter_file(page)]++;
+ rss[mm_counter_file(folio)]++;
}
- /*
- * If it's a COW mapping, write protect it both
- * in the parent and the child
- */
- if (is_cow_mapping(vm_flags) && pte_write(pte)) {
- ptep_set_wrprotect(src_mm, addr, src_pte);
- pte = pte_wrprotect(pte);
- }
- VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
-
- /*
- * If it's a shared mapping, mark it clean in
- * the child
- */
- if (vm_flags & VM_SHARED)
- pte = pte_mkclean(pte);
- pte = pte_mkold(pte);
-
- if (!userfaultfd_wp(dst_vma))
- pte = pte_clear_uffd_wp(pte);
-
- set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
- return 0;
+copy_pte:
+ __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
+ return 1;
}
static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
@@ -1002,8 +1059,7 @@ static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
if (need_zero)
new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
else
- new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
- addr, false);
+ new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
if (!new_folio)
return NULL;
@@ -1026,12 +1082,14 @@ copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
struct mm_struct *src_mm = src_vma->vm_mm;
pte_t *orig_src_pte, *orig_dst_pte;
pte_t *src_pte, *dst_pte;
+ pmd_t dummy_pmdval;
pte_t ptent;
spinlock_t *src_ptl, *dst_ptl;
- int progress, ret = 0;
+ int progress, max_nr, ret = 0;
int rss[NR_MM_COUNTERS];
swp_entry_t entry = (swp_entry_t){0};
struct folio *prealloc = NULL;
+ int nr;
again:
progress = 0;
@@ -1050,7 +1108,15 @@ again:
ret = -ENOMEM;
goto out;
}
- src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
+
+ /*
+ * We already hold the exclusive mmap_lock, the copy_pte_range() and
+ * retract_page_tables() are using vma->anon_vma to be exclusive, so
+ * the PTE page is stable, and there is no need to get pmdval and do
+ * pmd_same() check.
+ */
+ src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
+ &src_ptl);
if (!src_pte) {
pte_unmap_unlock(dst_pte, dst_ptl);
/* ret == 0 */
@@ -1062,6 +1128,8 @@ again:
arch_enter_lazy_mmu_mode();
do {
+ nr = 1;
+
/*
* We are holding two locks at this point - either of them
* could generate latencies in another task on another CPU.
@@ -1091,6 +1159,8 @@ again:
progress += 8;
continue;
}
+ ptent = ptep_get(src_pte);
+ VM_WARN_ON_ONCE(!pte_present(ptent));
/*
* Device exclusive entry restored, continue by copying
@@ -1098,14 +1168,16 @@ again:
*/
WARN_ON_ONCE(ret != -ENOENT);
}
- /* copy_present_pte() will clear `*prealloc' if consumed */
- ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
- addr, rss, &prealloc);
+ /* copy_present_ptes() will clear `*prealloc' if consumed */
+ max_nr = (end - addr) / PAGE_SIZE;
+ ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
+ ptent, addr, max_nr, rss, &prealloc);
/*
* If we need a pre-allocated page for this pte, drop the
* locks, allocate, and try again.
+ * If copy failed due to hwpoison in source page, break out.
*/
- if (unlikely(ret == -EAGAIN))
+ if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
break;
if (unlikely(prealloc)) {
/*
@@ -1117,8 +1189,10 @@ again:
folio_put(prealloc);
prealloc = NULL;
}
- progress += 8;
- } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
+ nr = ret;
+ progress += 8 * nr;
+ } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
+ addr != end);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(orig_src_pte, src_ptl);
@@ -1133,13 +1207,13 @@ again:
goto out;
}
entry.val = 0;
- } else if (ret == -EBUSY) {
+ } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
goto out;
} else if (ret == -EAGAIN) {
prealloc = folio_prealloc(src_mm, src_vma, addr, false);
if (!prealloc)
return -ENOMEM;
- } else if (ret) {
+ } else if (ret < 0) {
VM_WARN_ON_ONCE(1);
}
@@ -1362,29 +1436,26 @@ copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
static inline bool should_zap_cows(struct zap_details *details)
{
/* By default, zap all pages */
- if (!details)
+ if (!details || details->reclaim_pt)
return true;
/* Or, we zap COWed pages only if the caller wants to */
return details->even_cows;
}
-/* Decides whether we should zap this page with the page pointer specified */
-static inline bool should_zap_page(struct zap_details *details, struct page *page)
+/* Decides whether we should zap this folio with the folio pointer specified */
+static inline bool should_zap_folio(struct zap_details *details,
+ struct folio *folio)
{
- /* If we can make a decision without *page.. */
+ /* If we can make a decision without *folio.. */
if (should_zap_cows(details))
return true;
- /* E.g. the caller passes NULL for the case of a zero page */
- if (!page)
- return true;
-
- /* Otherwise we should only zap non-anon pages */
- return !PageAnon(page);
+ /* Otherwise we should only zap non-anon folios */
+ return !folio_test_anon(folio);
}
-static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
+static inline bool zap_drop_markers(struct zap_details *details)
{
if (!details)
return false;
@@ -1395,20 +1466,242 @@ static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
/*
* This function makes sure that we'll replace the none pte with an uffd-wp
* swap special pte marker when necessary. Must be with the pgtable lock held.
+ *
+ * Returns true if uffd-wp ptes was installed, false otherwise.
*/
-static inline void
+static inline bool
zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
- unsigned long addr, pte_t *pte,
+ unsigned long addr, pte_t *pte, int nr,
struct zap_details *details, pte_t pteval)
{
+ bool was_installed = false;
+
+#ifdef CONFIG_PTE_MARKER_UFFD_WP
/* Zap on anonymous always means dropping everything */
if (vma_is_anonymous(vma))
- return;
+ return false;
- if (zap_drop_file_uffd_wp(details))
- return;
+ if (zap_drop_markers(details))
+ return false;
+
+ for (;;) {
+ /* the PFN in the PTE is irrelevant. */
+ if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
+ was_installed = true;
+ if (--nr == 0)
+ break;
+ pte++;
+ addr += PAGE_SIZE;
+ }
+#endif
+ return was_installed;
+}
+
+static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
+ struct vm_area_struct *vma, struct folio *folio,
+ struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
+ unsigned long addr, struct zap_details *details, int *rss,
+ bool *force_flush, bool *force_break, bool *any_skipped)
+{
+ struct mm_struct *mm = tlb->mm;
+ bool delay_rmap = false;
+
+ if (!folio_test_anon(folio)) {
+ ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
+ if (pte_dirty(ptent)) {
+ folio_mark_dirty(folio);
+ if (tlb_delay_rmap(tlb)) {
+ delay_rmap = true;
+ *force_flush = true;
+ }
+ }
+ if (pte_young(ptent) && likely(vma_has_recency(vma)))
+ folio_mark_accessed(folio);
+ rss[mm_counter(folio)] -= nr;
+ } else {
+ /* We don't need up-to-date accessed/dirty bits. */
+ clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
+ rss[MM_ANONPAGES] -= nr;
+ }
+ /* Checking a single PTE in a batch is sufficient. */
+ arch_check_zapped_pte(vma, ptent);
+ tlb_remove_tlb_entries(tlb, pte, nr, addr);
+ if (unlikely(userfaultfd_pte_wp(vma, ptent)))
+ *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
+ nr, details, ptent);
+
+ if (!delay_rmap) {
+ folio_remove_rmap_ptes(folio, page, nr, vma);
+
+ if (unlikely(folio_mapcount(folio) < 0))
+ print_bad_pte(vma, addr, ptent, page);
+ }
+ if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
+ *force_flush = true;
+ *force_break = true;
+ }
+}
+
+/*
+ * Zap or skip at least one present PTE, trying to batch-process subsequent
+ * PTEs that map consecutive pages of the same folio.
+ *
+ * Returns the number of processed (skipped or zapped) PTEs (at least 1).
+ */
+static inline int zap_present_ptes(struct mmu_gather *tlb,
+ struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
+ unsigned int max_nr, unsigned long addr,
+ struct zap_details *details, int *rss, bool *force_flush,
+ bool *force_break, bool *any_skipped)
+{
+ const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
+ struct mm_struct *mm = tlb->mm;
+ struct folio *folio;
+ struct page *page;
+ int nr;
+
+ page = vm_normal_page(vma, addr, ptent);
+ if (!page) {
+ /* We don't need up-to-date accessed/dirty bits. */
+ ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
+ arch_check_zapped_pte(vma, ptent);
+ tlb_remove_tlb_entry(tlb, pte, addr);
+ if (userfaultfd_pte_wp(vma, ptent))
+ *any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
+ pte, 1, details, ptent);
+ ksm_might_unmap_zero_page(mm, ptent);
+ return 1;
+ }
+
+ folio = page_folio(page);
+ if (unlikely(!should_zap_folio(details, folio))) {
+ *any_skipped = true;
+ return 1;
+ }
+
+ /*
+ * Make sure that the common "small folio" case is as fast as possible
+ * by keeping the batching logic separate.
+ */
+ if (unlikely(folio_test_large(folio) && max_nr != 1)) {
+ nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
+ NULL, NULL, NULL);
+
+ zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
+ addr, details, rss, force_flush,
+ force_break, any_skipped);
+ return nr;
+ }
+ zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
+ details, rss, force_flush, force_break, any_skipped);
+ return 1;
+}
+
+static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
+ struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
+ unsigned int max_nr, unsigned long addr,
+ struct zap_details *details, int *rss, bool *any_skipped)
+{
+ swp_entry_t entry;
+ int nr = 1;
+
+ *any_skipped = true;
+ entry = pte_to_swp_entry(ptent);
+ if (is_device_private_entry(entry) ||
+ is_device_exclusive_entry(entry)) {
+ struct page *page = pfn_swap_entry_to_page(entry);
+ struct folio *folio = page_folio(page);
+
+ if (unlikely(!should_zap_folio(details, folio)))
+ return 1;
+ /*
+ * Both device private/exclusive mappings should only
+ * work with anonymous page so far, so we don't need to
+ * consider uffd-wp bit when zap. For more information,
+ * see zap_install_uffd_wp_if_needed().
