Age | Commit message (Collapse) | Author |
|
The data storage interrupt (DSI) error will be generated when the
paste operation is issued on the suspended Nest Accelerator (NX)
window due to NX state changes. The hypervisor expects the
partition to ignore this error during page fault handling.
To differentiate DSI caused by an actual HW configuration or by
the NX window, a new “ibm,pi-features” type value is defined.
Byte 0, bit 3 of pi-attribute-specifier-type is now defined to
indicate this DSI error. If this error is not ignored, the user
space can get SIGBUS when the NX request is issued.
This patch adds changes to read ibm,pi-features property and ignore
DSI error during page fault handling if MMU_FTR_NX_DSI is defined.
Signed-off-by: Haren Myneni <haren@linux.ibm.com>
[mpe: Mention PAPR version in comment]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/b9cd844b85eb8f70459109ce1b14e44c4cc85fa7.camel@linux.ibm.com
|
|
I found a null pointer reference in arch_prepare_kprobe():
# echo 'p cmdline_proc_show' > kprobe_events
# echo 'p cmdline_proc_show+16' >> kprobe_events
Kernel attempted to read user page (0) - exploit attempt? (uid: 0)
BUG: Kernel NULL pointer dereference on read at 0x00000000
Faulting instruction address: 0xc000000000050bfc
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in:
CPU: 0 PID: 122 Comm: sh Not tainted 6.0.0-rc3-00007-gdcf8e5633e2e #10
NIP: c000000000050bfc LR: c000000000050bec CTR: 0000000000005bdc
REGS: c0000000348475b0 TRAP: 0300 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e)
MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 88002444 XER: 20040006
CFAR: c00000000022d100 DAR: 0000000000000000 DSISR: 40000000 IRQMASK: 0
...
NIP arch_prepare_kprobe+0x10c/0x2d0
LR arch_prepare_kprobe+0xfc/0x2d0
Call Trace:
0xc0000000012f77a0 (unreliable)
register_kprobe+0x3c0/0x7a0
__register_trace_kprobe+0x140/0x1a0
__trace_kprobe_create+0x794/0x1040
trace_probe_create+0xc4/0xe0
create_or_delete_trace_kprobe+0x2c/0x80
trace_parse_run_command+0xf0/0x210
probes_write+0x20/0x40
vfs_write+0xfc/0x450
ksys_write+0x84/0x140
system_call_exception+0x17c/0x3a0
system_call_vectored_common+0xe8/0x278
--- interrupt: 3000 at 0x7fffa5682de0
NIP: 00007fffa5682de0 LR: 0000000000000000 CTR: 0000000000000000
REGS: c000000034847e80 TRAP: 3000 Not tainted (6.0.0-rc3-00007-gdcf8e5633e2e)
MSR: 900000000280f033 <SF,HV,VEC,VSX,EE,PR,FP,ME,IR,DR,RI,LE> CR: 44002408 XER: 00000000
The address being probed has some special:
cmdline_proc_show: Probe based on ftrace
cmdline_proc_show+16: Probe for the next instruction at the ftrace location
The ftrace-based kprobe does not generate kprobe::ainsn::insn, it gets
set to NULL. In arch_prepare_kprobe() it will check for:
...
prev = get_kprobe(p->addr - 1);
preempt_enable_no_resched();
if (prev && ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) {
...
If prev is based on ftrace, 'ppc_inst_read(prev->ainsn.insn)' will occur
with a null pointer reference. At this point prev->addr will not be a
prefixed instruction, so the check can be skipped.
Check if prev is ftrace-based kprobe before reading 'prev->ainsn.insn'
to fix this problem.
Fixes: b4657f7650ba ("powerpc/kprobes: Don't allow breakpoints on suffixes")
Signed-off-by: Li Huafei <lihuafei1@huawei.com>
[mpe: Trim oops]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220923093253.177298-1-lihuafei1@huawei.com
|
|
At boot time, it is not necessary to delay between polls of
cpu_callin_map when waiting for a kicked CPU to come up. Remove the
delay intervals, but preserve the overall deadline (five seconds).
