Age | Commit message (Collapse) | Author |
|
When arm64's stack unwinder encounters an exception boundary, it uses
the pt_regs::stackframe created by the entry code, which has a copy of
the PC and FP at the time the exception was taken. The unwinder doesn't
know anything about pt_regs, and reports the PC from the stackframe, but
does not report the LR.
The LR is only guaranteed to contain the return address at function call
boundaries, and can be used as a scratch register at other times, so the
LR at an exception boundary may or may not be a legitimate return
address. It would be useful to report the LR value regardless, as it can
be helpful when debugging, and in future it will be helpful for reliable
stacktrace support.
This patch changes the way we unwind across exception boundaries,
allowing both the PC and LR to be reported. The entry code creates a
frame_record_meta structure embedded within pt_regs, which the unwinder
uses to find the pt_regs. The unwinder can then extract pt_regs::pc and
pt_regs::lr as two separate unwind steps before continuing with a
regular walk of frame records.
When a PC is unwound from pt_regs::lr, dump_backtrace() will log this
with an "L" marker so that it can be identified easily. For example,
an unwind across an exception boundary will appear as follows:
| el1h_64_irq+0x6c/0x70
| _raw_spin_unlock_irqrestore+0x10/0x60 (P)
| __aarch64_insn_write+0x6c/0x90 (L)
| aarch64_insn_patch_text_nosync+0x28/0x80
... with a (P) entry for pt_regs::pc, and an (L) entry for pt_regs:lr.
Note that the LR may be stale at the point of the exception, for example,
shortly after a return:
| el1h_64_irq+0x6c/0x70
| default_idle_call+0x34/0x180 (P)
| default_idle_call+0x28/0x180 (L)
| do_idle+0x204/0x268
... where the LR points a few instructions before the current PC.
This plays nicely with all the other unwind metadata tracking. With the
ftrace_graph profiler enabled globally, and kretprobes installed on
generic_handle_domain_irq() and do_interrupt_handler(), a backtrace triggered
by magic-sysrq + L reports:
| Call trace:
| show_stack+0x20/0x40 (CF)
| dump_stack_lvl+0x60/0x80 (F)
| dump_stack+0x18/0x28
| nmi_cpu_backtrace+0xfc/0x140
| nmi_trigger_cpumask_backtrace+0x1c8/0x200
| arch_trigger_cpumask_backtrace+0x20/0x40
| sysrq_handle_showallcpus+0x24/0x38 (F)
| __handle_sysrq+0xa8/0x1b0 (F)
| handle_sysrq+0x38/0x50 (F)
| pl011_int+0x460/0x5a8 (F)
| __handle_irq_event_percpu+0x60/0x220 (F)
| handle_irq_event+0x54/0xc0 (F)
| handle_fasteoi_irq+0xa8/0x1d0 (F)
| generic_handle_domain_irq+0x34/0x58 (F)
| gic_handle_irq+0x54/0x140 (FK)
| call_on_irq_stack+0x24/0x58 (F)
| do_interrupt_handler+0x88/0xa0
| el1_interrupt+0x34/0x68 (FK)
| el1h_64_irq_handler+0x18/0x28
| el1h_64_irq+0x6c/0x70
| default_idle_call+0x34/0x180 (P)
| default_idle_call+0x28/0x180 (L)
| do_idle+0x204/0x268
| cpu_startup_entry+0x3c/0x50 (F)
| rest_init+0xe4/0xf0
| start_kernel+0x744/0x750
| __primary_switched+0x88/0x98
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Puranjay Mohan <puranjay12@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241017092538.1859841-11-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
When analysing a stacktrace it can be useful to know whether an unwound
PC has been rewritten by fgraph or kretprobes, as in some situations
these may be suspect or be known to be unreliable.
This patch adds flags to track when an unwind entry has recovered the PC
from fgraph and/or kretprobes, and updates dump_backtrace() to log when
this is the case.
The flags recorded are:
"F" - the PC was recovered from fgraph
"K" - the PC was recovered from kretprobes
These flags are recorded and logged in addition to the original source
of the unwound PC.
For example, with the ftrace_graph profiler enabled globally, and
kretprobes installed on generic_handle_domain_irq() and
do_interrupt_handler(), a backtrace triggered by magic-sysrq + L
reports:
| Call trace:
| show_stack+0x20/0x40 (CF)
| dump_stack_lvl+0x60/0x80 (F)
| dump_stack+0x18/0x28
| nmi_cpu_backtrace+0xfc/0x140
| nmi_trigger_cpumask_backtrace+0x1c8/0x200
| arch_trigger_cpumask_backtrace+0x20/0x40
| sysrq_handle_showallcpus+0x24/0x38 (F)
| __handle_sysrq+0xa8/0x1b0 (F)
| handle_sysrq+0x38/0x50 (F)
| pl011_int+0x460/0x5a8 (F)
| __handle_irq_event_percpu+0x60/0x220 (F)
| handle_irq_event+0x54/0xc0 (F)
| handle_fasteoi_irq+0xa8/0x1d0 (F)
| generic_handle_domain_irq+0x34/0x58 (F)
| gic_handle_irq+0x54/0x140 (FK)
| call_on_irq_stack+0x24/0x58 (F)
| do_interrupt_handler+0x88/0xa0
| el1_interrupt+0x34/0x68 (FK)
| el1h_64_irq_handler+0x18/0x28
| el1h_64_irq+0x64/0x68
| default_idle_call+0x34/0x180
| do_idle+0x204/0x268
| cpu_startup_entry+0x40/0x50 (F)
| rest_init+0xe4/0xf0
| start_kernel+0x744/0x750
| __primary_switched+0x80/0x90
Note that as these flags are reported next to the recovered PC value,
they appear on the callers of instrumented functions. For example
gic_handle_irq() has a "K" marker because generic_handle_domain_irq()
was instrumented with kretprobes and had its return address rewritten.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Puranjay Mohan <puranjay12@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241017092538.1859841-9-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
When analysing a stacktrace it can be useful to know where an unwound PC
came from, as in some situations certain sources may be suspect or known
to be unreliable. In future it would also be useful to track this so
that certain unwind steps can be performed in a stateful manner. For
example when unwinding across an exception boundary, we'd ideally unwind
pt_regs::pc, then pt_regs::lr, then the next frame record.
This patch adds an enumerated set of unwind sources, tracks this during
the unwind, and updates dump_backtrace() to log these for interesting
unwind steps.
The interesting sources recorded are:
"C" - the PC came from the caller of an unwind function.
"T" - the PC came from thread_saved_pc() for a blocked task.
"P" - the PC came from a pt_regs::pc.
"U" - the PC came from an unknown source (indicates an unwinder error).
... with nothing recorded when the PC came from a frame_record::pc as
this is the vastly common case and logging this would make it difficult
to spot the more interesting cases.