+ */
+ WARN_ON_ONCE(!vma_is_anonymous(vma));
+ rss[mm_counter(folio)]--;
+ if (is_device_private_entry(entry))
+ folio_remove_rmap_pte(folio, page, vma);
+ folio_put(folio);
+ } else if (!non_swap_entry(entry)) {
+ /* Genuine swap entries, hence a private anon pages */
+ if (!should_zap_cows(details))
+ return 1;
+
+ nr = swap_pte_batch(pte, max_nr, ptent);
+ rss[MM_SWAPENTS] -= nr;
+ free_swap_and_cache_nr(entry, nr);
+ } else if (is_migration_entry(entry)) {
+ struct folio *folio = pfn_swap_entry_folio(entry);
+
+ if (!should_zap_folio(details, folio))
+ return 1;
+ rss[mm_counter(folio)]--;
+ } else if (pte_marker_entry_uffd_wp(entry)) {
+ /*
+ * For anon: always drop the marker; for file: only
+ * drop the marker if explicitly requested.
+ */
+ if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
+ return 1;
+ } else if (is_guard_swp_entry(entry)) {
+ /*
+ * Ordinary zapping should not remove guard PTE
+ * markers. Only do so if we should remove PTE markers
+ * in general.
+ */
+ if (!zap_drop_markers(details))
+ return 1;
+ } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) {
+ if (!should_zap_cows(details))
+ return 1;
+ } else {
+ /* We should have covered all the swap entry types */
+ pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
+ WARN_ON_ONCE(1);
+ }
+ clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
+ *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
+
+ return nr;
+}
+
+static inline int do_zap_pte_range(struct mmu_gather *tlb,
+ struct vm_area_struct *vma, pte_t *pte,
+ unsigned long addr, unsigned long end,
+ struct zap_details *details, int *rss,
+ bool *force_flush, bool *force_break,
+ bool *any_skipped)
+{
+ pte_t ptent = ptep_get(pte);
+ int max_nr = (end - addr) / PAGE_SIZE;
+ int nr = 0;
- pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
+ /* Skip all consecutive none ptes */
+ if (pte_none(ptent)) {
+ for (nr = 1; nr < max_nr; nr++) {
+ ptent = ptep_get(pte + nr);
+ if (!pte_none(ptent))
+ break;
+ }
+ max_nr -= nr;
+ if (!max_nr)
+ return nr;
+ pte += nr;
+ addr += nr * PAGE_SIZE;
+ }
+
+ if (pte_present(ptent))
+ nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
+ details, rss, force_flush, force_break,
+ any_skipped);
+ else
+ nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
+ details, rss, any_skipped);
+
+ return nr;
}
static unsigned long zap_pte_range(struct mmu_gather *tlb,
@@ -1416,14 +1709,19 @@ static unsigned long zap_pte_range(struct mmu_gather *tlb,
unsigned long addr, unsigned long end,
struct zap_details *details)
{
+ bool force_flush = false, force_break = false;
struct mm_struct *mm = tlb->mm;
- int force_flush = 0;
int rss[NR_MM_COUNTERS];
spinlock_t *ptl;
pte_t *start_pte;
pte_t *pte;
- swp_entry_t entry;
+ pmd_t pmdval;
+ unsigned long start = addr;
+ bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details);
+ bool direct_reclaim = true;
+ int nr;
+retry:
tlb_change_page_size(tlb, PAGE_SIZE);
init_rss_vec(rss);
start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
@@ -1433,110 +1731,34 @@ static unsigned long zap_pte_range(struct mmu_gather *tlb,
flush_tlb_batched_pending(mm);
arch_enter_lazy_mmu_mode();
do {
- pte_t ptent = ptep_get(pte);
- struct folio *folio;
- struct page *page;
-
- if (pte_none(ptent))
- continue;
+ bool any_skipped = false;
- if (need_resched())
+ if (need_resched()) {
+ direct_reclaim = false;
break;
-
- if (pte_present(ptent)) {
- unsigned int delay_rmap;
-
- page = vm_normal_page(vma, addr, ptent);
- if (unlikely(!should_zap_page(details, page)))
- continue;
- ptent = ptep_get_and_clear_full(mm, addr, pte,
- tlb->fullmm);
- arch_check_zapped_pte(vma, ptent);
- tlb_remove_tlb_entry(tlb, pte, addr);
- zap_install_uffd_wp_if_needed(vma, addr, pte, details,
- ptent);
- if (unlikely(!page)) {
- ksm_might_unmap_zero_page(mm, ptent);
- continue;
- }
-
- folio = page_folio(page);
- delay_rmap = 0;
- if (!folio_test_anon(folio)) {
- if (pte_dirty(ptent)) {
- folio_mark_dirty(folio);
- if (tlb_delay_rmap(tlb)) {
- delay_rmap = 1;
- force_flush = 1;
- }
- }
- if (pte_young(ptent) && likely(vma_has_recency(vma)))
- folio_mark_accessed(folio);
- }
- rss[mm_counter(page)]--;
- if (!delay_rmap) {
- folio_remove_rmap_pte(folio, page, vma);
- if (unlikely(page_mapcount(page) < 0))
- print_bad_pte(vma, addr, ptent, page);
- }
- if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
- force_flush = 1;
- addr += PAGE_SIZE;
- break;
- }
- continue;
}
- entry = pte_to_swp_entry(ptent);
- if (is_device_private_entry(entry) ||
- is_device_exclusive_entry(entry)) {
- page = pfn_swap_entry_to_page(entry);
- folio = page_folio(page);
- if (unlikely(!should_zap_page(details, page)))
- continue;
- /*
- * Both device private/exclusive mappings should only
- * work with anonymous page so far, so we don't need to
- * consider uffd-wp bit when zap. For more information,
- * see zap_install_uffd_wp_if_needed().
- */
- WARN_ON_ONCE(!vma_is_anonymous(vma));
- rss[mm_counter(page)]--;
- if (is_device_private_entry(entry))
- folio_remove_rmap_pte(folio, page, vma);
- folio_put(folio);
- } else if (!non_swap_entry(entry)) {
- /* Genuine swap entry, hence a private anon page */
- if (!should_zap_cows(details))
- continue;
- rss[MM_SWAPENTS]--;
- if (unlikely(!free_swap_and_cache(entry)))
- print_bad_pte(vma, addr, ptent, NULL);
- } else if (is_migration_entry(entry)) {
- page = pfn_swap_entry_to_page(entry);
- if (!should_zap_page(details, page))
- continue;
- rss[mm_counter(page)]--;
- } else if (pte_marker_entry_uffd_wp(entry)) {
- /*
- * For anon: always drop the marker; for file: only
- * drop the marker if explicitly requested.
- */
- if (!vma_is_anonymous(vma) &&
- !zap_drop_file_uffd_wp(details))
- continue;
- } else if (is_hwpoison_entry(entry) ||
- is_poisoned_swp_entry(entry)) {
- if (!should_zap_cows(details))
- continue;
- } else {
- /* We should have covered all the swap entry types */
- pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
- WARN_ON_ONCE(1);
+ nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
+ &force_flush, &force_break, &any_skipped);
+ if (any_skipped)
+ can_reclaim_pt = false;
+ if (unlikely(force_break)) {
+ addr += nr * PAGE_SIZE;
+ direct_reclaim = false;
+ break;
}
- pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
- zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
- } while (pte++, addr += PAGE_SIZE, addr != end);
+ } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
+
+ /*
+ * Fast path: try to hold the pmd lock and unmap the PTE page.
+ *
+ * If the pte lock was released midway (retry case), or if the attempt
+ * to hold the pmd lock failed, then we need to recheck all pte entries
+ * to ensure they are still none, thereby preventing the pte entries
+ * from being repopulated by another thread.
+ */
+ if (can_reclaim_pt && direct_reclaim && addr == end)
+ direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval);
add_mm_rss_vec(mm, rss);
arch_leave_lazy_mmu_mode();
@@ -1557,6 +1779,20 @@ static unsigned long zap_pte_range(struct mmu_gather *tlb,
if (force_flush)
tlb_flush_mmu(tlb);
+ if (addr != end) {
+ cond_resched();
+ force_flush = false;
+ force_break = false;
+ goto retry;
+ }
+
+ if (can_reclaim_pt) {
+ if (direct_reclaim)
+ free_pte(mm, start, tlb, pmdval);
+ else
+ try_to_free_pte(mm, pmd, start, tlb);
+ }
+
return addr;
}
@@ -1779,7 +2015,6 @@ void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
struct mmu_notifier_range range;
struct mmu_gather tlb;
- lru_add_drain();
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
address, end);
hugetlb_zap_begin(vma, &range.start, &range.end);
@@ -1850,10 +2085,48 @@ pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
return pte_alloc_map_lock(mm, pmd, addr, ptl);
}
-static int validate_page_before_insert(struct page *page)
+static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
+{
+ VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
+ /*
+ * Whoever wants to forbid the zeropage after some zeropages
+ * might already have been mapped has to scan the page tables and
+ * bail out on any zeropages. Zeropages in COW mappings can
+ * be unshared using FAULT_FLAG_UNSHARE faults.
+ */
+ if (mm_forbids_zeropage(vma->vm_mm))
+ return false;
+ /* zeropages in COW mappings are common and unproblematic. */
+ if (is_cow_mapping(vma->vm_flags))
+ return true;
+ /* Mappings that do not allow for writable PTEs are unproblematic. */
+ if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
+ return true;
+ /*
+ * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
+ * find the shared zeropage and longterm-pin it, which would
+ * be problematic as soon as the zeropage gets replaced by a different
+ * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
+ * now differ to what GUP looked up. FSDAX is incompatible to
+ * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
+ * check_vma_flags).
+ */
+ return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
+ (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
+}
+
+static int validate_page_before_insert(struct vm_area_struct *vma,
+ struct page *page)
{
struct folio *folio = page_folio(page);
+ if (!folio_ref_count(folio))
+ return -EINVAL;
+ if (unlikely(is_zero_folio(folio))) {
+ if (!vm_mixed_zeropage_allowed(vma))
+ return -EINVAL;
+ return 0;
+ }
if (folio_test_anon(folio) || folio_test_slab(folio) ||
page_has_type(page))
return -EINVAL;
@@ -1865,24 +2138,23 @@ static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
unsigned long addr, struct page *page, pgprot_t prot)
{
struct folio *folio = page_folio(page);
+ pte_t pteval;
if (!pte_none(ptep_get(pte)))
return -EBUSY;
/* Ok, finally just insert the thing.. */
- folio_get(folio);
- inc_mm_counter(vma->vm_mm, mm_counter_file(page));
- folio_add_file_rmap_pte(folio, page, vma);
- set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
+ pteval = mk_pte(page, prot);
+ if (unlikely(is_zero_folio(folio))) {
+ pteval = pte_mkspecial(pteval);
+ } else {
+ folio_get(folio);
+ inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
+ folio_add_file_rmap_pte(folio, page, vma);
+ }
+ set_pte_at(vma->vm_mm, addr, pte, pteval);
return 0;
}
-/*
- * This is the old fallback for page remapping.
