summaryrefslogtreecommitdiff
path: root/mm/page-writeback.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/page-writeback.c')
-rw-r--r--mm/page-writeback.c390
1 files changed, 222 insertions, 168 deletions
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index 3f255534986a..3e19b87049db 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -2325,18 +2325,18 @@ void __init page_writeback_init(void)
}
/**
- * tag_pages_for_writeback - tag pages to be written by write_cache_pages
+ * tag_pages_for_writeback - tag pages to be written by writeback
* @mapping: address space structure to write
* @start: starting page index
* @end: ending page index (inclusive)
*
* This function scans the page range from @start to @end (inclusive) and tags
- * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
- * that write_cache_pages (or whoever calls this function) will then use
- * TOWRITE tag to identify pages eligible for writeback. This mechanism is
- * used to avoid livelocking of writeback by a process steadily creating new
- * dirty pages in the file (thus it is important for this function to be quick
- * so that it can tag pages faster than a dirtying process can create them).
+ * all pages that have DIRTY tag set with a special TOWRITE tag. The caller
+ * can then use the TOWRITE tag to identify pages eligible for writeback.
+ * This mechanism is used to avoid livelocking of writeback by a process
+ * steadily creating new dirty pages in the file (thus it is important for this
+ * function to be quick so that it can tag pages faster than a dirtying process
+ * can create them).
*/
void tag_pages_for_writeback(struct address_space *mapping,
pgoff_t start, pgoff_t end)
@@ -2360,183 +2360,242 @@ void tag_pages_for_writeback(struct address_space *mapping,
}
EXPORT_SYMBOL(tag_pages_for_writeback);
+static bool folio_prepare_writeback(struct address_space *mapping,
+ struct writeback_control *wbc, struct folio *folio)
+{
+ /*
+ * Folio truncated or invalidated. We can freely skip it then,
+ * even for data integrity operations: the folio has disappeared
+ * concurrently, so there could be no real expectation of this
+ * data integrity operation even if there is now a new, dirty
+ * folio at the same pagecache index.
+ */
+ if (unlikely(folio->mapping != mapping))
+ return false;
+
+ /*
+ * Did somebody else write it for us?
+ */
+ if (!folio_test_dirty(folio))
+ return false;
+
+ if (folio_test_writeback(folio)) {
+ if (wbc->sync_mode == WB_SYNC_NONE)
+ return false;
+ folio_wait_writeback(folio);
+ }
+ BUG_ON(folio_test_writeback(folio));
+
+ if (!folio_clear_dirty_for_io(folio))
+ return false;
+
+ return true;
+}
+
+static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
+{
+ if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
+ return PAGECACHE_TAG_TOWRITE;
+ return PAGECACHE_TAG_DIRTY;
+}
+
+static pgoff_t wbc_end(struct writeback_control *wbc)
+{
+ if (wbc->range_cyclic)
+ return -1;
+ return wbc->range_end >> PAGE_SHIFT;
+}
+
+static struct folio *writeback_get_folio(struct address_space *mapping,
+ struct writeback_control *wbc)
+{
+ struct folio *folio;
+
+retry:
+ folio = folio_batch_next(&wbc->fbatch);
+ if (!folio) {
+ folio_batch_release(&wbc->fbatch);
+ cond_resched();
+ filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
+ wbc_to_tag(wbc), &wbc->fbatch);
+ folio = folio_batch_next(&wbc->fbatch);
+ if (!folio)
+ return NULL;
+ }
+
+ folio_lock(folio);
+ if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
+ folio_unlock(folio);
+ goto retry;
+ }
+
+ trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
+ return folio;
+}
+
/**
- * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
+ * writeback_iter - iterate folio of a mapping for writeback
* @mapping: address space structure to write
- * @wbc: subtract the number of written pages from *@wbc->nr_to_write
- * @writepage: function called for each page
- * @data: data passed to writepage function
+ * @wbc: writeback context
+ * @folio: previously iterated folio (%NULL to start)
+ * @error: in-out pointer for writeback errors (see below)
*
- * If a page is already under I/O, write_cache_pages() skips it, even
- * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
- * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
- * and msync() need to guarantee that all the data which was dirty at the time
- * the call was made get new I/O started against them. If wbc->sync_mode is
- * WB_SYNC_ALL then we were called for data integrity and we must wait for
- * existing IO to complete.
- *
- * To avoid livelocks (when other process dirties new pages), we first tag
- * pages which should be written back with TOWRITE tag and only then start
- * writing them. For data-integrity sync we have to be careful so that we do
- * not miss some pages (e.g., because some other process has cleared TOWRITE
- * tag we set). The rule we follow is that TOWRITE tag can be cleared only
- * by the process clearing the DIRTY tag (and submitting the page for IO).
- *
- * To avoid deadlocks between range_cyclic writeback and callers that hold
- * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
- * we do not loop back to the start of the file. Doing so causes a page
- * lock/page writeback access order inversion - we should only ever lock
- * multiple pages in ascending page->index order, and looping back to the start
- * of the file violates that rule and causes deadlocks.