At run time, the first poll result is usually negative and we incur a
sleeping wait. If we spin on the callin word for a short time first,
we can reduce __cpu_up() from dozens of milliseconds to under 1ms in
the common case on a P9 LPAR:
$ ppc64_cpu --smt=off
$ bpftrace -e 'kprobe:__cpu_up {
@start[tid] = nsecs;
}
kretprobe:__cpu_up /@start[tid]/ {
@us = hist((nsecs - @start[tid]) / 1000);
delete(@start[tid]);
}' -c 'ppc64_cpu --smt=on'
Before:
@us:
[16K, 32K) 85 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[32K, 64K) 13 |@@@@@@@ |
After:
@us:
[128, 256) 95 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[256, 512) 3 |@ |
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220926220250.157022-1-nathanl@linux.ibm.com
|
|
The error injection facility on pseries VMs allows corruption of
arbitrary guest memory, potentially enabling a sufficiently privileged
user to disable lockdown or perform other modifications of the running
kernel via the rtas syscall.
Block the PAPR error injection facility from being opened or called
when locked down.
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Acked-by: Paul Moore <paul@paul-moore.com> (LSM)
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220926131643.146502-3-nathanl@linux.ibm.com
|
|
Ensure r13 is zero from very early in boot until it gets set to the
boot paca pointer. This allows early program and mce handlers to halt
if there is no valid paca, rather than potentially run off into the
weeds. This preserves register and memory contents for low level
debugging tools.
Nothing could be printed to console at this point in any case because
even udbg is only set up after the boot paca is set, so this shouldn't
be missed.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220926055620.2676869-6-npiggin@gmail.com
|
|
The idea is to get to the point where if r13 is non-zero, then it should
contain a reasonable paca. This can be used in early boot program check
and machine check handlers to avoid running off into the weeds if they
hit before r13 has a paca.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220926055620.2676869-5-npiggin@gmail.com
|
|
relocate() uses r13 in early boot before it is used for the paca. Use
a different register for this so r13 is kept unchanged until it is
set to the paca pointer.
Avoid r14 as well while we're here, there's no reason not to use the
volatile registers which is a bit less surprising, and r14 could be used
as another fixed reg one day.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220926055620.2676869-4-npiggin@gmail.com
|
|
Use the early boot interrupt fixup in the machine check handler to allow
the machine check handler to run before interrupt endian is set up.
Branch to an early boot handler that just does a basic crash, which
allows it to run before ppc_md is set up. MSR[ME] is enabled on the boot
CPU earlier, and the machine check stack is temporarily set to the
middle of the init task stack.
This allows machine checks (e.g., due to invalid data access in real
mode) to print something useful earlier in boot (as soon as udbg is set
up, if CONFIG_PPC_EARLY_DEBUG=y).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220926055620.2676869-3-npiggin@gmail.com
|
|
In preparation for using this sequence in machine check interrupt, move
it into a macro, with a small change to make it position independent.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220926055620.2676869-2-npiggin@gmail.com
|
|
The interrupt entry code carefully saves a minimal number of registers,
so in some places the TOC is required, it is loaded into a different
register, so provide a macro that can supply an alternate TOC register.
This continues to use got addressing because TOC-relative results in
"got/toc optimization is not supported" messages by the linker. Having
r2 be one of the saved registers and using that for TOC addressing may
be the best way to avoid that and switch this to TOC addressing.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220926034057.2360083-6-npiggin@gmail.com
|
|
A later change stops the kernel using r2 and loads it with a poison
value. Provide a PACATOC loading abstraction which can hide this
detail.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220926034057.2360083-5-npiggin@gmail.com
|
|
Use helper macros to access global variables, and place them in .data
sections rather than in .toc. Putting addresses in TOC is not required
because the kernel is linked with a single TOC.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220926034057.2360083-3-npiggin@gmail.com
|
|
Using a 32-bit constant for this marker allows it to be loaded with
two ALU instructions, like 32-bit. This avoids a TOC entry and a
TOC load that depends on the r2 value that has just been loaded from
the PACA.
This changes the value for 32-bit as well, so both have the same
value in the low 4 bytes and 64-bit has 0 in the top bytes.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220926034057.2360083-2-npiggin@gmail.com
|
|
irq replay is quite complicated because of softirq processing which
itself enables and disables irqs. Several considerations need to be
accounted for due to this, and they are not clearly documented.