- *
- * For historical reasons, it only allows reserved pages. Only
- * old drivers should use this, and they needed to mark their
- * pages reserved for the old functions anyway.
- */
static int insert_page(struct vm_area_struct *vma, unsigned long addr,
struct page *page, pgprot_t prot)
{
@@ -1890,7 +2162,7 @@ static int insert_page(struct vm_area_struct *vma, unsigned long addr,
pte_t *pte;
spinlock_t *ptl;
- retval = validate_page_before_insert(page);
+ retval = validate_page_before_insert(vma, page);
if (retval)
goto out;
retval = -ENOMEM;
@@ -1908,9 +2180,7 @@ static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
{
int err;
- if (!page_count(page))
- return -EINVAL;
- err = validate_page_before_insert(page);
+ err = validate_page_before_insert(vma, page);
if (err)
return err;
return insert_page_into_pte_locked(vma, pte, addr, page, prot);
@@ -2016,7 +2286,8 @@ EXPORT_SYMBOL(vm_insert_pages);
* @page: source kernel page
*
* This allows drivers to insert individual pages they've allocated
- * into a user vma.
+ * into a user vma. The zeropage is supported in some VMAs,
+ * see vm_mixed_zeropage_allowed().
*
* The page has to be a nice clean _individual_ kernel allocation.
* If you allocate a compound page, you need to have marked it as
@@ -2043,8 +2314,6 @@ int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
{
if (addr < vma->vm_start || addr >= vma->vm_end)
return -EFAULT;
- if (!page_count(page))
- return -EINVAL;
if (!(vma->vm_flags & VM_MIXEDMAP)) {
BUG_ON(mmap_read_trylock(vma->vm_mm));
BUG_ON(vma->vm_flags & VM_PFNMAP);
@@ -2062,6 +2331,8 @@ EXPORT_SYMBOL(vm_insert_page);
* @offset: user's requested vm_pgoff
*
* This allows drivers to map range of kernel pages into a user vma.
+ * The zeropage is supported in some VMAs, see
+ * vm_mixed_zeropage_allowed().
*
* Return: 0 on success and error code otherwise.
*/
@@ -2277,8 +2548,11 @@ vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
}
EXPORT_SYMBOL(vmf_insert_pfn);
-static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
+static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
{
+ if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
+ (mkwrite || !vm_mixed_zeropage_allowed(vma)))
+ return false;
/* these checks mirror the abort conditions in vm_normal_page */
if (vma->vm_flags & VM_MIXEDMAP)
return true;
@@ -2297,7 +2571,8 @@ static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
pgprot_t pgprot = vma->vm_page_prot;
int err;
- BUG_ON(!vm_mixed_ok(vma, pfn));
+ if (!vm_mixed_ok(vma, pfn, mkwrite))
+ return VM_FAULT_SIGBUS;
if (addr < vma->vm_start || addr >= vma->vm_end)
return VM_FAULT_SIGBUS;
@@ -2354,7 +2629,6 @@ vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
{
return __vm_insert_mixed(vma, addr, pfn, true);
}
-EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
/*
* maps a range of physical memory into the requested pages. the old
@@ -2454,11 +2728,7 @@ static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
return 0;
}
-/*
- * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
- * must have pre-validated the caching bits of the pgprot_t.
- */
-int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
+static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn, unsigned long size, pgprot_t prot)
{
pgd_t *pgd;
@@ -2511,6 +2781,27 @@ int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
return 0;
}
+/*
+ * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
+ * must have pre-validated the caching bits of the pgprot_t.
+ */
+int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
+ unsigned long pfn, unsigned long size, pgprot_t prot)
+{
+ int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
+
+ if (!error)
+ return 0;
+
+ /*
+ * A partial pfn range mapping is dangerous: it does not
+ * maintain page reference counts, and callers may free
+ * pages due to the error. So zap it early.
+ */
+ zap_page_range_single(vma, addr, size, NULL);
+ return error;
+}
+
/**
* remap_pfn_range - remap kernel memory to userspace
* @vma: user vma to map to
@@ -2640,7 +2931,7 @@ static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
unsigned long next;
int err = 0;
- BUG_ON(pud_huge(*pud));
+ BUG_ON(pud_leaf(*pud));
if (create) {
pmd = pmd_alloc_track(mm, pud, addr, mask);
@@ -2759,8 +3050,10 @@ static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
next = pgd_addr_end(addr, end);
if (pgd_none(*pgd) && !create)
continue;
- if (WARN_ON_ONCE(pgd_leaf(*pgd)))
- return -EINVAL;
+ if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
+ err = -EINVAL;
+ break;
+ }
if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
if (!create)
continue;
@@ -2801,7 +3094,6 @@ int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
{
return __apply_to_page_range(mm, addr, size, fn, data, false);
}
-EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
/*
* handle_pte_fault chooses page fault handler according to an entry which was
@@ -2843,10 +3135,8 @@ static inline int __wp_page_copy_user(struct page *dst, struct page *src,
unsigned long addr = vmf->address;
if (likely(src)) {
- if (copy_mc_user_highpage(dst, src, addr, vma)) {
- memory_failure_queue(page_to_pfn(src), 0);
+ if (copy_mc_user_highpage(dst, src, addr, vma))
return -EHWPOISON;
- }
return 0;
}
@@ -3045,6 +3335,7 @@ static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
pte_t entry;
VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
+ VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
if (folio) {
VM_BUG_ON(folio_test_anon(folio) &&
@@ -3081,19 +3372,37 @@ static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
return VM_FAULT_RETRY;
}
-static vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
+/**
+ * __vmf_anon_prepare - Prepare to handle an anonymous fault.
+ * @vmf: The vm_fault descriptor passed from the fault handler.
+ *
+ * When preparing to insert an anonymous page into a VMA from a
+ * fault handler, call this function rather than anon_vma_prepare().
+ * If this vma does not already have an associated anon_vma and we are
+ * only protected by the per-VMA lock, the caller must retry with the
+ * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
+ * determine if this VMA can share its anon_vma, and that's not safe to
+ * do with only the per-VMA lock held for this VMA.
+ *
+ * Return: 0 if fault handling can proceed. Any other value should be
+ * returned to the caller.
+ */
+vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
+ vm_fault_t ret = 0;
if (likely(vma->anon_vma))
return 0;
if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
- vma_end_read(vma);
- return VM_FAULT_RETRY;
+ if (!mmap_read_trylock(vma->vm_mm))
+ return VM_FAULT_RETRY;
}
if (__anon_vma_prepare(vma))
- return VM_FAULT_OOM;
- return 0;
+ ret = VM_FAULT_OOM;
+ if (vmf->flags & FAULT_FLAG_VMA_LOCK)
+ mmap_read_unlock(vma->vm_mm);
+ return ret;
}
/*
@@ -3175,7 +3484,7 @@ static vm_fault_t wp_page_copy(struct vm_fault *vmf)
if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
if (old_folio) {
if (!folio_test_anon(old_folio)) {
- dec_mm_counter(mm, mm_counter_file(&old_folio->page));
+ dec_mm_counter(mm, mm_counter_file(old_folio));
inc_mm_counter(mm, MM_ANONPAGES);
}
} else {
@@ -3202,15 +3511,10 @@ static vm_fault_t wp_page_copy(struct vm_fault *vmf)
* some TLBs while the old PTE remains in others.
*/
ptep_clear_flush(vma, vmf->address, vmf->pte);
- folio_add_new_anon_rmap(new_folio, vma, vmf->address);
+ folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
folio_add_lru_vma(new_folio, vma);
- /*
- * We call the notify macro here because, when using secondary
- * mmu page tables (such as kvm shadow page tables), we want the
- * new page to be mapped directly into the secondary page table.
- */
BUG_ON(unshare && pte_write(entry));
- set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
+ set_pte_at(mm, vmf->address, vmf->pte, entry);
update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
if (old_folio) {
/*
@@ -3253,7 +3557,7 @@ static vm_fault_t wp_page_copy(struct vm_fault *vmf)
folio_put(new_folio);
if (old_folio) {
if (page_copied)
- free_swap_cache(&old_folio->page);
+ free_swap_cache(old_folio);
folio_put(old_folio);
}
@@ -3376,6 +3680,16 @@ static bool wp_can_reuse_anon_folio(struct folio *folio,
struct vm_area_struct *vma)
{
/*
+ * We could currently only reuse a subpage of a large folio if no
+ * other subpages of the large folios are still mapped. However,
+ * let's just consistently not reuse subpages even if we could
+ * reuse in that scenario, and give back a large folio a bit
+ * sooner.
+ */
+ if (folio_test_large(folio))
+ return false;
+
+ /*
* We have to verify under folio lock: these early checks are
* just an optimization to avoid locking the folio and freeing
* the swapcache if there is little hope that we can reuse.
@@ -3714,7 +4028,7 @@ static inline bool should_try_to_free_swap(struct folio *folio,
* reference only in case it's likely that we'll be the exlusive user.
*/
return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
- folio_ref_count(folio) == 2;
+ folio_ref_count(folio) == (1 + folio_nr_pages(folio));
}
static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
@@ -3777,6 +4091,10 @@ static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
if (marker & PTE_MARKER_POISONED)
return VM_FAULT_HWPOISON;
+ /* Hitting a guard page is always a fatal condition. */
+ if (marker & PTE_MARKER_GUARD)
+ return VM_FAULT_SIGSEGV;
+
if (pte_marker_entry_uffd_wp(entry))
return pte_marker_handle_uffd_wp(vmf);
@@ -3784,6 +4102,192 @@ static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
return VM_FAULT_SIGBUS;
}
+static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ struct folio *folio;
+ swp_entry_t entry;
+
+ folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
+ if (!folio)
+ return NULL;
+
+ entry = pte_to_swp_entry(vmf->orig_pte);
+ if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
+ GFP_KERNEL, entry)) {
+ folio_put(folio);
+ return NULL;
+ }
+
+ return folio;
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
+{
+ struct swap_info_struct *si = swp_swap_info(entry);
+ pgoff_t offset = swp_offset(entry);
+ int i;
+
+ /*
+ * While allocating a large folio and doing swap_read_folio, which is
+ * the case the being faulted pte doesn't have swapcache. We need to
+ * ensure all PTEs have no cache as well, otherwise, we might go to
+ * swap devices while the content is in swapcache.