For example, when triggering a backtrace via magic-sysrq + L, the CPU
handling the sysrq will have a backtrace whose first element is the
caller (C) of dump_backtrace():
| Call trace:
| show_stack+0x18/0x30 (C)
| dump_stack_lvl+0x60/0x80
| dump_stack+0x18/0x24
| nmi_cpu_backtrace+0xfc/0x140
| ...
... and other CPUs will have a backtrace whose first element is their
pt_regs::pc (P) at the instant the backtrace IPI was taken:
| Call trace:
| _raw_spin_unlock_irqrestore+0x8/0x50 (P)
| wake_up_process+0x18/0x24
| process_timeout+0x14/0x20
| call_timer_fn.isra.0+0x24/0x80
| ...
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Puranjay Mohan <puranjay12@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241017092538.1859841-8-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Currently dump_backtrace() can only print the PC value at each step of
the unwind, as this is all the information that arch_stack_walk()
passes to the dump_backtrace_entry() callback.
In future we'd like to print some additional information, such as the
origin of entries (e.g. PC, LR, FP) and/or the reliability thereof.
In preparation for doing so, this patch moves dump_backtrace() over to
kunwind_stack_walk(), which passes the full kunwind_state to the
callback.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Puranjay Mohan <puranjay12@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241017092538.1859841-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Currently the signal handling code has its own struct frame_record,
the definition of struct pt_regs open-codes a frame record as an array,
and the kernel unwinder hard-codes frame record offsets.
Move to a common struct frame_record that can be used throughout the
kernel.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Puranjay Mohan <puranjay12@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241017092538.1859841-6-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
In subsequent patches we'll want to add an additional u64 to struct
pt_regs. To make space, this patch swaps the 'unused' and 'pmr' fields,
as the 'pmr' value only requires bits[7:0] and can safely fit into a
u32, which frees up a 64-bit unused field.
The 'lockdep_hardirqs' and 'exit_rcu' fields should eventually be moved
out of pt_regs and managed locally within entry-common.c, so I've left
those as-is for the moment.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Puranjay Mohan <puranjay12@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241017092538.1859841-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The pt_regs::pmr_save field is weirdly named relative to all other
pt_regs fields, with a '_save' suffix that doesn't make anything clearer
and only leads to more typing to access the field.
Remove the '_save' suffix.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Puranjay Mohan <puranjay12@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241017092538.1859841-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
We will soon be using MOPS instructions in the kernel, so wire up the
exception handler to handle exceptions from EL1 caused by the copy/set
operation being stopped and resumed on a different type of CPU.
Add a helper for advancing the single step state machine, similarly to
what the EL0 exception handler does.
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20240930161051.3777828-3-kristina.martsenko@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
FEAT_MOPS instructions require that all three instructions (prologue,
main and epilogue) appear consecutively in memory. Placing a
kprobe/uprobe on one of them doesn't work as only a single instruction
gets executed out-of-line or simulated. So don't allow placing a probe
on a MOPS instruction.
Fixes: b7564127ffcb ("arm64: mops: detect and enable FEAT_MOPS")
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20240930161051.3777828-2-kristina.martsenko@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Our idmap is becoming too big, to the point where it doesn't fit in
a 4kB page anymore.
There are some low-hanging fruits though, such as the el2_init_state
horror that is expanded 3 times in the kernel. Let's at least limit
ourselves to two copies, which makes the kernel link again.
At some point, we'll have to have a better way of doing this.
Reported-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20241009204903.GA3353168@thelio-3990X
|
|
Enable MTE support for hugetlb.
The MTE page flags will be set on the folio only. When copying
hugetlb folio (for example, CoW), the tags for all subpages will be copied
when copying the first subpage.
When freeing hugetlb folio, the MTE flags will be cleared.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Yang Shi <yang@os.amperecomputing.com>
Link: https://lore.kernel.org/r/20241001225220.271178-1-yang@os.amperecomputing.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
v2->v1:
1. Remove the simuation of STP and the related bits.
2. Use arm64_skip_faulting_instruction for single-stepping or FEAT_BTI
scenario.
As Andrii pointed out, the uprobe/uretprobe selftest bench run into a
counterintuitive result that nop and push variants are much slower than
ret variant [0]. The root cause lies in the arch_probe_analyse_insn(),
which excludes 'nop' and 'stp' from the emulatable instructions list.
This force the kernel returns to userspace and execute them out-of-line,
then trapping back to kernel for running uprobe callback functions. This
leads to a significant performance overhead compared to 'ret' variant,
which is already emulated.
Typicall uprobe is installed on 'nop' for USDT and on function entry
which starts with the instrucion 'stp x29, x30, [sp, #imm]!' to push lr
and fp into stack regardless kernel or userspace binary. In order to
improve the performance of handling uprobe for common usecases. This
patch supports the emulation of Arm64 equvialents instructions of 'nop'
and 'push'. The benchmark results below indicates the performance gain
of emulation is obvious.
On Kunpeng916 (Hi1616), 4 NUMA nodes, 64 Arm64 cores@2.4GHz.
xol (1 cpus)
------------
uprobe-nop: 0.916 ± 0.001M/s (0.916M/prod)
uprobe-push: 0.908 ± 0.001M/s (0.908M/prod)
uprobe-ret: 1.855 ± 0.000M/s (1.855M/prod)
uretprobe-nop: 0.640 ± 0.000M/s (0.640M/prod)
uretprobe-push: 0.633 ± 0.001M/s (0.633M/prod)
uretprobe-ret: 0.978 ± 0.003M/s (0.978M/prod)
emulation (1 cpus)
-------------------
uprobe-nop: 1.862 ± 0.002M/s (1.862M/prod)
uprobe-push: 1.743 ± 0.006M/s (1.743M/prod)
uprobe-ret: 1.840 ± 0.001M/s (1.840M/prod)
uretprobe-nop: 0.964 ± 0.004M/s (0.964M/prod)
uretprobe-push: 0.936 ± 0.004M/s (0.936M/prod)
uretprobe-ret: 0.940 ± 0.001M/s (0.940M/prod)
As shown above, the performance gap between 'nop/push' and 'ret'
variants has been significantly reduced. Due to the emulation of 'push'
instruction needs to access userspace memory, it spent more cycles than
the other.
As Mark suggested [1], it is painful to emulate the correct atomicity
and ordering properties of STP, especially when it interacts with MTE,
POE, etc. So this patch just focus on the simuation of 'nop'. The
simluation of STP and related changes will be addressed in a separate
patch.