Refactor the irq replay code a bit to tidy and deduplicate some common
functions. Add comments, debug checks.
This has a minor functional change that irq tracing enable/disable is
done after each interrupt replayed, rather than after a batch. It also
re-sets state to IRQS_ALL_DISABLED after an interrupt, which doesn't
matter much because interrupts are hard disabled at this point, but it
is more consistent with how interrupt handlers are called.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220926054305.2671436-8-npiggin@gmail.com
|
|
Prior changes eliminated cases of masked PACA_IRQ_MUST_HARD_MASK
interrupts that re-fire due to MSR[EE] being enabled while they are
pending. Add a debug check in the masked interrupt handler to catch
if this occurs.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220926054305.2671436-6-npiggin@gmail.com
|
|
becomes pending
If a synchronous interrupt (e.g., hash fault) is taken inside an
irqs-disabled region which has MSR[EE]=1, then an asynchronous interrupt
that is PACA_IRQ_MUST_HARD_MASK (e.g., PMI) is taken inside the
synchronous interrupt handler, then the synchronous interrupt will
return with MSR[EE]=1 and the asynchronous interrupt fires again.
If the asynchronous interrupt is a PMI and the original context does not
have PMIs disabled (only Linux IRQs), the asynchronous interrupt will
fire despite having the PMI marked soft pending. This can confuse the
perf code and cause warnings.
This patch changes the interrupt return so that irqs-disabled MSR[EE]=1
contexts will be returned to with MSR[EE]=0 if a PACA_IRQ_MUST_HARD_MASK
interrupt has become pending in the meantime.
The longer explanation for what happens:
1. local_irq_disable()
2. Hash fault interrupt fires, do_hash_fault handler runs
3. interrupt_enter_prepare() sets IRQS_ALL_DISABLED
4. interrupt_enter_prepare() sets MSR[EE]=1
5. PMU interrupt fires, masked handler runs
6. Masked handler marks PMI pending
7. Masked handler returns with PACA_IRQ_HARD_DIS set, MSR[EE]=0
8. do_hash_fault interrupt return handler runs
9. interrupt_exit_kernel_prepare() clears PACA_IRQ_HARD_DIS
10. interrupt returns with MSR[EE]=1
11. PMU interrupt fires, perf handler runs
Fixes: 4423eb5ae32e ("powerpc/64/interrupt: make normal synchronous interrupts enable MSR[EE] if possible")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220926054305.2671436-4-npiggin@gmail.com
|
|
This prevents interrupts in early boot (e.g., program check) from
enabling MSR[EE], potentially causing endian mismatch or other
crashes when reporting early boot traps.
Fixes: 4423eb5ae32ec ("powerpc/64/interrupt: make normal synchronous interrupts enable MSR[EE] if possible")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220926054305.2671436-3-npiggin@gmail.com
|
|
The wait instruction encoding changed between ISA v2.07 and ISA v3.0.
In v3.1 the instruction gained a new field.
Update the PPC_WAIT macro to the current encoding. Rename the older
incompatible one with a _v203 suffix as it was introduced in v2.03
(the WC field was introduced in v2.07 but the kernel only uses WC=0).
Reviewed-by: Segher Boessenkool <segher@kernel.crashing.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220920122259.363092-1-npiggin@gmail.com
|
|
Setting DEC to maximum at the start of the timer interrupt is not
necessary and can be avoided for performance when MSR[EE] is not
enabled during the handler as explained in commit 0faf20a1ad16
("powerpc/64s/interrupt: Don't enable MSR[EE] in irq handlers unless
perf is in use"), where this change was first attempted.
The idea is that the timer interrupt runs with MSR[EE]=0, and at the end
of the interrupt DEC is programmed to the next timer interval, so there
is no need to clear the decrementer exception before then.
When the above commit was merged, that was not quite true. The low res
timer subsystem had some cases in the oneshot timer code where if the
tick was to be stopped and no timers active, the clock device would not
get the ->set_state_oneshot_stopped() call, so DEC would not get
reprogrammed, and this would hang taking continual timer interrupts.
So this was reverted in commit d2b9be1f4af5 ("powerpc/time: Always set
decrementer in timer_interrupt()"), which was a partial revert of the
above commit.