+ */
+ for (i = 0; i < max_nr; i++) {
+ if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
+ return i;
+ }
+
+ return i;
+}
+
+/*
+ * Check if the PTEs within a range are contiguous swap entries
+ * and have consistent swapcache, zeromap.
+ */
+static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
+{
+ unsigned long addr;
+ swp_entry_t entry;
+ int idx;
+ pte_t pte;
+
+ addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
+ idx = (vmf->address - addr) / PAGE_SIZE;
+ pte = ptep_get(ptep);
+
+ if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
+ return false;
+ entry = pte_to_swp_entry(pte);
+ if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
+ return false;
+
+ /*
+ * swap_read_folio() can't handle the case a large folio is hybridly
+ * from different backends. And they are likely corner cases. Similar
+ * things might be added once zswap support large folios.
+ */
+ if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
+ return false;
+ if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
+ return false;
+
+ return true;
+}
+
+static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
+ unsigned long addr,
+ unsigned long orders)
+{
+ int order, nr;
+
+ order = highest_order(orders);
+
+ /*
+ * To swap in a THP with nr pages, we require that its first swap_offset
+ * is aligned with that number, as it was when the THP was swapped out.
+ * This helps filter out most invalid entries.
+ */
+ while (orders) {
+ nr = 1 << order;
+ if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
+ break;
+ order = next_order(&orders, order);
+ }
+
+ return orders;
+}
+
+static struct folio *alloc_swap_folio(struct vm_fault *vmf)
+{
+ struct vm_area_struct *vma = vmf->vma;
+ unsigned long orders;
+ struct folio *folio;
+ unsigned long addr;
+ swp_entry_t entry;
+ spinlock_t *ptl;
+ pte_t *pte;
+ gfp_t gfp;
+ int order;
+
+ /*
+ * If uffd is active for the vma we need per-page fault fidelity to
+ * maintain the uffd semantics.
+ */
+ if (unlikely(userfaultfd_armed(vma)))
+ goto fallback;
+
+ /*
+ * A large swapped out folio could be partially or fully in zswap. We
+ * lack handling for such cases, so fallback to swapping in order-0
+ * folio.
+ */
+ if (!zswap_never_enabled())
+ goto fallback;
+
+ entry = pte_to_swp_entry(vmf->orig_pte);
+ /*
+ * Get a list of all the (large) orders below PMD_ORDER that are enabled
+ * and suitable for swapping THP.
+ */
+ orders = thp_vma_allowable_orders(vma, vma->vm_flags,
+ TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
+ orders = thp_vma_suitable_orders(vma, vmf->address, orders);
+ orders = thp_swap_suitable_orders(swp_offset(entry),
+ vmf->address, orders);
+
+ if (!orders)
+ goto fallback;
+
+ pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
+ vmf->address & PMD_MASK, &ptl);
+ if (unlikely(!pte))
+ goto fallback;
+
+ /*
+ * For do_swap_page, find the highest order where the aligned range is
+ * completely swap entries with contiguous swap offsets.
+ */
+ order = highest_order(orders);
+ while (orders) {
+ addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
+ if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
+ break;
+ order = next_order(&orders, order);
+ }
+
+ pte_unmap_unlock(pte, ptl);
+
+ /* Try allocating the highest of the remaining orders. */
+ gfp = vma_thp_gfp_mask(vma);
+ while (orders) {
+ addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
+ folio = vma_alloc_folio(gfp, order, vma, addr);
+ if (folio) {
+ if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
+ gfp, entry))
+ return folio;
+ count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
+ folio_put(folio);
+ }
+ count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
+ order = next_order(&orders, order);
+ }
+
+fallback:
+ return __alloc_swap_folio(vmf);
+}
+#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
+static struct folio *alloc_swap_folio(struct vm_fault *vmf)
+{
+ return __alloc_swap_folio(vmf);
+}
+#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
+
+static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
+
/*
* We enter with non-exclusive mmap_lock (to exclude vma changes,
* but allow concurrent faults), and pte mapped but not yet locked.
@@ -3796,6 +4300,7 @@ vm_fault_t do_swap_page(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct folio *swapcache, *folio = NULL;
+ DECLARE_WAITQUEUE(wait, current);
struct page *page;
struct swap_info_struct *si = NULL;
rmap_t rmap_flags = RMAP_NONE;
@@ -3805,6 +4310,10 @@ vm_fault_t do_swap_page(struct vm_fault *vmf)
pte_t pte;
vm_fault_t ret = 0;
void *shadow = NULL;
+ int nr_pages;
+ unsigned long page_idx;
+ unsigned long address;
+ pte_t *ptep;
if (!pte_unmap_same(vmf))
goto out;
@@ -3868,35 +4377,36 @@ vm_fault_t do_swap_page(struct vm_fault *vmf)
if (!folio) {
if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
__swap_count(entry) == 1) {
- /*
- * Prevent parallel swapin from proceeding with
- * the cache flag. Otherwise, another thread may
- * finish swapin first, free the entry, and swapout
- * reusing the same entry. It's undetectable as
- * pte_same() returns true due to entry reuse.
- */
- if (swapcache_prepare(entry)) {
- /* Relax a bit to prevent rapid repeated page faults */
- schedule_timeout_uninterruptible(1);
- goto out;
- }
- need_clear_cache = true;
-
/* skip swapcache */
- folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
- vma, vmf->address, false);
- page = &folio->page;
+ folio = alloc_swap_folio(vmf);
if (folio) {
__folio_set_locked(folio);
__folio_set_swapbacked(folio);
- if (mem_cgroup_swapin_charge_folio(folio,
- vma->vm_mm, GFP_KERNEL,
- entry)) {
- ret = VM_FAULT_OOM;
+ nr_pages = folio_nr_pages(folio);
+ if (folio_test_large(folio))
+ entry.val = ALIGN_DOWN(entry.val, nr_pages);
+ /*
+ * Prevent parallel swapin from proceeding with
+ * the cache flag. Otherwise, another thread
+ * may finish swapin first, free the entry, and
+ * swapout reusing the same entry. It's
+ * undetectable as pte_same() returns true due
+ * to entry reuse.
+ */
+ if (swapcache_prepare(entry, nr_pages)) {
+ /*
+ * Relax a bit to prevent rapid
+ * repeated page faults.
+ */
+ add_wait_queue(&swapcache_wq, &wait);
+ schedule_timeout_uninterruptible(1);
+ remove_wait_queue(&swapcache_wq, &wait);
goto out_page;
}
- mem_cgroup_swapin_uncharge_swap(entry);
+ need_clear_cache = true;
+
+ mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
shadow = get_shadow_from_swap_cache(entry);
if (shadow)
@@ -3906,14 +4416,12 @@ vm_fault_t do_swap_page(struct vm_fault *vmf)
/* To provide entry to swap_read_folio() */
folio->swap = entry;
- swap_read_folio(folio, true, NULL);
+ swap_read_folio(folio, NULL);
folio->private = NULL;
}
} else {
- page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
+ folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
vmf);
- if (page)
- folio = page_folio(page);
swapcache = folio;
}
@@ -3934,6 +4442,7 @@ vm_fault_t do_swap_page(struct vm_fault *vmf)
ret = VM_FAULT_MAJOR;
count_vm_event(PGMAJFAULT);
count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
+ page = folio_file_page(folio, swp_offset(entry));
} else if (PageHWPoison(page)) {
/*
* hwpoisoned dirty swapcache pages are kept for killing
@@ -4003,6 +4512,56 @@ vm_fault_t do_swap_page(struct vm_fault *vmf)
goto out_nomap;
}
+ /* allocated large folios for SWP_SYNCHRONOUS_IO */
+ if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
+ unsigned long nr = folio_nr_pages(folio);
+ unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
+ unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
+ pte_t *folio_ptep = vmf->pte - idx;
+ pte_t folio_pte = ptep_get(folio_ptep);
+
+ if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
+ swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
+ goto out_nomap;
+
+ page_idx = idx;
+ address = folio_start;
+ ptep = folio_ptep;
+ goto check_folio;
+ }
+
+ nr_pages = 1;
+ page_idx = 0;
+ address = vmf->address;
+ ptep = vmf->pte;
+ if (folio_test_large(folio) && folio_test_swapcache(folio)) {
+ int nr = folio_nr_pages(folio);
+ unsigned long idx = folio_page_idx(folio, page);
+ unsigned long folio_start = address - idx * PAGE_SIZE;
+ unsigned long folio_end = folio_start + nr * PAGE_SIZE;
+ pte_t *folio_ptep;
+ pte_t folio_pte;
+
+ if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
+ goto check_folio;
+ if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
+ goto check_folio;
+
+ folio_ptep = vmf->pte - idx;
+ folio_pte = ptep_get(folio_ptep);
+ if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
+ swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
+ goto check_folio;
+
+ page_idx = idx;
+ address = folio_start;
+ ptep = folio_ptep;
+ nr_pages = nr;
+ entry = folio->swap;
+ page = &folio->page;
+ }
+
+check_folio:
/*
* PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
* must never point at an anonymous page in the swapcache that is
@@ -4055,20 +4614,24 @@ vm_fault_t do_swap_page(struct vm_fault *vmf)
* when reading from swap. This metadata may be indexed by swap entry
* so this must be called before swap_free().
*/
- arch_swap_restore(entry, folio);
+ arch_swap_restore(folio_swap(entry, folio), folio);
/*
* Remove the swap entry and conditionally try to free up the swapcache.
* We're already holding a reference on the page but haven't mapped it
* yet.