[0] https://lore.kernel.org/all/CAEf4BzaO4eG6hr2hzXYpn+7Uer4chS0R99zLn02ezZ5YruVuQw@mail.gmail.com/
[1] https://lore.kernel.org/all/Zr3RN4zxF5XPgjEB@J2N7QTR9R3/
CC: Andrii Nakryiko <andrii.nakryiko@gmail.com>
CC: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Liao Chang <liaochang1@huawei.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20240909071114.1150053-1-liaochang1@huawei.com
[catalin.marinas@arm.com: small tweaks following MarkR's comments]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The PREEMPT_DISABLE_OFFSET definition was added in commit:
24534b3511828c66 ("arm64: assembler: add macros to conditionally yield the NEON under PREEMPT")
... but hasn't been used since commit:
3931261ecf46151a ("arm64: fpsimd: Bring cond_yield asm macro in line with new rules")
Remove PREEMPT_DISABLE_OFFSET.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241007123921.549340-8-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The DMA_TO_DEVICE and DMA_FROM_DEVICE defintitons in asm-offsets
duplicate the common defintions from <linux/dma-direction.h> (which used
to live in <linux/dma-mapping.h>), and haven't been used from asseembly
code since commit:
7eacf1858bc86fe9 ("arm64: mm: Remove assembly DMA cache maintenance wrappers")
Remove them both.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241007123921.549340-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The VM_EXEC definition duplicates the common VM_EXEC definition from
<linux/mm.h>. The common definition cannot safely be included by
assembly code but currently we don't need to use VM_EXEC in assembly.
The PAGE_SZ definition duplicates arm64's definition of PAGE_SIZE from
<asm/page-def.h> which can safely be included from assembly code and
should be used directly.
Remove the duplicate definitions.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241007123921.549340-6-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The only user of the MM_CONTEXT_ID defintion was removed in commit:
25b92693a1b67a47 ("arm64: mm: convert cpu_do_switch_mm() to C")
Remove MM_CONTEXT_ID.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241007123921.549340-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The COMPAT_SIGFRAME_REGS_OFFSET and COMPAT_RT_SIGFRAME_REGS_OFFSET
defintions aren't used anywhere.
They were added in commit:
f14d8025d263f3c8 ("arm64: compat: Generate asm offsets for signals")
... and subsequently their only user was removed in commit:
2d071968a4052e58 ("arm64: compat: Remove 32-bit sigreturn code from the vDSO")
... leaving them unused.
Remove them.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241007123921.549340-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The VMA_VM_MM definition is only used by the vma_vm_mm macro, which
itself is unused. The VMA_VM_FLAGS definition isn't used anywhere.
Remove them all.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241007123921.549340-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The TSK_ACTIVE_MM definition isn't used anywhere.
Remove it.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241007123921.549340-2-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The probe_opcode_t typedef for u32 isn't necessary, and is a source of
confusion as it is easily confused with kprobe_opcode_t, which is a
typedef for __le32.
The typedef is only used within arch/arm64, and all of arm64's commn
insn code uses u32 for the endian-agnostic value of an instruction, so
it'd be clearer to use u32 consistently.
Remove probe_opcode_t and use u32 directly.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marnias@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241008155851.801546-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The core kprobes code uses kprobe_opcode_t for the in-memory
representation of an instruction, using 'kprobe_opcode_t *' for XOL
slots. As arm64 instructions are always little-endian 32-bit values,
kprobes_opcode_t should be __le32, but at the moment kprobe_opcode_t
is typedef'd to u32.
Today there is no functional issue as we convert values via
cpu_to_le32() and le32_to_cpu() where necessary, but these conversions
are inconsistent with the types used, causing sparse warnings:
| CHECK arch/arm64/kernel/probes/kprobes.c
| arch/arm64/kernel/probes/kprobes.c:102:21: warning: cast to restricted __le32
| CHECK arch/arm64/kernel/probes/decode-insn.c
| arch/arm64/kernel/probes/decode-insn.c:122:46: warning: cast to restricted __le32
| arch/arm64/kernel/probes/decode-insn.c:124:50: warning: cast to restricted __le32
| arch/arm64/kernel/probes/decode-insn.c:136:31: warning: cast to restricted __le32
Improve this by making kprobes_opcode_t a typedef for __le32 and
consistently using this for pointers to executable instructions. With
this change we can rely on the type system to tell us where conversions
are necessary.
Since kprobe::opcode is changed from u32 to __le32, the existing
le32_to_cpu() converion moves from the point this is initialized (in
arch_prepare_kprobe()) to the points this is consumed when passed to
a handler or text patching function. As kprobe::opcode isn't altered or
consumed elsewhere, this shouldn't result in a functional change.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241008155851.801546-6-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
We share struct arch_probe_insn between krpboes and uprobes, but most of
its fields aren't necessary for uprobes:
* The 'insn' field is only used by kprobes as a pointer to the XOL slot.
* The 'restore' field is only used by probes as the PC to restore after
stepping an instruction in the XOL slot.
* The 'pstate_cc' field isn't used by kprobes or uprobes, and seems to
only exist as a result of copy-pasting the 32-bit arm implementation
of kprobes.
As these fields live in struct arch_probe_insn they cannot use
definitions that only exist when CONFIG_KPROBES=y, such as the
kprobe_opcode_t typedef, which we'd like to use in subsequent patches.
Clean this up by removing the 'pstate_cc' field, and moving the
kprobes-specific fields into the kprobes-specific struct
arch_specific_insn. To make it clear that the fields are related to
stepping instructions in the XOL slot, 'insn' is renamed to 'xol_insn'
and 'restore' is renamed to 'xol_restore'
At the same time, remove the misleading and useless comment above struct
arch_probe_insn.
The should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241008155851.801546-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Since the generic VDSO clock mode storage is used, this header file is
unused and can be removed.
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/all/20241010-vdso-generic-arch_update_vsyscall-v1-3-7fe5a3ea4382@linutronix.de
|
|
Restrict kernel threads to only have RWX overlays for pkey 0. This matches
what arch/x86 does, by defaulting to a restrictive PKRU.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kevin Brodsky <Kevin.Brodsky@arm.com>
Link: https://lore.kernel.org/r/20241001133618.1547996-2-joey.gouly@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
ftrace_regs was created to hold registers that store information to save
function parameters, return value and stack. Since it is a subset of
pt_regs, it should only be used by its accessor functions. But because
pt_regs can easily be taken from ftrace_regs (on most archs), it is
tempting to use it directly. But when running on other architectures, it
may fail to build or worse, build but crash the kernel!
Instead, make struct ftrace_regs an empty structure and have the
architectures define __arch_ftrace_regs and all the accessor functions
will typecast to it to get to the actual fields. This will help avoid
usage of ftrace_regs directly.
Link: https://lore.kernel.org/all/20241007171027.629bdafd@gandalf.local.home/
Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org>
Cc: "x86@kernel.org" <x86@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Naveen N Rao <naveen@kernel.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/20241008230628.958778821@goodmis.org
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The arm64 uprobes code is broken for big-endian kernels as it doesn't
convert the in-memory instruction encoding (which is always
little-endian) into the kernel's native endianness before analyzing and
simulating instructions. This may result in a few distinct problems:
* The kernel may may erroneously reject probing an instruction which can
safely be probed.
* The kernel may erroneously erroneously permit stepping an
instruction out-of-line when that instruction cannot be stepped
out-of-line safely.