Commit 62c1256d5447 ("timers/nohz: Switch to ONESHOT_STOPPED in the
low-res handler when the tick is stopped") was later merged to fix this
missing case in the timer subsystem, so now the behaviour can be
restored.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220909142457.278032-1-npiggin@gmail.com
|
|
Currently powerpc early debugging contains lot of platform specific
options, but does not support standard UART / serial 16550 console.
Later legacy_serial.c code supports registering UART as early debug console
from device tree but it is not early during booting, but rather later after
machine description code finishes.
So for real early debugging via UART is current code unsuitable.
Add support for new early debugging option CONFIG_PPC_EARLY_DEBUG_16550
which enable Serial 16550 console on address defined by new option
CONFIG_PPC_EARLY_DEBUG_16550_PHYSADDR and by stride by option
CONFIG_PPC_EARLY_DEBUG_16550_STRIDE.
With this change it is possible to debug powerpc machine descriptor code.
For example this early debugging code can print on serial console also
"No suitable machine description found" error which is done before
legacy_serial.c code.
Signed-off-by: Pali Rohár <pali@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220822231501.16827-1-pali@kernel.org
|
|
Implement syscall wrapper as per s390, x86, arm64. When enabled
cause handlers to accept parameters from a stack frame rather than
from user scratch register state. This allows for user registers to be
safely cleared in order to reduce caller influence on speculation
within syscall routine. The wrapper is a macro that emits syscall
handler symbols that call into the target handler, obtaining its
parameters from a struct pt_regs on the stack.
As registers are already saved to the stack prior to calling
system_call_exception, it appears that this function is executed more
efficiently with the new stack-pointer convention than with parameters
passed by registers, avoiding the allocation of a stack frame for this
method. On a 32-bit system, we see >20% performance increases on the
null_syscall microbenchmark, and on a Power 8 the performance gains
amortise the cost of clearing and restoring registers which is
implemented at the end of this series, seeing final result of ~5.6%
performance improvement on null_syscall.
Syscalls are wrapped in this fashion on all platforms except for the
Cell processor as this commit does not provide SPU support. This can be
quickly fixed in a successive patch, but requires spu_sys_callback to
allocate a pt_regs structure to satisfy the wrapped calling convention.
Co-developed-by: Andrew Donnellan <ajd@linux.ibm.com>
Signed-off-by: Andrew Donnellan <ajd@linux.ibm.com>
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmai.com>
[mpe: Make incompatible with COMPAT to retain clearing of high bits of args]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-22-rmclure@linux.ibm.com
|
|
Change system_call_exception arguments to pass a pointer to a stack
frame container caller state, as well as the original r0, which
determines the number of the syscall. This has been observed to yield
improved performance to passing them by registers, circumventing the
need to allocate a stack frame.
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Retain clearing of high bits of args for compat tasks]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-21-rmclure@linux.ibm.com
|
|
Cause syscall handlers to be typed as follows when called indirectly
throughout the kernel. This is to allow for better type checking.
typedef long (*syscall_fn)(unsigned long, unsigned long, unsigned long,
unsigned long, unsigned long, unsigned long);
Since both 32 and 64-bit abis allow for at least the first six
machine-word length parameters to a function to be passed by registers,
even handlers which admit fewer than six parameters may be viewed as
having the above type.
Coercing syscalls to syscall_fn requires a cast to void* to avoid
-Wcast-function-type.
Fixup comparisons in VDSO to avoid pointer-integer comparison. Introduce
explicit cast on systems with SPUs.
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-19-rmclure@linux.ibm.com
|
|
The table of syscall handlers and registered compatibility syscall
handlers has in past been produced using assembly, with function
references resolved at link time. This moves link-time errors to
compile-time, by rewriting systbl.S in C, and including the
linux/syscalls.h, linux/compat.h and asm/syscalls.h headers for
prototypes.
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-18-rmclure@linux.ibm.com
|
|
Forward declare all syscall handler prototypes where a generic prototype
is not provided in either linux/syscalls.h or linux/compat.h in
asm/syscalls.h. This is required for compile-time type-checking for
syscall handlers, which is implemented later in this series.
32-bit compatibility syscall handlers are expressed in terms of types in
ppc32.h. Expose this header globally.