*/
- swap_free(entry);
+ swap_free_nr(entry, nr_pages);
if (should_try_to_free_swap(folio, vma, vmf->flags))
folio_free_swap(folio);
- inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
- dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
+ add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
+ add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
pte = mk_pte(page, vma->vm_page_prot);
+ if (pte_swp_soft_dirty(vmf->orig_pte))
+ pte = pte_mksoft_dirty(pte);
+ if (pte_swp_uffd_wp(vmf->orig_pte))
+ pte = pte_mkuffd_wp(pte);
/*
* Same logic as in do_wp_page(); however, optimize for pages that are
@@ -4078,32 +4641,44 @@ vm_fault_t do_swap_page(struct vm_fault *vmf)
*/
if (!folio_test_ksm(folio) &&
(exclusive || folio_ref_count(folio) == 1)) {
- if (vmf->flags & FAULT_FLAG_WRITE) {
- pte = maybe_mkwrite(pte_mkdirty(pte), vma);
- vmf->flags &= ~FAULT_FLAG_WRITE;
+ if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
+ !pte_needs_soft_dirty_wp(vma, pte)) {
+ pte = pte_mkwrite(pte, vma);
+ if (vmf->flags & FAULT_FLAG_WRITE) {
+ pte = pte_mkdirty(pte);
+ vmf->flags &= ~FAULT_FLAG_WRITE;
+ }
}
rmap_flags |= RMAP_EXCLUSIVE;
}
- flush_icache_page(vma, page);
- if (pte_swp_soft_dirty(vmf->orig_pte))
- pte = pte_mksoft_dirty(pte);
- if (pte_swp_uffd_wp(vmf->orig_pte))
- pte = pte_mkuffd_wp(pte);
- vmf->orig_pte = pte;
+ folio_ref_add(folio, nr_pages - 1);
+ flush_icache_pages(vma, page, nr_pages);
+ vmf->orig_pte = pte_advance_pfn(pte, page_idx);
/* ksm created a completely new copy */
if (unlikely(folio != swapcache && swapcache)) {
- folio_add_new_anon_rmap(folio, vma, vmf->address);
+ folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
folio_add_lru_vma(folio, vma);
+ } else if (!folio_test_anon(folio)) {
+ /*
+ * We currently only expect small !anon folios which are either
+ * fully exclusive or fully shared, or new allocated large
+ * folios which are fully exclusive. If we ever get large
+ * folios within swapcache here, we have to be careful.
+ */
+ VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
+ VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
+ folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
} else {
- folio_add_anon_rmap_pte(folio, page, vma, vmf->address,
+ folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
rmap_flags);
}
VM_BUG_ON(!folio_test_anon(folio) ||
(pte_write(pte) && !PageAnonExclusive(page)));
- set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
- arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
+ set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
+ arch_do_swap_page_nr(vma->vm_mm, vma, address,
+ pte, pte, nr_pages);
folio_unlock(folio);
if (folio != swapcache && swapcache) {
@@ -4127,14 +4702,17 @@ vm_fault_t do_swap_page(struct vm_fault *vmf)
}
/* No need to invalidate - it was non-present before */
- update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
+ update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
unlock:
if (vmf->pte)
pte_unmap_unlock(vmf->pte, vmf->ptl);
out:
/* Clear the swap cache pin for direct swapin after PTL unlock */
- if (need_clear_cache)
- swapcache_clear(si, entry);
+ if (need_clear_cache) {
+ swapcache_clear(si, entry, nr_pages);
+ if (waitqueue_active(&swapcache_wq))
+ wake_up(&swapcache_wq);
+ }
if (si)
put_swap_device(si);
return ret;
@@ -4149,8 +4727,11 @@ out_release:
folio_unlock(swapcache);
folio_put(swapcache);
}
- if (need_clear_cache)
- swapcache_clear(si, entry);
+ if (need_clear_cache) {
+ swapcache_clear(si, entry, nr_pages);
+ if (waitqueue_active(&swapcache_wq))
+ wake_up(&swapcache_wq);
+ }
if (si)
put_swap_device(si);
return ret;
@@ -4170,8 +4751,8 @@ static bool pte_range_none(pte_t *pte, int nr_pages)
static struct folio *alloc_anon_folio(struct vm_fault *vmf)
{
-#ifdef CONFIG_TRANSPARENT_HUGEPAGE
struct vm_area_struct *vma = vmf->vma;
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
unsigned long orders;
struct folio *folio;
unsigned long addr;
@@ -4191,8 +4772,8 @@ static struct folio *alloc_anon_folio(struct vm_fault *vmf)
* for this vma. Then filter out the orders that can't be allocated over
* the faulting address and still be fully contained in the vma.
*/
- orders = thp_vma_allowable_orders(vma, vma->vm_flags, false, true, true,
- BIT(PMD_ORDER) - 1);
+ orders = thp_vma_allowable_orders(vma, vma->vm_flags,
+ TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
orders = thp_vma_suitable_orders(vma, vmf->address, orders);
if (!orders)
@@ -4217,21 +4798,40 @@ static struct folio *alloc_anon_folio(struct vm_fault *vmf)
pte_unmap(pte);
+ if (!orders)
+ goto fallback;
+
/* Try allocating the highest of the remaining orders. */
gfp = vma_thp_gfp_mask(vma);
while (orders) {
addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
- folio = vma_alloc_folio(gfp, order, vma, addr, true);
+ folio = vma_alloc_folio(gfp, order, vma, addr);
if (folio) {
- clear_huge_page(&folio->page, vmf->address, 1 << order);
+ if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
+ count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
+ folio_put(folio);
+ goto next;
+ }
+ folio_throttle_swaprate(folio, gfp);
+ /*
+ * When a folio is not zeroed during allocation
+ * (__GFP_ZERO not used) or user folios require special
+ * handling, folio_zero_user() is used to make sure
+ * that the page corresponding to the faulting address
+ * will be hot in the cache after zeroing.
+ */
+ if (user_alloc_needs_zeroing())
+ folio_zero_user(folio, vmf->address);
return folio;
}
+next:
+ count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
order = next_order(&orders, order);
}
fallback:
#endif
- return vma_alloc_zeroed_movable_folio(vmf->vma, vmf->address);
+ return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
}
/*
@@ -4241,14 +4841,12 @@ fallback:
*/
static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
{
- bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
struct vm_area_struct *vma = vmf->vma;
unsigned long addr = vmf->address;
struct folio *folio;
vm_fault_t ret = 0;
int nr_pages = 1;
pte_t entry;
- int i;
/* File mapping without ->vm_ops ? */
if (vma->vm_flags & VM_SHARED)
@@ -4286,8 +4884,9 @@ static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
}
/* Allocate our own private page. */
- if (unlikely(anon_vma_prepare(vma)))
- goto oom;
+ ret = vmf_anon_prepare(vmf);
+ if (ret)
+ return ret;
/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
folio = alloc_anon_folio(vmf);
if (IS_ERR(folio))
@@ -4298,10 +4897,6 @@ static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
nr_pages = folio_nr_pages(folio);
addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
- if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
- goto oom_free_page;
- folio_throttle_swaprate(folio, GFP_KERNEL);
-
/*
* The memory barrier inside __folio_mark_uptodate makes sure that
* preceding stores to the page contents become visible before
@@ -4321,8 +4916,7 @@ static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
update_mmu_tlb(vma, addr, vmf->pte);
goto release;
} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
- for (i = 0; i < nr_pages; i++)
- update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i);
+ update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
goto release;
}
@@ -4339,10 +4933,11 @@ static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
folio_ref_add(folio, nr_pages - 1);
add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
- folio_add_new_anon_rmap(folio, vma, addr);
+ count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
+ folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
folio_add_lru_vma(folio, vma);
setpte:
- if (uffd_wp)
+ if (vmf_orig_pte_uffd_wp(vmf))
entry = pte_mkuffd_wp(entry);
set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
@@ -4355,8 +4950,6 @@ unlock:
release:
folio_put(folio);
goto unlock;
-oom_free_page:
- folio_put(folio);
oom:
return VM_FAULT_OOM;
}
@@ -4381,7 +4974,7 @@ static vm_fault_t __do_fault(struct vm_fault *vmf)
* lock_page(B)
* lock_page(B)
* pte_alloc_one
- * shrink_page_list
+ * shrink_folio_list
* wait_on_page_writeback(A)
* SetPageWriteback(B)
* unlock_page(B)
@@ -4445,11 +5038,21 @@ vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
pmd_t entry;
vm_fault_t ret = VM_FAULT_FALLBACK;
+ /*
+ * It is too late to allocate a small folio, we already have a large
+ * folio in the pagecache: especially s390 KVM cannot tolerate any
+ * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
+ * PMD mappings if THPs are disabled.
+ */
+ if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
+ return ret;
+
if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
return ret;
- if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER)
+ if (folio_order(folio) != HPAGE_PMD_ORDER)
return ret;
+ page = &folio->page;
/*
* Just backoff if any subpage of a THP is corrupted otherwise
@@ -4480,7 +5083,7 @@ vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
if (write)
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
- add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
+ add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
folio_add_file_rmap_pmd(folio, page, vma);
/*
@@ -4519,9 +5122,8 @@ void set_pte_range(struct vm_fault *vmf, struct folio *folio,
struct page *page, unsigned int nr, unsigned long addr)
{
struct vm_area_struct *vma = vmf->vma;
- bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
bool write = vmf->flags & FAULT_FLAG_WRITE;
- bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
+ bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
pte_t entry;
flush_icache_pages(vma, page, nr);
@@ -4534,16 +5136,14 @@ void set_pte_range(struct vm_fault *vmf, struct folio *folio,
if (write)
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
- if (unlikely(uffd_wp))
+ if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
entry = pte_mkuffd_wp(entry);
/* copy-on-write page */
if (write && !(vma->vm_flags & VM_SHARED)) {
- add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
VM_BUG_ON_FOLIO(nr != 1, folio);
- folio_add_new_anon_rmap(folio, vma, addr);
+ folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
folio_add_lru_vma(folio, vma);
} else {
- add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
folio_add_file_rmap_ptes(folio, page, nr, vma);
}
set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
@@ -4579,10 +5179,19 @@ vm_fault_t finish_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct page *page;
+ struct folio *folio;
vm_fault_t ret;
+ bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
+ !(vma->vm_flags & VM_SHARED);
+ int type, nr_pages;
+ unsigned long addr;
+ bool needs_fallback = false;
+
+fallback:
+ addr = vmf->address;
/* Did we COW the page? */
- if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
+ if (is_cow)
page = vmf->cow_page;
else
page = vmf->page;
@@ -4610,22 +5219,63 @@ vm_fault_t finish_fault(struct vm_fault *vmf)
return VM_FAULT_OOM;
}
+ folio = page_folio(page);
+ nr_pages = folio_nr_pages(folio);
+
+ /*
+ * Using per-page fault to maintain the uffd semantics, and same
+ * approach also applies to non-anonymous-shmem faults to avoid
+ * inflating the RSS of the process.