+ * This function returns the next folio for the writeback operation described by
+ * @wbc on @mapping and should be called in a while loop in the ->writepages
+ * implementation.
*
- * Return: %0 on success, negative error code otherwise
+ * To start the writeback operation, %NULL is passed in the @folio argument, and
+ * for every subsequent iteration the folio returned previously should be passed
+ * back in.
+ *
+ * If there was an error in the per-folio writeback inside the writeback_iter()
+ * loop, @error should be set to the error value.
+ *
+ * Once the writeback described in @wbc has finished, this function will return
+ * %NULL and if there was an error in any iteration restore it to @error.
+ *
+ * Note: callers should not manually break out of the loop using break or goto
+ * but must keep calling writeback_iter() until it returns %NULL.
+ *
+ * Return: the folio to write or %NULL if the loop is done.
*/
-int write_cache_pages(struct address_space *mapping,
- struct writeback_control *wbc, writepage_t writepage,
- void *data)
+struct folio *writeback_iter(struct address_space *mapping,
+ struct writeback_control *wbc, struct folio *folio, int *error)
{
- int ret = 0;
- int done = 0;
- int error;
- struct folio_batch fbatch;
- int nr_folios;
- pgoff_t index;
- pgoff_t end; /* Inclusive */
- pgoff_t done_index;
- int range_whole = 0;
- xa_mark_t tag;
-
- folio_batch_init(&fbatch);
- if (wbc->range_cyclic) {
- index = mapping->writeback_index; /* prev offset */
- end = -1;
- } else {
- index = wbc->range_start >> PAGE_SHIFT;
- end = wbc->range_end >> PAGE_SHIFT;
- if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
- range_whole = 1;
- }
- if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
- tag_pages_for_writeback(mapping, index, end);
- tag = PAGECACHE_TAG_TOWRITE;
- } else {
- tag = PAGECACHE_TAG_DIRTY;
- }
- done_index = index;
- while (!done && (index <= end)) {
- int i;
-
- nr_folios = filemap_get_folios_tag(mapping, &index, end,
- tag, &fbatch);
-
- if (nr_folios == 0)
- break;
+ if (!folio) {
+ folio_batch_init(&wbc->fbatch);
+ wbc->saved_err = *error = 0;
- for (i = 0; i < nr_folios; i++) {
- struct folio *folio = fbatch.folios[i];
- unsigned long nr;
+ /*
+ * For range cyclic writeback we remember where we stopped so
+ * that we can continue where we stopped.
+ *
+ * For non-cyclic writeback we always start at the beginning of
+ * the passed in range.
+ */
+ if (wbc->range_cyclic)
+ wbc->index = mapping->writeback_index;
+ else
+ wbc->index = wbc->range_start >> PAGE_SHIFT;
- done_index = folio->index;
+ /*
+ * To avoid livelocks when other processes dirty new pages, we
+ * first tag pages which should be written back and only then
+ * start writing them.
+ *
+ * For data-integrity writeback we have to be careful so that we
+ * do not miss some pages (e.g., because some other process has
+ * cleared the TOWRITE tag we set). The rule we follow is that
+ * TOWRITE tag can be cleared only by the process clearing the
+ * DIRTY tag (and submitting the page for I/O).
+ */
+ if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
+ tag_pages_for_writeback(mapping, wbc->index,
+ wbc_end(wbc));
+ } else {
+ wbc->nr_to_write -= folio_nr_pages(folio);
- folio_lock(folio);
+ WARN_ON_ONCE(*error > 0);
- /*
- * Page truncated or invalidated. We can freely skip it
- * then, even for data integrity operations: the page
- * has disappeared concurrently, so there could be no
- * real expectation of this data integrity operation
- * even if there is now a new, dirty page at the same
- * pagecache address.
- */
- if (unlikely(folio->mapping != mapping)) {
-continue_unlock:
- folio_unlock(folio);
- continue;
- }
+ /*
+ * For integrity writeback we have to keep going until we have
+ * written all the folios we tagged for writeback above, even if
+ * we run past wbc->nr_to_write or encounter errors.
+ * We stash away the first error we encounter in wbc->saved_err
+ * so that it can be retrieved when we're done. This is because
+ * the file system may still have state to clear for each folio.
+ *
+ * For background writeback we exit as soon as we run past
+ * wbc->nr_to_write or encounter the first error.
+ */
+ if (wbc->sync_mode == WB_SYNC_ALL) {
+ if (*error && !wbc->saved_err)
+ wbc->saved_err = *error;
+ } else {
+ if (*error || wbc->nr_to_write <= 0)
+ goto done;
+ }
+ }
- if (!folio_test_dirty(folio)) {
- /* someone wrote it for us */
- goto continue_unlock;
- }
+ folio = writeback_get_folio(mapping, wbc);
+ if (!folio) {
+ /*
+ * To avoid deadlocks between range_cyclic writeback and callers
+ * that hold pages in PageWriteback to aggregate I/O until
+ * the writeback iteration finishes, we do not loop back to the
+ * start of the file. Doing so causes a page lock/page
+ * writeback access order inversion - we should only ever lock
+ * multiple pages in ascending page->index order, and looping
+ * back to the start of the file violates that rule and causes
+ * deadlocks.