* The kernel may erroneously simulate instruction incorrectly dur to
interpretting the byte-swapped encoding.
The endianness mismatch isn't caught by the compiler or sparse because:
* The arch_uprobe::{insn,ixol} fields are encoded as arrays of u8, so
the compiler and sparse have no idea these contain a little-endian
32-bit value. The core uprobes code populates these with a memcpy()
which similarly does not handle endianness.
* While the uprobe_opcode_t type is an alias for __le32, both
arch_uprobe_analyze_insn() and arch_uprobe_skip_sstep() cast from u8[]
to the similarly-named probe_opcode_t, which is an alias for u32.
Hence there is no endianness conversion warning.
Fix this by changing the arch_uprobe::{insn,ixol} fields to __le32 and
adding the appropriate __le32_to_cpu() conversions prior to consuming
the instruction encoding. The core uprobes copies these fields as opaque
ranges of bytes, and so is unaffected by this change.
At the same time, remove MAX_UINSN_BYTES and consistently use
AARCH64_INSN_SIZE for clarity.
Tested with the following:
| #include <stdio.h>
| #include <stdbool.h>
|
| #define noinline __attribute__((noinline))
|
| static noinline void *adrp_self(void)
| {
| void *addr;
|
| asm volatile(
| " adrp %x0, adrp_self\n"
| " add %x0, %x0, :lo12:adrp_self\n"
| : "=r" (addr));
| }
|
|
| int main(int argc, char *argv)
| {
| void *ptr = adrp_self();
| bool equal = (ptr == adrp_self);
|
| printf("adrp_self => %p\n"
| "adrp_self() => %p\n"
| "%s\n",
| adrp_self, ptr, equal ? "EQUAL" : "NOT EQUAL");
|
| return 0;
| }
.... where the adrp_self() function was compiled to:
| 00000000004007e0 <adrp_self>:
| 4007e0: 90000000 adrp x0, 400000 <__ehdr_start>
| 4007e4: 911f8000 add x0, x0, #0x7e0
| 4007e8: d65f03c0 ret
Before this patch, the ADRP is not recognized, and is assumed to be
steppable, resulting in corruption of the result:
| # ./adrp-self
| adrp_self => 0x4007e0
| adrp_self() => 0x4007e0
| EQUAL
| # echo 'p /root/adrp-self:0x007e0' > /sys/kernel/tracing/uprobe_events
| # echo 1 > /sys/kernel/tracing/events/uprobes/enable
| # ./adrp-self
| adrp_self => 0x4007e0
| adrp_self() => 0xffffffffff7e0
| NOT EQUAL
After this patch, the ADRP is correctly recognized and simulated:
| # ./adrp-self
| adrp_self => 0x4007e0
| adrp_self() => 0x4007e0
| EQUAL
| #
| # echo 'p /root/adrp-self:0x007e0' > /sys/kernel/tracing/uprobe_events
| # echo 1 > /sys/kernel/tracing/events/uprobes/enable
| # ./adrp-self
| adrp_self => 0x4007e0
| adrp_self() => 0x4007e0
| EQUAL
Fixes: 9842ceae9fa8 ("arm64: Add uprobe support")
Cc: stable@vger.kernel.org
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241008155851.801546-4-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The simulate_ldr_literal() code always loads a 64-bit quantity, and when
simulating a 32-bit load into a 'W' register, it discards the most
significant 32 bits. For big-endian kernels this means that the relevant
bits are discarded, and the value returned is the the subsequent 32 bits
in memory (i.e. the value at addr + 4).
Additionally, simulate_ldr_literal() and simulate_ldrsw_literal() use a
plain C load, which the compiler may tear or elide (e.g. if the target
is the zero register). Today this doesn't happen to matter, but it may
matter in future if trampoline code uses a LDR (literal) or LDRSW
(literal).
Update simulate_ldr_literal() and simulate_ldrsw_literal() to use an
appropriately-sized READ_ONCE() to perform the access, which avoids
these problems.
Fixes: 39a67d49ba35 ("arm64: kprobes instruction simulation support")
Cc: stable@vger.kernel.org
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241008155851.801546-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The simulate_ldr_literal() and simulate_ldrsw_literal() functions are
unsafe to use for uprobes. Both functions were originally written for
use with kprobes, and access memory with plain C accesses. When uprobes
was added, these were reused unmodified even though they cannot safely
access user memory.
There are three key problems:
1) The plain C accesses do not have corresponding extable entries, and
thus if they encounter a fault the kernel will treat these as
unintentional accesses to user memory, resulting in a BUG() which
will kill the kernel thread, and likely lead to further issues (e.g.
lockup or panic()).
2) The plain C accesses are subject to HW PAN and SW PAN, and so when
either is in use, any attempt to simulate an access to user memory
will fault. Thus neither simulate_ldr_literal() nor
simulate_ldrsw_literal() can do anything useful when simulating a
user instruction on any system with HW PAN or SW PAN.
3) The plain C accesses are privileged, as they run in kernel context,
and in practice can access a small range of kernel virtual addresses.
The instructions they simulate have a range of +/-1MiB, and since the
simulated instructions must itself be a user instructions in the
TTBR0 address range, these can address the final 1MiB of the TTBR1
acddress range by wrapping downwards from an address in the first
1MiB of the TTBR0 address range.
In contemporary kernels the last 8MiB of TTBR1 address range is
reserved, and accesses to this will always fault, meaning this is no
worse than (1).
Historically, it was theoretically possible for the linear map or
vmemmap to spill into the final 8MiB of the TTBR1 address range, but
in practice this is extremely unlikely to occur as this would
require either:
* Having enough physical memory to fill the entire linear map all the
way to the final 1MiB of the TTBR1 address range.
* Getting unlucky with KASLR randomization of the linear map such
that the populated region happens to overlap with the last 1MiB of
the TTBR address range.
... and in either case if we were to spill into the final page there
would be larger problems as the final page would alias with error
pointers.
Practically speaking, (1) and (2) are the big issues. Given there have
been no reports of problems since the broken code was introduced, it
appears that no-one is relying on probing these instructions with
uprobes.
Avoid these issues by not allowing uprobes on LDR (literal) and LDRSW
(literal), limiting the use of simulate_ldr_literal() and
simulate_ldrsw_literal() to kprobes. Attempts to place uprobes on LDR
(literal) and LDRSW (literal) will be rejected as
arm_probe_decode_insn() will return INSN_REJECTED. In future we can
consider introducing working uprobes support for these instructions, but
this will require more significant work.