+ */
+ if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) ||
+ unlikely(needs_fallback)) {
+ nr_pages = 1;
+ } else if (nr_pages > 1) {
+ pgoff_t idx = folio_page_idx(folio, page);
+ /* The page offset of vmf->address within the VMA. */
+ pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
+ /* The index of the entry in the pagetable for fault page. */
+ pgoff_t pte_off = pte_index(vmf->address);
+
+ /*
+ * Fallback to per-page fault in case the folio size in page
+ * cache beyond the VMA limits and PMD pagetable limits.
+ */
+ if (unlikely(vma_off < idx ||
+ vma_off + (nr_pages - idx) > vma_pages(vma) ||
+ pte_off < idx ||
+ pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
+ nr_pages = 1;
+ } else {
+ /* Now we can set mappings for the whole large folio. */
+ addr = vmf->address - idx * PAGE_SIZE;
+ page = &folio->page;
+ }
+ }
+
vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
- vmf->address, &vmf->ptl);
+ addr, &vmf->ptl);
if (!vmf->pte)
return VM_FAULT_NOPAGE;
/* Re-check under ptl */
- if (likely(!vmf_pte_changed(vmf))) {
- struct folio *folio = page_folio(page);
-
- set_pte_range(vmf, folio, page, 1, vmf->address);
- ret = 0;
- } else {
- update_mmu_tlb(vma, vmf->address, vmf->pte);
+ if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
+ update_mmu_tlb(vma, addr, vmf->pte);
ret = VM_FAULT_NOPAGE;
+ goto unlock;
+ } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
+ needs_fallback = true;
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ goto fallback;
}
+ folio_ref_add(folio, nr_pages - 1);
+ set_pte_range(vmf, folio, page, nr_pages, addr);
+ type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
+ add_mm_counter(vma->vm_mm, type, nr_pages);
+ ret = 0;
+
+unlock:
pte_unmap_unlock(vmf->pte, vmf->ptl);
return ret;
}
@@ -4653,7 +5303,8 @@ static int fault_around_bytes_set(void *data, u64 val)
* The minimum value is 1 page, however this results in no fault-around
* at all. See should_fault_around().
*/
- fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
+ val = max(val, PAGE_SIZE);
+ fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
return 0;
}
@@ -4791,10 +5442,14 @@ static vm_fault_t do_cow_fault(struct vm_fault *vmf)
if (ret & VM_FAULT_DONE_COW)
return ret;
- copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
+ if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
+ ret = VM_FAULT_HWPOISON;
+ goto unlock;
+ }
__folio_mark_uptodate(folio);
ret |= finish_fault(vmf);
+unlock:
unlock_page(vmf->page);
put_page(vmf->page);
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
@@ -4899,21 +5554,105 @@ static vm_fault_t do_fault(struct vm_fault *vmf)
return ret;
}
-int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
- unsigned long addr, int page_nid, int *flags)
+int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
+ unsigned long addr, int *flags,
+ bool writable, int *last_cpupid)
{
- folio_get(folio);
+ struct vm_area_struct *vma = vmf->vma;
+
+ /*
+ * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
+ * much anyway since they can be in shared cache state. This misses
+ * the case where a mapping is writable but the process never writes
+ * to it but pte_write gets cleared during protection updates and
+ * pte_dirty has unpredictable behaviour between PTE scan updates,
+ * background writeback, dirty balancing and application behaviour.
+ */
+ if (!writable)
+ *flags |= TNF_NO_GROUP;
+
+ /*
+ * Flag if the folio is shared between multiple address spaces. This
+ * is later used when determining whether to group tasks together
+ */
+ if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
+ *flags |= TNF_SHARED;
+ /*
+ * For memory tiering mode, cpupid of slow memory page is used
+ * to record page access time. So use default value.
+ */
+ if (folio_use_access_time(folio))
+ *last_cpupid = (-1 & LAST_CPUPID_MASK);
+ else
+ *last_cpupid = folio_last_cpupid(folio);
/* Record the current PID acceesing VMA */
vma_set_access_pid_bit(vma);
count_vm_numa_event(NUMA_HINT_FAULTS);
- if (page_nid == numa_node_id()) {
+#ifdef CONFIG_NUMA_BALANCING
+ count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
+#endif
+ if (folio_nid(folio) == numa_node_id()) {
count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
*flags |= TNF_FAULT_LOCAL;
}
- return mpol_misplaced(folio, vma, addr);
+ return mpol_misplaced(folio, vmf, addr);
+}
+
+static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
+ unsigned long fault_addr, pte_t *fault_pte,
+ bool writable)
+{
+ pte_t pte, old_pte;
+
+ old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
+ pte = pte_modify(old_pte, vma->vm_page_prot);
+ pte = pte_mkyoung(pte);
+ if (writable)
+ pte = pte_mkwrite(pte, vma);
+ ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
+ update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
+}
+
+static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
+ struct folio *folio, pte_t fault_pte,
+ bool ignore_writable, bool pte_write_upgrade)
+{
+ int nr = pte_pfn(fault_pte) - folio_pfn(folio);
+ unsigned long start, end, addr = vmf->address;
+ unsigned long addr_start = addr - (nr << PAGE_SHIFT);
+ unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
+ pte_t *start_ptep;
+
+ /* Stay within the VMA and within the page table. */
+ start = max3(addr_start, pt_start, vma->vm_start);
+ end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
+ vma->vm_end);
+ start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
+
+ /* Restore all PTEs' mapping of the large folio */
+ for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
+ pte_t ptent = ptep_get(start_ptep);
+ bool writable = false;
+
+ if (!pte_present(ptent) || !pte_protnone(ptent))
+ continue;
+
+ if (pfn_folio(pte_pfn(ptent)) != folio)
+ continue;
+
+ if (!ignore_writable) {
+ ptent = pte_modify(ptent, vma->vm_page_prot);
+ writable = pte_write(ptent);
+ if (!writable && pte_write_upgrade &&
+ can_change_pte_writable(vma, addr, ptent))
+ writable = true;
+ }
+
+ numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
+ }
}
static vm_fault_t do_numa_page(struct vm_fault *vmf)
@@ -4921,25 +5660,26 @@ static vm_fault_t do_numa_page(struct vm_fault *vmf)
struct vm_area_struct *vma = vmf->vma;
struct folio *folio = NULL;
int nid = NUMA_NO_NODE;
- bool writable = false;
+ bool writable = false, ignore_writable = false;
+ bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
int last_cpupid;
int target_nid;
pte_t pte, old_pte;
- int flags = 0;
+ int flags = 0, nr_pages;
/*
- * The "pte" at this point cannot be used safely without
- * validation through pte_unmap_same(). It's of NUMA type but
- * the pfn may be screwed if the read is non atomic.
+ * The pte cannot be used safely until we verify, while holding the page
+ * table lock, that its contents have not changed during fault handling.
*/
spin_lock(vmf->ptl);
- if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
+ /* Read the live PTE from the page tables: */
+ old_pte = ptep_get(vmf->pte);
+
+ if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
pte_unmap_unlock(vmf->pte, vmf->ptl);
- goto out;
+ return 0;
}
- /* Get the normal PTE */
- old_pte = ptep_get(vmf->pte);
pte = pte_modify(old_pte, vma->vm_page_prot);
/*
@@ -4947,7 +5687,7 @@ static vm_fault_t do_numa_page(struct vm_fault *vmf)
* is only valid while holding the PT lock.
*/
writable = pte_write(pte);
- if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
+ if (!writable && pte_write_upgrade &&
can_change_pte_writable(vma, vmf->address, pte))
writable = true;
@@ -4955,81 +5695,55 @@ static vm_fault_t do_numa_page(struct vm_fault *vmf)
if (!folio || folio_is_zone_device(folio))
goto out_map;
- /* TODO: handle PTE-mapped THP */
- if (folio_test_large(folio))
- goto out_map;
-
- /*
- * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
- * much anyway since they can be in shared cache state. This misses
- * the case where a mapping is writable but the process never writes
- * to it but pte_write gets cleared during protection updates and
- * pte_dirty has unpredictable behaviour between PTE scan updates,
- * background writeback, dirty balancing and application behaviour.
- */
- if (!writable)
- flags |= TNF_NO_GROUP;
-
- /*
- * Flag if the folio is shared between multiple address spaces. This
- * is later used when determining whether to group tasks together
- */
- if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
- flags |= TNF_SHARED;
-
nid = folio_nid(folio);
- /*
- * For memory tiering mode, cpupid of slow memory page is used
- * to record page access time. So use default value.
- */
- if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
- !node_is_toptier(nid))
- last_cpupid = (-1 & LAST_CPUPID_MASK);
- else
- last_cpupid = folio_last_cpupid(folio);
- target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
- if (target_nid == NUMA_NO_NODE) {
- folio_put(folio);
+ nr_pages = folio_nr_pages(folio);
+
+ target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
+ writable, &last_cpupid);
+ if (target_nid == NUMA_NO_NODE)
+ goto out_map;
+ if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
+ flags |= TNF_MIGRATE_FAIL;
goto out_map;
}
+ /* The folio is isolated and isolation code holds a folio reference. */
pte_unmap_unlock(vmf->pte, vmf->ptl);
writable = false;
+ ignore_writable = true;
/* Migrate to the requested node */
- if (migrate_misplaced_folio(folio, vma, target_nid)) {
+ if (!migrate_misplaced_folio(folio, target_nid)) {
nid = target_nid;
flags |= TNF_MIGRATED;
- } else {
- flags |= TNF_MIGRATE_FAIL;
- vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
- vmf->address, &vmf->ptl);
- if (unlikely(!vmf->pte))
- goto out;
- if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
- pte_unmap_unlock(vmf->pte, vmf->ptl);
- goto out;
- }
- goto out_map;
+ task_numa_fault(last_cpupid, nid, nr_pages, flags);
+ return 0;
}
-out:
- if (nid != NUMA_NO_NODE)
- task_numa_fault(last_cpupid, nid, 1, flags);
- return 0;
+ flags |= TNF_MIGRATE_FAIL;
+ vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
+ vmf->address, &vmf->ptl);
+ if (unlikely(!vmf->pte))
+ return 0;
+ if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
+ pte_unmap_unlock(vmf->pte, vmf->ptl);
+ return 0;
+ }
out_map:
/*
* Make it present again, depending on how arch implements
* non-accessible ptes, some can allow access by kernel mode.