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Use standard include guard naming for syscalls_32.h]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-17-rmclure@linux.ibm.com
|
|
Arch-specific implementations of syscall handlers are currently used
over generic implementations for the following reasons:
1. Semantics unique to powerpc
2. Compatibility syscalls require 'argument padding' to comply with
64-bit argument convention in ELF32 abi.
3. Parameter types or order is different in other architectures.
These syscall handlers have been defined prior to this patch series
without invoking the SYSCALL_DEFINE or COMPAT_SYSCALL_DEFINE macros with
custom input and output types. We remove every such direct definition in
favour of the aforementioned macros.
Also update syscalls.tbl in order to refer to the symbol names generated
by each of these macros. Since ppc64_personality can be called by both
64 bit and 32 bit binaries through compatibility, we must generate both
both compat_sys_ and sys_ symbols for this handler.
As an aside:
A number of architectures including arm and powerpc agree on an
alternative argument order and numbering for most of these arch-specific
handlers. A future patch series may allow for asm/unistd.h to signal
through its defines that a generic implementation of these syscall
handlers with the correct calling convention be emitted, through the
__ARCH_WANT_COMPAT_SYS_... convention.
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-16-rmclure@linux.ibm.com
|
|
Avoid duplication in future patch that will define the ppc64_personality
syscall handler in terms of the SYSCALL_DEFINE and COMPAT_SYSCALL_DEFINE
macros, by extracting the common body of ppc64_personality into a helper
function.
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-15-rmclure@linux.ibm.com
|
|
Syscall handlers should not be invoked internally by their symbol names,
as these symbols defined by the architecture-defined SYSCALL_DEFINE
macro. Move the compatibility syscall definition for mmap2 to
syscalls.c, so that all mmap implementations can share a helper function.
Remove 'inline' on static mmap helper.
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Fix compat_sys_mmap2() prototype and offset handling]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-14-rmclure@linux.ibm.com
|
|
Syscall handlers should not be invoked internally by their symbol names,
as these symbols defined by the architecture-defined SYSCALL_DEFINE
macro. Fortunately, in the case of ppc64_personality, its call to
sys_personality can be replaced with an invocation to the
equivalent ksys_personality inline helper in <linux/syscalls.h>.
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-13-rmclure@linux.ibm.com
|
|
Syscall #82 has been implemented for 32-bit platforms in a unique way on
powerpc systems. This hack will in effect guess whether the caller is
expecting new select semantics or old select semantics. It does so via a
guess, based off the first parameter. In new select, this parameter
represents the length of a user-memory array of file descriptors, and in
old select this is a pointer to an arguments structure.
The heuristic simply interprets sufficiently large values of its first
parameter as being a call to old select. The following is a discussion
on how this syscall should be handled.
As discussed in this thread, the existence of such a hack suggests that for
whatever powerpc binaries may predate glibc, it is most likely that they
would have taken use of the old select semantics. x86 and arm64 both
implement this syscall with oldselect semantics.
Remove the powerpc implementation, and update syscall.tbl to refer to emit
a reference to sys_old_select and compat_sys_old_select
for 32-bit binaries, in keeping with how other architectures support
syscall #82.
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/lkml/13737de5-0eb7-e881-9af0-163b0d29a1a0@csgroup.eu/
Link: https://lore.kernel.org/r/20220921065605.1051927-12-rmclure@linux.ibm.com
|
|
The powerpc fallocate compat syscall handler is identical to the
generic implementation provided by commit 59c10c52f573f ("riscv:
compat: syscall: Add compat_sys_call_table implementation"), and as
such can be removed in favour of the generic implementation.
A future patch series will replace more architecture-defined syscall
handlers with generic implementations, dependent on introducing generic
implementations that are compatible with powerpc and arm's parameter
reorderings.
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-11-rmclure@linux.ibm.com
|
|
As reported[1] by Arnd, the arch-specific fadvise64_64 and fallocate
compatibility handlers assume parameters are passed with 32-bit
big-endian ABI. This affects the assignment of odd-even parameter pairs
to the high or low words of a 64-bit syscall parameter.
Fix fadvise64_64 fallocate compat handlers to correctly swap upper/lower
32 bits conditioned on endianness.
A future patch will replace the arch-specific compat fallocate with an
asm-generic implementation. This patch is intended for ease of
back-port.