Fixes: 9842ceae9fa8 ("arm64: Add uprobe support")
Cc: stable@vger.kernel.org
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20241008155851.801546-2-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Add the Microsoft Azure Cobalt 100 CPU to the list of CPUs suffering
from erratum 3194386 added in commit 75b3c43eab59 ("arm64: errata:
Expand speculative SSBS workaround")
CC: Mark Rutland <mark.rutland@arm.com>
CC: James More <james.morse@arm.com>
CC: Will Deacon <will@kernel.org>
CC: stable@vger.kernel.org # 6.6+
Signed-off-by: Easwar Hariharan <eahariha@linux.microsoft.com>
Link: https://lore.kernel.org/r/20241003225239.321774-1-eahariha@linux.microsoft.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Provide a new register type NT_ARM_GCS reporting the current GCS mode
and pointer for EL0. Due to the interactions with allocation and
deallocation of Guarded Control Stacks we do not permit any changes to
the GCS mode via ptrace, only GCSPR_EL0 may be changed.
Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-27-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Add a context for the GCS state and include it in the signal context when
running on a system that supports GCS. We reuse the same flags that the
prctl() uses to specify which GCS features are enabled and also provide the
current GCS pointer.
We do not support enabling GCS via signal return, there is a conflict
between specifying GCSPR_EL0 and allocation of a new GCS and this is not
an ancticipated use case. We also enforce GCS configuration locking on
signal return.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Acked-by: Yury Khrustalev <yury.khrustalev@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-26-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
When invoking a signal handler we use the GCS configuration and stack
for the current thread.
Since we implement signal return by calling the signal handler with a
return address set up pointing to a trampoline in the vDSO we need to
also configure any active GCS for this by pushing a frame for the
trampoline onto the GCS. If we do not do this then signal return will
generate a GCS protection fault.
In order to guard against attempts to bypass GCS protections via signal
return we only allow returning with GCSPR_EL0 pointing to an address
where it was previously preempted by a signal. We do this by pushing a
cap onto the GCS, this takes the form of an architectural GCS cap token
with the top bit set and token type of 0 which we add on signal entry
and validate and pop off on signal return. The combination of the top
bit being set and the token type mean that this can't be interpreted as
a valid token or address.
Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-25-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
When a new thread is created by a thread with GCS enabled the GCS needs
to be specified along with the regular stack.
Unfortunately plain clone() is not extensible and existing clone3()
users will not specify a stack so all existing code would be broken if
we mandated specifying the stack explicitly. For compatibility with
these cases and also x86 (which did not initially implement clone3()
support for shadow stacks) if no GCS is specified we will allocate one
so when a thread is created which has GCS enabled allocate one for it.
We follow the extensively discussed x86 implementation and allocate
min(RLIMIT_STACK/2, 2G). Since the GCS only stores the call stack and not
any variables this should be more than sufficient for most applications.
GCSs allocated via this mechanism will be freed when the thread exits.
Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Acked-by: Yury Khrustalev <yury.khrustalev@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-22-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
There are two registers controlling the GCS state of EL0, GCSPR_EL0 which
is the current GCS pointer and GCSCRE0_EL1 which has enable bits for the
specific GCS functionality enabled for EL0. Manage these on context switch
and process lifetime events, GCS is reset on exec(). Also ensure that
any changes to the GCS memory are visible to other PEs and that changes
from other PEs are visible on this one by issuing a GCSB DSYNC when
moving to or from a thread with GCS.
Since the current GCS configuration of a thread will be visible to
userspace we store the configuration in the format used with userspace
and provide a helper which configures the system register as needed.
On systems that support GCS we always allow access to GCSPR_EL0, this
facilitates reporting of GCS faults if userspace implements disabling of
GCS on error - the GCS can still be discovered and examined even if GCS
has been disabled.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-21-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
A new exception code is defined for GCS specific faults other than
standard load/store faults, for example GCS token validation failures,
add handling for this. These faults are reported to userspace as
segfaults with code SEGV_CPERR (protection error), mirroring the
reporting for x86 shadow stack errors.
GCS faults due to memory load/store operations generate data aborts with
a flag set, these will be handled separately as part of the data abort
handling.
Since we do not currently enable GCS for EL1 we should not get any faults
there but while we're at it we wire things up there, treating any GCS
fault as fatal.
Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-19-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Provide a hwcap to enable userspace to detect support for GCS.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Yury Khrustalev <yury.khrustalev@arm.com>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-18-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Hook up an override for GCS, allowing it to be disabled from the command
line by specifying arm64.nogcs in case there are problems.
Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-17-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Add a cpufeature for GCS, allowing other code to conditionally support it
at runtime.
Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-12-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
A number of Arm Ltd CPUs suffer from errata whereby an MSR to the SSBS
special-purpose register does not affect subsequent speculative
instructions, permitting speculative store bypassing for a window of
time.
We worked around this for a number of CPUs in commits:
* 7187bb7d0b5c7dfa ("arm64: errata: Add workaround for Arm errata 3194386 and 3312417")
* 75b3c43eab594bfb ("arm64: errata: Expand speculative SSBS workaround")
* 145502cac7ea70b5 ("arm64: errata: Expand speculative SSBS workaround (again)")
Since then, a (hopefully final) batch of updates have been published,
with two more affected CPUs. For the affected CPUs the existing
mitigation is sufficient, as described in their respective Software
Developer Errata Notice (SDEN) documents:
* Cortex-A715 (MP148) SDEN v15.0, erratum 3456084
https://developer.arm.com/documentation/SDEN-2148827/1500/
* Neoverse-N3 (MP195) SDEN v5.0, erratum 3456111
https://developer.arm.com/documentation/SDEN-3050973/0500/
Enable the existing mitigation by adding the relevant MIDRs to
erratum_spec_ssbs_list, and update silicon-errata.rst and the
Kconfig text accordingly.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20240930111705.3352047-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic updates from Arnd Bergmann:
"These are only two small patches, one cleanup for arch/alpha and a
preparation patch cleaning up the handling of runtime constants in the
linker scripts"
* tag 'asm-generic-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
runtime constants: move list of constants to vmlinux.lds.h
alpha: no need to include asm/xchg.h twice
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
"Originally I'd planned on sending each of the vDSO getrandom()
architecture ports to their respective arch trees. But as we started
to work on this, we found lots of interesting issues in the shared
code and infrastructure, the fixes for which the various archs needed
to base their work.
So in the end, this turned into a nice collaborative effort fixing up
issues and porting to 5 new architectures -- arm64, powerpc64,
powerpc32, s390x, and loongarch64 -- with everybody pitching in and
commenting on each other's code. It was a fun development cycle.
This contains:
- Numerous fixups to the vDSO selftest infrastructure, getting it
running successfully on more platforms, and fixing bugs in it.
- Additions to the vDSO getrandom & chacha selftests. Basically every
time manual review unearthed a bug in a revision of an arch patch,
or an ambiguity, the tests were augmented.
By the time the last arch was submitted for review, s390x, v1 of
the series was essentially fine right out of the gate.
- Fixes to the the generic C implementation of vDSO getrandom, to
build and run successfully on all archs, decoupling it from
assumptions we had (unintentionally) made on x86_64 that didn't
carry through to the other architectures.