*/
- old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
- pte = pte_modify(old_pte, vma->vm_page_prot);
- pte = pte_mkyoung(pte);
- if (writable)
- pte = pte_mkwrite(pte, vma);
- ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
- update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
+ if (folio && folio_test_large(folio))
+ numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
+ pte_write_upgrade);
+ else
+ numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
+ writable);
pte_unmap_unlock(vmf->pte, vmf->ptl);
- goto out;
+
+ if (nid != NUMA_NO_NODE)
+ task_numa_fault(last_cpupid, nid, nr_pages, flags);
+ return 0;
}
static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
@@ -5141,14 +5855,24 @@ static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
vmf->pte = NULL;
vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
} else {
+ pmd_t dummy_pmdval;
+
/*
* A regular pmd is established and it can't morph into a huge
* pmd by anon khugepaged, since that takes mmap_lock in write
* mode; but shmem or file collapse to THP could still morph
* it into a huge pmd: just retry later if so.
+ *
+ * Use the maywrite version to indicate that vmf->pte may be
+ * modified, but since we will use pte_same() to detect the
+ * change of the !pte_none() entry, there is no need to recheck
+ * the pmdval. Here we chooes to pass a dummy variable instead
+ * of NULL, which helps new user think about why this place is
+ * special.
*/
- vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
- vmf->address, &vmf->ptl);
+ vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
+ vmf->address, &dummy_pmdval,
+ &vmf->ptl);
if (unlikely(!vmf->pte))
return 0;
vmf->orig_pte = ptep_get_lockless(vmf->pte);
@@ -5238,7 +5962,8 @@ static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
return VM_FAULT_OOM;
retry_pud:
if (pud_none(*vmf.pud) &&
- thp_vma_allowable_order(vma, vm_flags, false, true, true, PUD_ORDER)) {
+ thp_vma_allowable_order(vma, vm_flags,
+ TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
ret = create_huge_pud(&vmf);
if (!(ret & VM_FAULT_FALLBACK))
return ret;
@@ -5272,7 +5997,8 @@ retry_pud:
goto retry_pud;
if (pmd_none(*vmf.pmd) &&
- thp_vma_allowable_order(vma, vm_flags, false, true, true, PMD_ORDER)) {
+ thp_vma_allowable_order(vma, vm_flags,
+ TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
ret = create_huge_pmd(&vmf);
if (!(ret & VM_FAULT_FALLBACK))
return ret;
@@ -5430,7 +6156,8 @@ static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
}
/*
- * By the time we get here, we already hold the mm semaphore
+ * By the time we get here, we already hold either the VMA lock or the
+ * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
*
* The mmap_lock may have been released depending on flags and our
* return value. See filemap_fault() and __folio_lock_or_retry().
@@ -5441,6 +6168,7 @@ vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
/* If the fault handler drops the mmap_lock, vma may be freed */
struct mm_struct *mm = vma->vm_mm;
vm_fault_t ret;
+ bool is_droppable;
__set_current_state(TASK_RUNNING);
@@ -5455,6 +6183,8 @@ vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
goto out;
}
+ is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
+
/*
* Enable the memcg OOM handling for faults triggered in user
* space. Kernel faults are handled more gracefully.
@@ -5469,8 +6199,18 @@ vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
else
ret = __handle_mm_fault(vma, address, flags);
+ /*
+ * Warning: It is no longer safe to dereference vma-> after this point,
+ * because mmap_lock might have been dropped by __handle_mm_fault(), so
+ * vma might be destroyed from underneath us.
+ */
+
lru_gen_exit_fault();
+ /* If the mapping is droppable, then errors due to OOM aren't fatal. */
+ if (is_droppable)
+ ret &= ~VM_FAULT_OOM;
+
if (flags & FAULT_FLAG_USER) {
mem_cgroup_exit_user_fault();
/*
@@ -5533,7 +6273,7 @@ static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_r
/*
* Helper for page fault handling.
*
- * This is kind of equivalend to "mmap_read_lock()" followed
+ * This is kind of equivalent to "mmap_read_lock()" followed
* by "find_extend_vma()", except it's a lot more careful about
* the locking (and will drop the lock on failure).
*
@@ -5626,19 +6366,6 @@ retry:
if (!vma_start_read(vma))
goto inval;
- /*
- * find_mergeable_anon_vma uses adjacent vmas which are not locked.
- * This check must happen after vma_start_read(); otherwise, a
- * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
- * from its anon_vma.
- */
- if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
- goto inval_end_read;
-
- /* Check since vm_start/vm_end might change before we lock the VMA */
- if (unlikely(address < vma->vm_start || address >= vma->vm_end))
- goto inval_end_read;
-
/* Check if the VMA got isolated after we found it */
if (vma->detached) {
vma_end_read(vma);
@@ -5646,6 +6373,16 @@ retry:
/* The area was replaced with another one */
goto retry;
}
+ /*
+ * At this point, we have a stable reference to a VMA: The VMA is
+ * locked and we know it hasn't already been isolated.
+ * From here on, we can access the VMA without worrying about which
+ * fields are accessible for RCU readers.
+ */
+
+ /* Check since vm_start/vm_end might change before we lock the VMA */
+ if (unlikely(address < vma->vm_start || address >= vma->vm_end))
+ goto inval_end_read;
rcu_read_unlock();
return vma;
@@ -5730,126 +6467,158 @@ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
}
#endif /* __PAGETABLE_PMD_FOLDED */
+static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
+ spinlock_t *lock, pte_t *ptep,
+ pgprot_t pgprot, unsigned long pfn_base,
+ unsigned long addr_mask, bool writable,
+ bool special)
+{
+ args->lock = lock;
+ args->ptep = ptep;
+ args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
+ args->pgprot = pgprot;
+ args->writable = writable;
+ args->special = special;
+}
+
+static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
+{
+#ifdef CONFIG_LOCKDEP
+ struct file *file = vma->vm_file;
+ struct address_space *mapping = file ? file->f_mapping : NULL;
+
+ if (mapping)
+ lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
+ lockdep_is_held(&vma->vm_mm->mmap_lock));
+ else
+ lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
+#endif
+}
+
/**
- * follow_pte - look up PTE at a user virtual address
- * @mm: the mm_struct of the target address space
- * @address: user virtual address
- * @ptepp: location to store found PTE
- * @ptlp: location to store the lock for the PTE
+ * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
+ * @args: Pointer to struct @follow_pfnmap_args
+ *
+ * The caller needs to setup args->vma and args->address to point to the
+ * virtual address as the target of such lookup. On a successful return,
+ * the results will be put into other output fields.
+ *
+ * After the caller finished using the fields, the caller must invoke
+ * another follow_pfnmap_end() to proper releases the locks and resources
+ * of such look up request.
+ *
+ * During the start() and end() calls, the results in @args will be valid
+ * as proper locks will be held. After the end() is called, all the fields
+ * in @follow_pfnmap_args will be invalid to be further accessed. Further
+ * use of such information after end() may require proper synchronizations
+ * by the caller with page table updates, otherwise it can create a
+ * security bug.
*
- * On a successful return, the pointer to the PTE is stored in @ptepp;
- * the corresponding lock is taken and its location is stored in @ptlp.
- * The contents of the PTE are only stable until @ptlp is released;
- * any further use, if any, must be protected against invalidation
- * with MMU notifiers.
+ * If the PTE maps a refcounted page, callers are responsible to protect
+ * against invalidation with MMU notifiers; otherwise access to the PFN at
+ * a later point in time can trigger use-after-free.
*
* Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
- * should be taken for read.
+ * should be taken for read, and the mmap semaphore cannot be released
+ * before the end() is invoked.
*
- * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
- * it is not a good general-purpose API.
+ * This function must not be used to modify PTE content.
*
- * Return: zero on success, -ve otherwise.
+ * Return: zero on success, negative otherwise.
*/
-int follow_pte(struct mm_struct *mm, unsigned long address,
- pte_t **ptepp, spinlock_t **ptlp)
+int follow_pfnmap_start(struct follow_pfnmap_args *args)
{
- pgd_t *pgd;
- p4d_t *p4d;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *ptep;
+ struct vm_area_struct *vma = args->vma;
+ unsigned long address = args->address;
+ struct mm_struct *mm = vma->vm_mm;
+ spinlock_t *lock;
+ pgd_t *pgdp;
+ p4d_t *p4dp, p4d;
+ pud_t *pudp, pud;
+ pmd_t *pmdp, pmd;
+ pte_t *ptep, pte;
- pgd = pgd_offset(mm, address);
- if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
+ pfnmap_lockdep_assert(vma);
+
+ if (unlikely(address < vma->vm_start || address >= vma->vm_end))
goto out;
- p4d = p4d_offset(pgd, address);
- if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
+ if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
+ goto out;
+retry:
+ pgdp = pgd_offset(mm, address);
+ if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
goto out;
- pud = pud_offset(p4d, address);
- if (pud_none(*pud) || unlikely(pud_bad(*pud)))
+ p4dp = p4d_offset(pgdp, address);
+ p4d = READ_ONCE(*p4dp);
+ if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
goto out;
- pmd = pmd_offset(pud, address);
- VM_BUG_ON(pmd_trans_huge(*pmd));
+ pudp = pud_offset(p4dp, address);
+ pud = READ_ONCE(*pudp);
+ if (pud_none(pud))
+ goto out;
+ if (pud_leaf(pud)) {
+ lock = pud_lock(mm, pudp);
+ if (!unlikely(pud_leaf(pud))) {
+ spin_unlock(lock);
+ goto retry;
+ }
+ pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
+ pud_pfn(pud), PUD_MASK, pud_write(pud),
+ pud_special(pud));
+ return 0;
+ }
+
+ pmdp = pmd_offset(pudp, address);
+ pmd = pmdp_get_lockless(pmdp);
+ if (pmd_leaf(pmd)) {
+ lock = pmd_lock(mm, pmdp);
+ if (!unlikely(pmd_leaf(pmd))) {
+ spin_unlock(lock);
+ goto retry;
+ }
+ pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
+ pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
+ pmd_special(pmd));
+ return 0;
+ }
- ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
+ ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
if (!ptep)
goto out;
- if (!pte_present(ptep_get(ptep)))
+ pte = ptep_get(ptep);
+ if (!pte_present(pte))
goto unlock;
- *ptepp = ptep;
+ pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
+ pte_pfn(pte), PAGE_MASK, pte_write(pte),
+ pte_special(pte));
return 0;
unlock:
- pte_unmap_unlock(ptep, *ptlp);
+ pte_unmap_unlock(ptep, lock);
out:
return -EINVAL;
}
-EXPORT_SYMBOL_GPL(follow_pte);
+EXPORT_SYMBOL_GPL(follow_pfnmap_start);
/**
- * follow_pfn - look up PFN at a user virtual address
- * @vma: memory mapping
- * @address: user virtual address
- * @pfn: location to store found PFN
- *
- * Only IO mappings and raw PFN mappings are allowed.