+ */
+ if (wbc->range_cyclic)
+ mapping->writeback_index = 0;
- if (folio_test_writeback(folio)) {
- if (wbc->sync_mode != WB_SYNC_NONE)
- folio_wait_writeback(folio);
- else
- goto continue_unlock;
- }
+ /*
+ * Return the first error we encountered (if there was any) to
+ * the caller.
+ */
+ *error = wbc->saved_err;
+ }
+ return folio;
- BUG_ON(folio_test_writeback(folio));
- if (!folio_clear_dirty_for_io(folio))
- goto continue_unlock;
+done:
+ if (wbc->range_cyclic)
+ mapping->writeback_index = folio->index + folio_nr_pages(folio);
+ folio_batch_release(&wbc->fbatch);
+ return NULL;
+}
- trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
- error = writepage(folio, wbc, data);
- nr = folio_nr_pages(folio);
- if (unlikely(error)) {
- /*
- * Handle errors according to the type of
- * writeback. There's no need to continue for
- * background writeback. Just push done_index
- * past this page so media errors won't choke
- * writeout for the entire file. For integrity
- * writeback, we must process the entire dirty
- * set regardless of errors because the fs may
- * still have state to clear for each page. In
- * that case we continue processing and return
- * the first error.
- */
- if (error == AOP_WRITEPAGE_ACTIVATE) {
- folio_unlock(folio);
- error = 0;
- } else if (wbc->sync_mode != WB_SYNC_ALL) {
- ret = error;
- done_index = folio->index + nr;
- done = 1;
- break;
- }
- if (!ret)
- ret = error;
- }
+/**
+ * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
+ * @mapping: address space structure to write
+ * @wbc: subtract the number of written pages from *@wbc->nr_to_write
+ * @writepage: function called for each page
+ * @data: data passed to writepage function
+ *
+ * Return: %0 on success, negative error code otherwise
+ *
+ * Note: please use writeback_iter() instead.
+ */
+int write_cache_pages(struct address_space *mapping,
+ struct writeback_control *wbc, writepage_t writepage,
+ void *data)
+{
+ struct folio *folio = NULL;
+ int error;
- /*
- * We stop writing back only if we are not doing
- * integrity sync. In case of integrity sync we have to
- * keep going until we have written all the pages
- * we tagged for writeback prior to entering this loop.
- */
- wbc->nr_to_write -= nr;
- if (wbc->nr_to_write <= 0 &&
- wbc->sync_mode == WB_SYNC_NONE) {
- done = 1;
- break;
- }
+ while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
+ error = writepage(folio, wbc, data);
+ if (error == AOP_WRITEPAGE_ACTIVATE) {
+ folio_unlock(folio);
+ error = 0;
}
- folio_batch_release(&fbatch);
- cond_resched();
}
- /*
- * If we hit the last page and there is more work to be done: wrap
- * back the index back to the start of the file for the next
- * time we are called.
- */
- if (wbc->range_cyclic && !done)
- done_index = 0;
- if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
- mapping->writeback_index = done_index;
-
- return ret;
+ return error;
}
EXPORT_SYMBOL(write_cache_pages);
-static int writepage_cb(struct folio *folio, struct writeback_control *wbc,
- void *data)
+static int writeback_use_writepage(struct address_space *mapping,
+ struct writeback_control *wbc)
{
- struct address_space *mapping = data;
- int ret = mapping->a_ops->writepage(&folio->page, wbc);
- mapping_set_error(mapping, ret);
- return ret;
+ struct folio *folio = NULL;
+ struct blk_plug plug;
+ int err;
+
+ blk_start_plug(&plug);
+ while ((folio = writeback_iter(mapping, wbc, folio, &err))) {
+ err = mapping->a_ops->writepage(&folio->page, wbc);
+ if (err == AOP_WRITEPAGE_ACTIVATE) {
+ folio_unlock(folio);
+ err = 0;
+ }
+ mapping_set_error(mapping, err);
+ }
+ blk_finish_plug(&plug);
+
+ return err;
}
int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
@@ -2552,12 +2611,7 @@ int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
if (mapping->a_ops->writepages) {
ret = mapping->a_ops->writepages(mapping, wbc);
} else if (mapping->a_ops->writepage) {
- struct blk_plug plug;
-
- blk_start_plug(&plug);
- ret = write_cache_pages(mapping, wbc, writepage_cb,
- mapping);
- blk_finish_plug(&plug);
+ ret = writeback_use_writepage(mapping, wbc);
} else {
/* deal with chardevs and other special files */
ret = 0;