summaryrefslogtreecommitdiff
path: root/arch/m68k/include/asm/m54xxsim.h
AgeCommit message (Collapse)Author
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-12-05m68knommu: platform support for i2c devices on ColdFire SoCSteven King
These changes based on work by Steven King <sfking@fdwdc.com> to support the i2c hardware modules on ColdFire SoC family devices. This is the per SoC hardware support. Contains a common platform device setup. Each of the SoC family members tends to have some minor local setup required to initialize the module. But all ColdFire family members use the same i2c hardware module. This i2c hardware module is the same as used in the Freescale iMX ARM based family of SoC devices. Steven's original patches were based on using a new and different i2c-coldfire.c driver. But this is not neccessary as we can use the existing Linux i2c-imx.c driver with no change required to it. And this patch is now based on using the existing i2c-imx driver. This patch only contains the ColdFire platform changes. Signed-off-by: Greg Ungerer <gerg@uclinux.org> Tested-by: Angelo Dureghello <angelo@sysam.it>
2016-09-26m68k: generalize io memory region setup for ColdFire ACR registersGreg Ungerer
The ACR registers of the ColdFire define at a macro level what regions of the addresses space should have caching or other attribute types applied. Currently for the MMU enabled setups we map the interal IO peripheral addres space as uncachable based on the define for the MBAR address (CONFIG_MBAR). Not all ColdFire SoC use a programmable MBAR register address. Some parts have fixed addressing for their internal peripheral registers. Generalize the way we get the internal peripheral base address so all types can be accomodated in the ACR definitions. Each ColdFire SoC type now sets its IO memory base and size definitions (which may be based on MBAR) which are then used in the ACR definitions. Signed-off-by: Greg Ungerer <gerg@linux-m68k.org>
2016-09-26m68k: report correct FPU type on ColdFire MMU platformsGreg Ungerer
Not all ColdFire SoC parts that have an MMU also have an FPU - so set an FPU type (via m68k_fputype) appropriate for the configured platform. With this set correctly /proc/cpuinfo will report FPU "none" on devices that don't have one. And kernel code paths that initialize FPU hardware will now only execute if an FPU is actually present. Signed-off-by: Greg Ungerer <gerg@linux-m68k.org>
2016-09-26m68k: set appropriate machine type for m5411x SoC platformsGreg Ungerer
Create a new machine type for platforms based around the ColdFire 5441x SoC family. Set that machine type on startup when building for this platform type. Currently the ColdFire head.S hard codes a M54xx machine type at startup - since that is the only platform type currently supported with MMU enabled. The m5441x has an MMU and this change forms part of the support required to run it with the MMU enabled. Signed-off-by: Greg Ungerer <gerg@linux-m68k.org>
2014-05-26m68knommu: Implement gpio support for m54xx.Steven King
Singed-off-by: Steven King <sfking@fdwdc.com> Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-09-27m68knommu: clean up Pin Assignment definitions for the 54xx ColdFire CPUGreg Ungerer
The Pin Assignment register definitions for the ColdFire 54xx CPU family are inconsistently named and defined compared to the other ColdFire part definitions. Rename them with the same prefix as used on other parts, MCFGPIO_PAR_, and make their definitions include the MCF_MBAR periphperal region offset. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-09-27m68knommu: move ColdFire slice timer address defiens to 54xx headerGreg Ungerer
Move the base address defines of the ColdFire 54xx CPU slice timers into the 54xx specific header (m54xxsim.h). They are CPU specific, and belong with the CPU specific defines. Also make them relative to the MBAR peripheral region, making the define the absolute address. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-07-17m68k: add PCI bus support definitions for the ColdFire M54xx SoC familyGreg Ungerer
Add all the required definitoins to support the ColdFire M54xx SoC PCI hardware unit. These are strait out of the MCF5475 Reference Manual. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2012-03-05m68knommu: make 54xx UART platform addressing consistentGreg Ungerer
If we make all UART addressing consistent across all ColdFire family members then we will be able to remove the duplicated plaform data and use a single setup for all. So modify the ColdFire 54xx UART addressing so that: . UARTs are numbered from 0 up . base addresses are absolute (not relative to MBAR peripheral register) . use a common name for IRQs used Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-03-15m68knommu: external interrupt support to ColdFire intc-2 controllerGreg Ungerer
The EDGE Port module of some ColdFire parts using the intc-2 interrupt controller provides support for 7 external interrupts. These interrupts go off-chip (that is they are not for internal peripherals). They need some special handling and have some extra setup registers. Add code to support them. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-03-15m68knommu: remove ColdFire CLOCK_DIV config optionGreg Ungerer
The reality is that you do not need the abiltity to configure the clock divider for ColdFire CPUs. It is a fixed ratio on any given ColdFire family member. It is not the same for all ColdFire parts, but it is always the same in a model range. So hard define the divider for each supported ColdFire CPU type and remove the Kconfig option. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-03-15m68knommu: remove kludge seting of MCF_IPSBAR for ColdFire 54xxGreg Ungerer
The ColdFire 54xx family shares the same interrupt controller used on the 523x, 527x and 528x ColdFire parts, but it isn't offset relative to the IPSBAR register. The 54xx doesn't have an IPSBAR register. By including the base address of the peripheral registers in the register definitions (MCFICM_INTC0 and MCFICM_INTC1 in this case) we can avoid having to define a fake IPSBAR for the 54xx. And this makes the register address definitions of these more consistent, the majority of the other register address defines include the peripheral base address already. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05m68knommu: move inclusion of ColdFire v4 cache registersGreg Ungerer
Move the inclusion of the version 4 cache controller registers so that it is with all the other register bit flag definitions. This makes it consistent with the other version core inclusion points, and means we don't need "#ifdef"ery in odd-ball places for these definitions. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05m68knommu: move UART addressing to part specific includesGreg Ungerer
The ColdFire UART base addresses varies between the different ColdFire family members. Instead of keeping the base addresses with the UART definitions keep them with the other addresses definitions for each ColdFire part. The motivation for this move is so that when we add new ColdFire part definitions, they are all in a single file (and we shouldn't normally need to modify the UART definitions in mcfuart.h at all). Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05m68knommu: fix clock rate value reported for ColdFire 54xx partsGreg Ungerer
The instruction timings of the ColdFire 54xx family parts are different to other version 4 parts (or version 2 or 3 parts for that matter too). Move the instruction timing setting into the ColdFire part specific headers, and set the 54xx value appropriately. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05m68knommu: move ColdFire CPU names into their headersGreg Ungerer
Move the ColdFire CPU names out of setup.c and into their repsective headers. That way when we add new ones we won't need to modify setup.c any more. Add the missing 548x CPU name. Signed-off-by: Greg Ungerer <gerg@uclinux.org>
2011-01-05m68knommu: make Coldfire 548x support more genericGreg Ungerer
The ColdFire 547x family of processors is very similar to the ColdFire 548x series. Almost all of the support for them is the same. Make the code supporting the 548x more gneric, so it will be capable of supporting both families. For the most part this is a renaming excerise to make the support code more obviously apply to both families. Signed-off-by: Greg Ungerer <gerg@uclinux.org>