[1]: https://lore.kernel.org/all/be29926f-226e-48dc-871a-e29a54e80583@www.fastmail.com/
Fixes: 57f48b4b74e7 ("powerpc/compat_sys: swap hi/lo parts of 64-bit syscall args in LE mode")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-9-rmclure@linux.ibm.com
|
|
Interrupt handlers on 64s systems will often need to save register state
from the interrupted process to make space for loading special purpose
registers or for internal state.
Fix a comment documenting a common code path macro in the beginning of
interrupt handlers where r10 is saved to the PACA to afford space for
the value of the CFAR. Comment is currently written as if r10-r12 are
saved to PACA, but in fact only r10 is saved, with r11-r12 saved much
later. The distance in code between these saves has grown over the many
revisions of this macro. Fix this by signalling with a comment where
r11-r12 are saved to the PACA.
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reported-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-8-rmclure@linux.ibm.com
|
|
The common interrupt handler prologue macro and the bad_stack
trampolines include consecutive sequences of register saves, and some
register clears. Neaten such instances by expanding use of the SAVE_GPRS
macro and employing the ZEROIZE_GPR macro when appropriate.
Also simplify an invocation of SAVE_GPRS targetting all non-volatile
registers to SAVE_NVGPRS.
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reported-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-7-rmclure@linux.ibm.com
|
|
Restoring the register state of the interrupted thread involves issuing
a large number of predictable loads to the kernel stack frame. Issue the
REST_GPR{,S} macros to clearly signal when this is happening, and bunch
together restores at the end of the interrupt handler where the saved
value is not consumed earlier in the handler code.
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reported-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-6-rmclure@linux.ibm.com
|
|
Use the convenience macros for saving/clearing/restoring gprs in keeping
with syscall calling conventions. The plural variants of these macros
can store a range of registers for concision.
This works well when the user gpr value we are hoping to save is still
live. In the syscall interrupt handlers, user register state is
sometimes juggled between registers. Hold-off from issuing the SAVE_GPR
macro for applicable neighbouring lines to highlight the delicate
register save logic.
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-5-rmclure@linux.ibm.com
|
|
This reverts commit 8875f47b7681 ("powerpc/syscall: Save r3 in regs->orig_r3
").
Save caller's original r3 state to the kernel stackframe before entering
system_call_exception. This allows for user registers to be cleared by
the time system_call_exception is entered, reducing the influence of
user registers on speculation within the kernel.
Prior to this commit, orig_r3 was saved at the beginning of
system_call_exception. Instead, save orig_r3 while the user value is
still live in r3.
Also replicate this early save in 32-bit. A similar save was removed in
commit 6f76a01173cc ("powerpc/syscall: implement system call entry/exit
logic in C for PPC32") when 32-bit adopted system_call_exception. Revert
its removal of orig_r3 saves.
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-3-rmclure@linux.ibm.com
|
|
The asmlinkage macro has no special meaning in powerpc, and prior to
this patch is used sporadically on some syscall handler definitions. On
architectures that do not define asmlinkage, it resolves to extern "C"
for C++ compilers and a nop otherwise. The current invocations of
asmlinkage provide far from complete support for C++ toolchains, and so
the macro serves no purpose in powerpc.
Remove all invocations of asmlinkage in arch/powerpc. These incidentally
only occur in syscall definitions and prototypes.
Signed-off-by: Rohan McLure <rmclure@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Andrew Donnellan <ajd@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220921065605.1051927-2-rmclure@linux.ibm.com
|
|
e500 idle setup is a bit messy.
e500_idle() is used for PPC32 while book3e_idle() is used for PPC64.
As they are mutually exclusive, call them all e500_idle().
Use CONFIG_MPC_85xx instead of PPC32 + E500 in Makefile and rename
idle_e500.c to idle_85xx.c .
Rename idle_book3e.c to idle_64e.c and remove #ifdef PPC64 in
as it's only built on PPC64.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/8039301334e948974c85ec5ef2db37751075185b.1663606876.git.christophe.leroy@csgroup.eu
|
|
CONFIG_PPC_BOOK3E_MMU is redundant with CONFIG_PPC_E500.
Remove it.