+ * follow_pfnmap_end(): End a follow_pfnmap_start() process
+ * @args: Pointer to struct @follow_pfnmap_args
*
- * This function does not allow the caller to read the permissions
- * of the PTE. Do not use it.
- *
- * Return: zero and the pfn at @pfn on success, -ve otherwise.
+ * Must be used in pair of follow_pfnmap_start(). See the start() function
+ * above for more information.
*/
-int follow_pfn(struct vm_area_struct *vma, unsigned long address,
- unsigned long *pfn)
+void follow_pfnmap_end(struct follow_pfnmap_args *args)
{
- int ret = -EINVAL;
- spinlock_t *ptl;
- pte_t *ptep;
-
- if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
- return ret;
-
- ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
- if (ret)
- return ret;
- *pfn = pte_pfn(ptep_get(ptep));
- pte_unmap_unlock(ptep, ptl);
- return 0;
+ if (args->lock)
+ spin_unlock(args->lock);
+ if (args->ptep)
+ pte_unmap(args->ptep);
}
-EXPORT_SYMBOL(follow_pfn);
+EXPORT_SYMBOL_GPL(follow_pfnmap_end);
#ifdef CONFIG_HAVE_IOREMAP_PROT
-int follow_phys(struct vm_area_struct *vma,
- unsigned long address, unsigned int flags,
- unsigned long *prot, resource_size_t *phys)
-{
- int ret = -EINVAL;
- pte_t *ptep, pte;
- spinlock_t *ptl;
-
- if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
- goto out;
-
- if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
- goto out;
- pte = ptep_get(ptep);
-
- if ((flags & FOLL_WRITE) && !pte_write(pte))
- goto unlock;
-
- *prot = pgprot_val(pte_pgprot(pte));
- *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
-
- ret = 0;
-unlock:
- pte_unmap_unlock(ptep, ptl);
-out:
- return ret;
-}
-
/**
* generic_access_phys - generic implementation for iomem mmap access
* @vma: the vma to access
@@ -5868,37 +6637,34 @@ int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
resource_size_t phys_addr;
unsigned long prot = 0;
void __iomem *maddr;
- pte_t *ptep, pte;
- spinlock_t *ptl;
int offset = offset_in_page(addr);
int ret = -EINVAL;
-
- if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
- return -EINVAL;
+ bool writable;
+ struct follow_pfnmap_args args = { .vma = vma, .address = addr };
retry:
- if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
+ if (follow_pfnmap_start(&args))
return -EINVAL;
- pte = ptep_get(ptep);
- pte_unmap_unlock(ptep, ptl);
+ prot = pgprot_val(args.pgprot);
+ phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
+ writable = args.writable;
+ follow_pfnmap_end(&args);
- prot = pgprot_val(pte_pgprot(pte));
- phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
-
- if ((write & FOLL_WRITE) && !pte_write(pte))
+ if ((write & FOLL_WRITE) && !writable)
return -EINVAL;
maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
if (!maddr)
return -ENOMEM;
- if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
+ if (follow_pfnmap_start(&args))
goto out_unmap;
- if (!pte_same(pte, ptep_get(ptep))) {
- pte_unmap_unlock(ptep, ptl);
+ if ((prot != pgprot_val(args.pgprot)) ||
+ (phys_addr != (args.pfn << PAGE_SHIFT)) ||
+ (writable != args.writable)) {
+ follow_pfnmap_end(&args);
iounmap(maddr);
-
goto retry;
}
@@ -5907,7 +6673,7 @@ retry:
else
memcpy_fromio(buf, maddr + offset, len);
ret = len;
- pte_unmap_unlock(ptep, ptl);
+ follow_pfnmap_end(&args);
out_unmap:
iounmap(maddr);
@@ -6050,21 +6816,14 @@ void print_vma_addr(char *prefix, unsigned long ip)
if (!mmap_read_trylock(mm))
return;
- vma = find_vma(mm, ip);
+ vma = vma_lookup(mm, ip);
if (vma && vma->vm_file) {
struct file *f = vma->vm_file;
- char *buf = (char *)__get_free_page(GFP_NOWAIT);
- if (buf) {
- char *p;
-
- p = file_path(f, buf, PAGE_SIZE);
- if (IS_ERR(p))
- p = "?";
- printk("%s%s[%lx+%lx]", prefix, kbasename(p),
- vma->vm_start,
- vma->vm_end - vma->vm_start);
- free_page((unsigned long)buf);
- }
+ ip -= vma->vm_start;
+ ip += vma->vm_pgoff << PAGE_SHIFT;
+ printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
+ vma->vm_start,
+ vma->vm_end - vma->vm_start);
}
mmap_read_unlock(mm);
}
@@ -6090,23 +6849,23 @@ EXPORT_SYMBOL(__might_fault);
* cache lines hot.
*/
static inline int process_huge_page(
- unsigned long addr_hint, unsigned int pages_per_huge_page,
+ unsigned long addr_hint, unsigned int nr_pages,
int (*process_subpage)(unsigned long addr, int idx, void *arg),
void *arg)
{
int i, n, base, l, ret;
unsigned long addr = addr_hint &
- ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
+ ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
/* Process target subpage last to keep its cache lines hot */
might_sleep();
n = (addr_hint - addr) / PAGE_SIZE;
- if (2 * n <= pages_per_huge_page) {
+ if (2 * n <= nr_pages) {
/* If target subpage in first half of huge page */
base = 0;
l = n;
/* Process subpages at the end of huge page */
- for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
+ for (i = nr_pages - 1; i >= 2 * n; i--) {
cond_resched();
ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
if (ret)
@@ -6114,8 +6873,8 @@ static inline int process_huge_page(
}
} else {
/* If target subpage in second half of huge page */
- base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
- l = pages_per_huge_page - n;
+ base = nr_pages - 2 * (nr_pages - n);
+ l = nr_pages - n;
/* Process subpages at the begin of huge page */
for (i = 0; i < base; i++) {
cond_resched();
@@ -6144,101 +6903,95 @@ static inline int process_huge_page(
return 0;
}
-static void clear_gigantic_page(struct page *page,
- unsigned long addr,
- unsigned int pages_per_huge_page)
+static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
+ unsigned int nr_pages)
{
+ unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
int i;
- struct page *p;
might_sleep();
- for (i = 0; i < pages_per_huge_page; i++) {
- p = nth_page(page, i);
+ for (i = 0; i < nr_pages; i++) {
cond_resched();
- clear_user_highpage(p, addr + i * PAGE_SIZE);
+ clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
}
}
static int clear_subpage(unsigned long addr, int idx, void *arg)
{
- struct page *page = arg;
+ struct folio *folio = arg;
- clear_user_highpage(page + idx, addr);
+ clear_user_highpage(folio_page(folio, idx), addr);
return 0;
}
-void clear_huge_page(struct page *page,
- unsigned long addr_hint, unsigned int pages_per_huge_page)
+/**
+ * folio_zero_user - Zero a folio which will be mapped to userspace.
+ * @folio: The folio to zero.
+ * @addr_hint: The address will be accessed or the base address if uncelar.
+ */
+void folio_zero_user(struct folio *folio, unsigned long addr_hint)
{
- unsigned long addr = addr_hint &
- ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
+ unsigned int nr_pages = folio_nr_pages(folio);
- if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
- clear_gigantic_page(page, addr, pages_per_huge_page);
- return;
- }
-
- process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
+ if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
+ clear_gigantic_page(folio, addr_hint, nr_pages);
+ else
+ process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
}
static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
- unsigned long addr,
- struct vm_area_struct *vma,
- unsigned int pages_per_huge_page)
+ unsigned long addr_hint,
+ struct vm_area_struct *vma,
+ unsigned int nr_pages)
{
- int i;
+ unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
struct page *dst_page;
struct page *src_page;
+ int i;
- for (i = 0; i < pages_per_huge_page; i++) {
+ for (i = 0; i < nr_pages; i++) {
dst_page = folio_page(dst, i);
src_page = folio_page(src, i);
cond_resched();
if (copy_mc_user_highpage(dst_page, src_page,
- addr + i*PAGE_SIZE, vma)) {
- memory_failure_queue(page_to_pfn(src_page), 0);
+ addr + i*PAGE_SIZE, vma))
return -EHWPOISON;
- }
}
return 0;
}
struct copy_subpage_arg {
- struct page *dst;
- struct page *src;
+ struct folio *dst;
+ struct folio *src;
struct vm_area_struct *vma;
};
static int copy_subpage(unsigned long addr, int idx, void *arg)
{
struct copy_subpage_arg *copy_arg = arg;
+ struct page *dst = folio_page(copy_arg->dst, idx);
+ struct page *src = folio_page(copy_arg->src, idx);
- if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
- addr, copy_arg->vma)) {
- memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
+ if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
return -EHWPOISON;
- }
return 0;
}
int copy_user_large_folio(struct folio *dst, struct folio *src,
unsigned long addr_hint, struct vm_area_struct *vma)
{
- unsigned int pages_per_huge_page = folio_nr_pages(dst);
- unsigned long addr = addr_hint &
- ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
+ unsigned int nr_pages = folio_nr_pages(dst);
struct copy_subpage_arg arg = {
- .dst = &dst->page,
- .src = &src->page,
+ .dst = dst,
+ .src = src,
.vma = vma,
};
- if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
- return copy_user_gigantic_page(dst, src, addr, vma,
- pages_per_huge_page);
+ if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
+ return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
- return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
+ return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
}
long copy_folio_from_user(struct folio *dst_folio,
@@ -6273,7 +7026,7 @@ long copy_folio_from_user(struct folio *dst_folio,
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
-#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
+#if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
static struct kmem_cache *page_ptl_cachep;
@@ -6296,6 +7049,19 @@ bool ptlock_alloc(struct ptdesc *ptdesc)
void ptlock_free(struct ptdesc *ptdesc)
{
- kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
+ if (ptdesc->ptl)
+ kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
}
#endif
+
+void vma_pgtable_walk_begin(struct vm_area_struct *vma)
+{
+ if (is_vm_hugetlb_page(vma))
+ hugetlb_vma_lock_read(vma);
+}
+
+void vma_pgtable_walk_end(struct vm_area_struct *vma)
+{
+ if (is_vm_hugetlb_page(vma))
+ hugetlb_vma_unlock_read(vma);
+}