- Port of vDSO getrandom to LoongArch64, from Xi Ruoyao and acked by
Huacai Chen.
- Port of vDSO getrandom to ARM64, from Adhemerval Zanella and acked
by Will Deacon.
- Port of vDSO getrandom to PowerPC, in both 32-bit and 64-bit
varieties, from Christophe Leroy and acked by Michael Ellerman.
- Port of vDSO getrandom to S390X from Heiko Carstens, the arch
maintainer.
While it'd be natural for there to be things to fix up over the course
of the development cycle, these patches got a decent amount of review
from a fairly diverse crew of folks on the mailing lists, and, for the
most part, they've been cooking in linux-next, which has been helpful
for ironing out build issues.
In terms of architectures, I think that mostly takes care of the
important 64-bit archs with hardware still being produced and running
production loads in settings where vDSO getrandom is likely to help.
Arguably there's still RISC-V left, and we'll see for 6.13 whether
they find it useful and submit a port"
* tag 'random-6.12-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (47 commits)
selftests: vDSO: check cpu caps before running chacha test
s390/vdso: Wire up getrandom() vdso implementation
s390/vdso: Move vdso symbol handling to separate header file
s390/vdso: Allow alternatives in vdso code
s390/module: Provide find_section() helper
s390/facility: Let test_facility() generate static branch if possible
s390/alternatives: Remove ALT_FACILITY_EARLY
s390/facility: Disable compile time optimization for decompressor code
selftests: vDSO: fix vdso_config for s390
selftests: vDSO: fix ELF hash table entry size for s390x
powerpc/vdso: Wire up getrandom() vDSO implementation on VDSO64
powerpc/vdso: Wire up getrandom() vDSO implementation on VDSO32
powerpc/vdso: Refactor CFLAGS for CVDSO build
powerpc/vdso32: Add crtsavres
mm: Define VM_DROPPABLE for powerpc/32
powerpc/vdso: Fix VDSO data access when running in a non-root time namespace
selftests: vDSO: don't include generated headers for chacha test
arm64: vDSO: Wire up getrandom() vDSO implementation
arm64: alternative: make alternative_has_cap_likely() VDSO compatible
selftests: vDSO: also test counter in vdso_test_chacha
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rcu/linux
Pull RCU updates from Neeraj Upadhyay:
"Context tracking:
- rename context tracking state related symbols and remove references
to "dynticks" in various context tracking state variables and
related helpers
- force context_tracking_enabled_this_cpu() to be inlined to avoid
leaving a noinstr section
CSD lock:
- enhance CSD-lock diagnostic reports
- add an API to provide an indication of ongoing CSD-lock stall
nocb:
- update and simplify RCU nocb code to handle (de-)offloading of
callbacks only for offline CPUs
- fix RT throttling hrtimer being armed from offline CPU
rcutorture:
- remove redundant rcu_torture_ops get_gp_completed fields
- add SRCU ->same_gp_state and ->get_comp_state functions
- add generic test for NUM_ACTIVE_*RCU_POLL* for testing RCU and SRCU
polled grace periods
- add CFcommon.arch for arch-specific Kconfig options
- print number of update types in rcu_torture_write_types()
- add rcutree.nohz_full_patience_delay testing to the TREE07 scenario
- add a stall_cpu_repeat module parameter to test repeated CPU stalls
- add argument to limit number of CPUs a guest OS can use in
torture.sh
rcustall:
- abbreviate RCU CPU stall warnings during CSD-lock stalls
- Allow dump_cpu_task() to be called without disabling preemption
- defer printing stall-warning backtrace when holding rcu_node lock
srcu:
- make SRCU gp seq wrap-around faster
- add KCSAN checks for concurrent updates to ->srcu_n_exp_nodelay and
->reschedule_count which are used in heuristics governing
auto-expediting of normal SRCU grace periods and
grace-period-state-machine delays
- mark idle SRCU-barrier callbacks to help identify stuck
SRCU-barrier callback
rcu tasks:
- remove RCU Tasks Rude asynchronous APIs as they are no longer used
- stop testing RCU Tasks Rude asynchronous APIs
- fix access to non-existent percpu regions
- check processor-ID assumptions during chosen CPU calculation for
callback enqueuing
- update description of rtp->tasks_gp_seq grace-period sequence
number
- add rcu_barrier_cb_is_done() to identify whether a given
rcu_barrier callback is stuck
- mark idle Tasks-RCU-barrier callbacks
- add *torture_stats_print() functions to print detailed diagnostics
for Tasks-RCU variants
- capture start time of rcu_barrier_tasks*() operation to help
distinguish a hung barrier operation from a long series of barrier
operations
refscale:
- add a TINY scenario to support tests of Tiny RCU and Tiny
SRCU
- optimize process_durations() operation
rcuscale:
- dump stacks of stalled rcu_scale_writer() instances and
grace-period statistics when rcu_scale_writer() stalls
- mark idle RCU-barrier callbacks to identify stuck RCU-barrier
callbacks
- print detailed grace-period and barrier diagnostics on
rcu_scale_writer() hangs for Tasks-RCU variants
- warn if async module parameter is specified for RCU implementations
that do not have async primitives such as RCU Tasks Rude
- make all writer tasks report upon hang
- tolerate repeated GFP_KERNEL failure in rcu_scale_writer()
- use special allocator for rcu_scale_writer()
- NULL out top-level pointers to heap memory to avoid double-free
bugs on modprobe failures
- maintain per-task instead of per-CPU callbacks count to avoid any
issues with migration of either tasks or callbacks
- constify struct ref_scale_ops
Fixes:
- use system_unbound_wq for kfree_rcu work to avoid disturbing
isolated CPUs
Misc:
- warn on unexpected rcu_state.srs_done_tail state
- better define "atomic" for list_replace_rcu() and
hlist_replace_rcu() routines
- annotate struct kvfree_rcu_bulk_data with __counted_by()"
* tag 'rcu.release.v6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rcu/linux: (90 commits)
rcu: Defer printing stall-warning backtrace when holding rcu_node lock
rcu/nocb: Remove superfluous memory barrier after bypass enqueue
rcu/nocb: Conditionally wake up rcuo if not already waiting on GP
rcu/nocb: Fix RT throttling hrtimer armed from offline CPU
rcu/nocb: Simplify (de-)offloading state machine
context_tracking: Tag context_tracking_enabled_this_cpu() __always_inline
context_tracking, rcu: Rename rcu_dyntick trace event into rcu_watching
rcu: Update stray documentation references to rcu_dynticks_eqs_{enter, exit}()
rcu: Rename rcu_momentary_dyntick_idle() into rcu_momentary_eqs()
rcu: Rename rcu_implicit_dynticks_qs() into rcu_watching_snap_recheck()
rcu: Rename dyntick_save_progress_counter() into rcu_watching_snap_save()
rcu: Rename struct rcu_data .exp_dynticks_snap into .exp_watching_snap
rcu: Rename struct rcu_data .dynticks_snap into .watching_snap
rcu: Rename rcu_dynticks_zero_in_eqs() into rcu_watching_zero_in_eqs()
rcu: Rename rcu_dynticks_in_eqs_since() into rcu_watching_snap_stopped_since()
rcu: Rename rcu_dynticks_in_eqs() into rcu_watching_snap_in_eqs()
rcu: Rename rcu_dynticks_eqs_online() into rcu_watching_online()
context_tracking, rcu: Rename rcu_dynticks_curr_cpu_in_eqs() into rcu_is_watching_curr_cpu()
context_tracking, rcu: Rename rcu_dynticks_task*() into rcu_task*()
refscale: Constify struct ref_scale_ops
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"These update the ACPICA code in the kernel to upstream version
20240827, add support for ACPI-based enumeration of interrupt
controllers on RISC-V along with some related irqchip updates, clean
up the ACPI device object sysfs interface, add some quirks for
backlight handling and IRQ overrides, fix assorted issues and clean up
code.