Also rename mmu-book3e.h to mmu-e500.h
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/c5549cd59a131204ff94ab909cad2e2dad4ddf2f.1663606876.git.christophe.leroy@csgroup.eu
|
|
CONFIG_PPC_FSL_BOOK3E is redundant with CONFIG_PPC_E500.
Remove it.
And rename five files accordingly.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
[mpe: Rename include guards to match new file names]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/795cb93b88c9a0279289712e674f39e3b108a1b4.1663606876.git.christophe.leroy@csgroup.eu
|
|
It will be used outside arch/powerpc, make it clear its a
powerpc configuration item.
And we already have CONFIG_PPC_E500MC, so that will make
it more consistent.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/e63b22083c11c4300f4a82d3123a46e5fdd54fa6.1663606876.git.christophe.leroy@csgroup.eu
|
|
CONFIG_PPC_BOOK3E is redundant with CONFIG_PPC_BOOK3E_64.
The later is more explicit about the fact that it's a 64 bits target.
Remove CONFIG_PPC_BOOK3E.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/5d0891490813c19cdcfc04678f512ea68cba3e64.1663606876.git.christophe.leroy@csgroup.eu
|
|
e500v1/v2 and e500mc are said to be mutually exclusive in Kconfig.
Split e500 cpu_specs[] and then restrict the non e500mc to PPC32
which is then 85xx.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
[mpe: Tweak formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/553b901ea91e393df231103da4b018e9b251b0e9.1663606876.git.christophe.leroy@csgroup.eu
|
|
PPC_85xx is PPC32 only.
PPC_85xx always selects E500 and is the only PPC32 that
selects E500.
FSL_BOOKE is selected when E500 and PPC32 are selected.
So FSL_BOOKE is redundant with PPC_85xx.
Remove FSL_BOOKE.
And rename four files accordingly.
cpu_setup_fsl_booke.S is not renamed because it is linked to
PPC_FSL_BOOK3E and not to FSL_BOOKE as suggested by its name.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/08e3e15594e66d63b9e89c5b4f9c35153913c28f.1663606875.git.christophe.leroy@csgroup.eu
|
|
cpu_specs[] is full of #ifdefs depending on the different
types of CPU.
CPUs are mutually exclusive, it is therefore possible to split
cpu_specs[] into smaller more readable pieces.
Create cpu_specs_XXX.h that will each be dedicated on one
of the following mutually exclusive families:
- 40x
- 44x
- 47x
- 8xx
- e500
- book3s/32
- book3s/64
In book3s/32, the block for 603 has been moved in front in order
to not have two 604 blocks.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
[mpe: Fix CONFIG_47x to be CONFIG_PPC_47x, tweak some formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/a44b865e0318286155273b10cdf524ab697928c1.1663606875.git.christophe.leroy@csgroup.eu
|
|
Move all prototypes out of cputable.h
For that rename cpu_setup_power.h to cpu_setup.h and move all
prototypes in it.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
[mpe: Standardise cpu_spec *spec formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/f45118489ee450db654db8bbcdfd8f5907337c22.1663606875.git.christophe.leroy@csgroup.eu
|
|
__machine_check_early_realmode_p{7/8/9} are already in mce.h
which is included. Remove them from cputable.c
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/b77fc0f90e3a9c065324cbff549b718ccf0809f8.1663606875.git.christophe.leroy@csgroup.eu
|
|
CONFIG_PPC_BOOK3E_64 implies CONFIG_PPC_FSL_BOOK3E so no need of
additional #ifdefs in files built exclusively for CONFIG_PPC_BOOK3E_64.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/df16255c13b63b0221c9be63b94a6864bed22c12.1663606875.git.christophe.leroy@csgroup.eu
|
|
The only 64-bit Book3E CPUs we support require the selection
of CONFIG_PPC_E500MC.
However our Kconfig allows configurating a kernel that has 64-bit
Book3E support, but without CONFIG_PPC_E500MC enabled. Such a kernel
would never boot, it doesn't know about any CPUs.
To fix this, force CONFIG_PPC_E500MC to be selected whenever we are
building a 64-bit Book3E kernel.
And add a test to detect future situations where cpu_specs is empty.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/ae5d8b8b3ccc346e61d2ec729767f92766273f0b.1663606875.git.christophe.leroy@csgroup.eu
|