Specifics:
- Check return value in acpi_db_convert_to_package() (Pei Xiao)
- Detect FACS and allow setting the waking vector on reduced-hardware
ACPI platforms (Jiaqing Zhao)
- Allow ACPICA to represent semaphores as integers (Adrien Destugues)
- Complete CXL 3.0 CXIMS structures support in ACPICA (Zhang Rui)
- Make ACPICA support SPCR version 4 and add RISC-V SBI Subtype to
DBG2 (Sia Jee Heng)
- Implement the Dword_PCC Resource Descriptor Macro in ACPICA (Jose
Marinho)
- Correct the typo in struct acpi_mpam_msc_node member (Punit
Agrawal)
- Implement ACPI_WARNING_ONCE() and ACPI_ERROR_ONCE() and use them to
prevent a Stall() violation warning from being printed every time
this takes place (Vasily Khoruzhick)
- Allow PCC Data Type in MCTP resource (Adam Young)
- Fix memory leaks on acpi_ps_get_next_namepath() and
acpi_ps_get_next_field() failures (Armin Wolf)
- Add support for supressing leading zeros in hex strings when
converting them to integers and update integer-to-hex-string
conversions in ACPICA (Armin Wolf)
- Add support for Windows 11 22H2 _OSI string (Armin Wolf)
- Avoid warning for Dump Functions in ACPICA (Adam Lackorzynski)
- Add extended linear address mode to HMAT MSCIS in ACPICA (Dave
Jiang)
- Handle empty connection_node in iasl (Aleksandrs Vinarskis)
- Allow for more flexibility in _DSM args (Saket Dumbre)
- Setup for ACPICA release 20240827 (Saket Dumbre)
- Add ACPI device enumeration support for interrupt controller
probing including taking dependencies into account (Sunil V L)
- Implement ACPI-based interrupt controller probing on RISC-V
(Sunil V L)
- Add ACPI support for AIA in riscv-intc and add ACPI support to
riscv-imsic, riscv-aplic, and sifive-plic (Sunil V L)
- Do not release locks during operation region accesses in the ACPI
EC driver (Rafael Wysocki)
- Fix up the _STR handling in the ACPI device object sysfs interface,
make it represent the device object attributes as an attribute
group and make it rely on driver core functionality for sysfs
attrubute management (Thomas Weißschuh)
- Extend error messages printed to the kernel log when
acpi_evaluate_dsm() fails to include revision and function number
(David Wang)
- Add a new AMDI0015 platform device ID to the ACPi APD driver for
AMD SoCs (Shyam Sundar S K)
- Use the driver core for the async probing management in the ACPI
battery driver (Thomas Weißschuh)
- Remove redundant initalizations of a local variable to NULL from
the ACPI battery driver (Ilpo Järvinen)
- Remove unneeded check in tps68470_pmic_opregion_probe() (Aleksandr
Mishin)
- Add support for setting the EPP register through the ACPI CPPC
sysfs interface if it is in FFH (Mario Limonciello)
- Fix MASK_VAL() usage in the ACPI CPPC library (Clément Léger)
- Reduce the log level of a per-CPU message about idle states in the
ACPI processor driver (Li RongQing)
- Fix crash in exit_round_robin() in the ACPI processor aggregator
device (PAD) driver (Seiji Nishikawa)
- Add force_vendor quirk for Panasonic Toughbook CF-18 in the ACPI
backlight driver (Hans de Goede)
- Make the DMI checks related to backlight handling on Lenovo Yoga
Tab 3 X90F less strict (Hans de Goede)
- Enforce native backlight handling on Apple MacbookPro9,2 (Esther
Shimanovich)
- Add IRQ override quirks for Asus Vivobook Go E1404GAB and MECHREV
GM7XG0M, and refine the TongFang GMxXGxx quirk (Li Chen, Tamim
Khan, Werner Sembach)
- Quirk ASUS ROG M16 to default to S3 sleep (Luke D. Jones)
- Define and use symbols for device and class name lengths in the
ACPI bus type code and make the code use strscpy() instead of
strcpy() in several places (Muhammad Qasim Abdul Majeed)"
* tag 'acpi-6.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (70 commits)
ACPI: resource: Add another DMI match for the TongFang GMxXGxx
ACPI: CPPC: Add support for setting EPP register in FFH
ACPI: PM: Quirk ASUS ROG M16 to default to S3 sleep
ACPI: video: Add force_vendor quirk for Panasonic Toughbook CF-18
ACPI: battery: use driver core managed async probing
ACPI: button: Use strscpy() instead of strcpy()
ACPI: resource: Skip IRQ override on Asus Vivobook Go E1404GAB
ACPI: CPPC: Fix MASK_VAL() usage
irqchip/sifive-plic: Add ACPI support
ACPICA: Setup for ACPICA release 20240827
ACPICA: Allow for more flexibility in _DSM args
ACPICA: iasl: handle empty connection_node
ACPICA: HMAT: Add extended linear address mode to MSCIS
ACPICA: Avoid warning for Dump Functions
ACPICA: Add support for Windows 11 22H2 _OSI string
ACPICA: Update integer-to-hex-string conversions
ACPICA: Add support for supressing leading zeros in hex strings
ACPICA: Allow for supressing leading zeros when using acpi_ex_convert_to_ascii()
ACPICA: Fix memory leak if acpi_ps_get_next_field() fails
ACPICA: Fix memory leak if acpi_ps_get_next_namepath() fails
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"The highlights are support for Arm's "Permission Overlay Extension"
using memory protection keys, support for running as a protected guest
on Android as well as perf support for a bunch of new interconnect
PMUs.
Summary:
ACPI:
- Enable PMCG erratum workaround for HiSilicon HIP10 and 11
platforms.
- Ensure arm64-specific IORT header is covered by MAINTAINERS.
CPU Errata:
- Enable workaround for hardware access/dirty issue on Ampere-1A
cores.
Memory management:
- Define PHYSMEM_END to fix a crash in the amdgpu driver.
- Avoid tripping over invalid kernel mappings on the kexec() path.
- Userspace support for the Permission Overlay Extension (POE) using
protection keys.
Perf and PMUs:
- Add support for the "fixed instruction counter" extension in the
CPU PMU architecture.
- Extend and fix the event encodings for Apple's M1 CPU PMU.
- Allow LSM hooks to decide on SPE permissions for physical
profiling.
- Add support for the CMN S3 and NI-700 PMUs.
Confidential Computing:
- Add support for booting an arm64 kernel as a protected guest under
Android's "Protected KVM" (pKVM) hypervisor.
Selftests:
- Fix vector length issues in the SVE/SME sigreturn tests
- Fix build warning in the ptrace tests.
Timers:
- Add support for PR_{G,S}ET_TSC so that 'rr' can deal with
non-determinism arising from the architected counter.
Miscellaneous:
- Rework our IPI-based CPU stopping code to try NMIs if regular IPIs
don't succeed.
- Minor fixes and cleanups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (94 commits)
perf: arm-ni: Fix an NULL vs IS_ERR() bug
arm64: hibernate: Fix warning for cast from restricted gfp_t
arm64: esr: Define ESR_ELx_EC_* constants as UL
arm64: pkeys: remove redundant WARN
perf: arm_pmuv3: Use BR_RETIRED for HW branch event if enabled
MAINTAINERS: List Arm interconnect PMUs as supported
perf: Add driver for Arm NI-700 interconnect PMU
dt-bindings/perf: Add Arm NI-700 PMU
perf/arm-cmn: Improve format attr printing
perf/arm-cmn: Clean up unnecessary NUMA_NO_NODE check
arm64/mm: use lm_alias() with addresses passed to memblock_free()
mm: arm64: document why pte is not advanced in contpte_ptep_set_access_flags()
arm64: Expose the end of the linear map in PHYSMEM_END
arm64: trans_pgd: mark PTEs entries as valid to avoid dead kexec()
arm64/mm: Delete __init region from memblock.reserved
perf/arm-cmn: Support CMN S3
dt-bindings: perf: arm-cmn: Add CMN S3
perf/arm-cmn: Refactor DTC PMU register access
perf/arm-cmn: Make cycle counts less surprising
perf/arm-cmn: Improve build-time assertion
...
|
|
Hook up the generic vDSO implementation to the aarch64 vDSO data page.
The _vdso_rng_data required data is placed within the _vdso_data vvar
page, by using a offset larger than the vdso_data.
The vDSO function requires a ChaCha20 implementation that does not write
to the stack, and that can do an entire ChaCha20 permutation. The one
provided uses NEON on the permute operation, with a fallback to the
syscall for chips that do not support AdvSIMD.
This also passes the vdso_test_chacha test along with
vdso_test_getrandom. The vdso_test_getrandom bench-single result on
Neoverse-N1 shows:
vdso: 25000000 times in 0.783884250 seconds
libc: 25000000 times in 8.780275399 seconds
syscall: 25000000 times in 8.786581518 seconds
A small fixup to arch/arm64/include/asm/mman.h was required to avoid
pulling kernel code into the vDSO, similar to what's already done in
arch/arm64/include/asm/rwonce.h.
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
* for-next/timers:
arm64: Implement prctl(PR_{G,S}ET_TSC)
|
|
* for-next/poe: (31 commits)
arm64: pkeys: remove redundant WARN
kselftest/arm64: Add test case for POR_EL0 signal frame records
kselftest/arm64: parse POE_MAGIC in a signal frame
kselftest/arm64: add HWCAP test for FEAT_S1POE
selftests: mm: make protection_keys test work on arm64
selftests: mm: move fpregs printing
kselftest/arm64: move get_header()
arm64: add Permission Overlay Extension Kconfig
arm64: enable PKEY support for CPUs with S1POE
arm64: enable POE and PIE to coexist
arm64/ptrace: add support for FEAT_POE
arm64: add POE signal support
arm64: implement PKEYS support
arm64: add pte_access_permitted_no_overlay()
arm64: handle PKEY/POE faults
arm64: mask out POIndex when modifying a PTE
arm64: convert protection key into vm_flags and pgprot values
arm64: add POIndex defines
arm64: re-order MTE VM_ flags
arm64: enable the Permission Overlay Extension for EL0
...
|
|
* for-next/misc:
arm64: hibernate: Fix warning for cast from restricted gfp_t
arm64: esr: Define ESR_ELx_EC_* constants as UL
arm64: Constify struct kobj_type
arm64: smp: smp_send_stop() and crash_smp_send_stop() should try non-NMI first
arm64/sve: Remove unused declaration read_smcr_features()
arm64: mm: Remove unused declaration early_io_map()
arm64: el2_setup.h: Rename some labels to be more diff-friendly
arm64: signal: Fix some under-bracketed UAPI macros
arm64/mm: Drop TCR_SMP_FLAGS
arm64/mm: Drop PMD_SECT_VALID
|
|
This patch fixes the following warning by adding __force
to the cast:
arch/arm64/kernel/hibernate.c:410:44: sparse: warning: cast from restricted gfp_t
No functional change intended.
Signed-off-by: Min-Hua Chen <minhuadotchen@gmail.com>
Link: https://lore.kernel.org/r/20240910232507.313555-1-minhuadotchen@gmail.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Merge ACPI and irqchip updates related to external interrupt controller
support on RISC-V:
- Add ACPI device enumeration support for interrupt controller probing
including taking dependencies into account (Sunil V L).
- Implement ACPI-based interrupt controller probing on RISC-V (Sunil V L).
- Add ACPI support for AIA in riscv-intc and add ACPI support to
riscv-imsic, riscv-aplic, and sifive-plic (Sunil V L).
* acpi-riscv:
irqchip/sifive-plic: Add ACPI support
irqchip/riscv-aplic: Add ACPI support
irqchip/riscv-imsic: Add ACPI support
irqchip/riscv-imsic-state: Create separate function for DT
irqchip/riscv-intc: Add ACPI support for AIA
ACPI: RISC-V: Implement function to add implicit dependencies
ACPI: RISC-V: Initialize GSI mapping structures
ACPI: RISC-V: Implement function to reorder irqchip probe entries
ACPI: RISC-V: Implement PCI related functionality
ACPI: pci_link: Clear the dependencies after probe
ACPI: bus: Add RINTC IRQ model for RISC-V
ACPI: scan: Define weak function to populate dependencies
ACPI: scan: Add RISC-V interrupt controllers to honor list
ACPI: scan: Refactor dependency creation
ACPI: bus: Add acpi_riscv_init() function
ACPI: scan: Add a weak arch_sort_irqchip_probe() to order the IRQCHIP probe
arm64: PCI: Migrate ACPI related functions to pci-acpi.c
|