Age | Commit message (Collapse) | Author |
|
bts_ctx might not be allocated, for example if the CPU has X86_FEATURE_PTI,
but intel_bts_disable/enable_local() and intel_bts_interrupt() are called
unconditionally from intel_pmu_handle_irq() and crash on bts_ctx.
So check if bts_ctx is allocated when calling BTS functions.
Fixes: 3acfcefa795c ("perf/x86/intel/bts: Allocate bts_ctx only if necessary")
Reported-by: Jiri Olsa <olsajiri@gmail.com>
Tested-by: Jiri Olsa <jolsa@kernel.org>
Suggested-by: Adrian Hunter <adrian.hunter@intel.com>
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250306051102.2642-1-lirongqing@baidu.com
|
|
Add the __counted_by() compiler attribute to the flexible array member
buf to improve access bounds-checking via CONFIG_UBSAN_BOUNDS and
CONFIG_FORTIFY_SOURCE.
No functional changes intended.
Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250305123134.215577-2-thorsten.blum@linux.dev
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
get_this_hybrid_cpu_type() misses a case when cpu-type is populated
regardless of X86_FEATURE_HYBRID_CPU. This is particularly true for hybrid
variants that have P or E cores fused off.
Instead use the cpu-type cached in struct x86_topology, as it does not rely
on hybrid feature to enumerate cpu-type. This can also help avoid the
model-specific fixup get_hybrid_cpu_type(). Also replace the
get_this_hybrid_cpu_native_id() with its cached value in struct
x86_topology.
While at it, remove enum hybrid_cpu_type as it serves no purpose when we
have the exact cpu-types defined in enum intel_cpu_type. Also rename
atom_native_id to intel_native_id and move it to intel-family.h where
intel_cpu_type lives.
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20241211-add-cpu-type-v5-3-2ae010f50370@linux.intel.com
|
|
We are going to apply a new series that conflicts with pending
work in x86/mm, so merge in x86/mm to avoid it, and also to
refresh the x86/cpu branch with fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
It seems that the attr parameter was never been used in security
checks since it was first introduced by:
commit da97e18458fb ("perf_event: Add support for LSM and SELinux checks")
so remove it.
Signed-off-by: Luo Gengkun <luogengkun@huaweicloud.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
Freqency mode is the current default mode of Linux perf. A period of 1 is
used as a starting period. The period is auto-adjusted on each tick or an
overflow, to meet the frequency target.
The start period of 1 is too low and may trigger some issues:
- Many HWs do not support period 1 well.
https://lore.kernel.org/lkml/875xs2oh69.ffs@tglx/
- For an event that occurs frequently, period 1 is too far away from the
real period. Lots of samples are generated at the beginning.
The distribution of samples may not be even.
- A low starting period for frequently occurring events also challenges
virtualization, which has a longer path to handle a PMI.
The limit_period value only checks the minimum acceptable value for HW.
It cannot be used to set the start period, because some events may
need a very low period. The limit_period cannot be set too high. It
doesn't help with the events that occur frequently.
It's hard to find a universal starting period for all events. The idea
implemented by this patch is to only give an estimate for the popular
HW and HW cache events. For the rest of the events, start from the lowest
possible recommended value.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250117151913.3043942-3-kan.liang@linux.intel.com
|
|
Avoid unnecessary per-CPU memory allocation on unsupported CPUs,
this can save 12K memory for each CPU
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Adrian Hunter <adrian.hunter@intel.com>
Acked-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lore.kernel.org/r/20250122074103.3091-1-lirongqing@baidu.com
|
|
new patches
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
According to the latest event list, update the event constraint tables
for Lion Cove core.
The general rule (the event codes < 0x90 are restricted to counters
0-3.) has been removed. There is no restriction for most of the
performance monitoring events.
Fixes: a932aa0e868f ("perf/x86: Add Lunar Lake and Arrow Lake support")
Reported-by: Amiri Khalil <amiri.khalil@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20250219141005.2446823-1-kan.liang@linux.intel.com
|
|
hrtimer_setup() takes the callback function pointer as argument and
initializes the timer completely.
Replace hrtimer_init() and the open coded initialization of
hrtimer::function with the new setup mechanism.
Patch was created by using Coccinelle.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/e84ad5a660b8e10867e547db8e64f7e99c48ebba.1738746821.git.namcao@linutronix.de
|
|
Explicitly clear DEBUGCTL.LBR when a CPU is starting, prior to purging the
LBR MSRs themselves, as at least one system has been found to transfer
control to the kernel with LBRs enabled (it's unclear whether it's a BIOS
flaw or a CPU goof). Because the kernel preserves the original DEBUGCTL,
even when toggling LBRs, leaving DEBUGCTL.LBR as is results in running
with LBRs enabled at all times.
Closes: https://lore.kernel.org/all/c9d8269bff69f6359731d758e3b1135dedd7cc61.camel@redhat.com
Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20250131010721.470503-1-seanjc@google.com
|
|
The EAX of the CPUID Leaf 023H enumerates the mask of valid sub-leaves.
To tell the availability of the sub-leaf 1 (enumerate the counter mask),
perf should check the bit 1 (0x2) of EAS, rather than bit 0 (0x1).
The error is not user-visible on bare metal. Because the sub-leaf 0 and
the sub-leaf 1 are always available. However, it may bring issues in a
virtualization environment when a VMM only enumerates the sub-leaf 0.
Introduce the cpuid35_e?x to replace the macros, which makes the
implementation style consistent.
Fixes: eb467aaac21e ("perf/x86/intel: Support Architectural PerfMon Extension leaf")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20250129154820.3755948-3-kan.liang@linux.intel.com
|
|
The PEBS-via-PT feature is exposed for the e-core of some hybrid
platforms, e.g., ADL and MTL. But it never works.
$ dmesg | grep PEBS
[ 1.793888] core: cpu_atom PMU driver: PEBS-via-PT
$ perf record -c 1000 -e '{intel_pt/branch=0/,
cpu_atom/cpu-cycles,aux-output/pp}' -C8
Error:
The sys_perf_event_open() syscall returned with 22 (Invalid argument)
for event (cpu_atom/cpu-cycles,aux-output/pp).
"dmesg | grep -i perf" may provide additional information.
The "PEBS-via-PT" is printed if the corresponding bit of per-PMU
capabilities is set. Since the feature is supported by the e-core HW,
perf sets the bit for e-core. However, for Intel PT, if a feature is not
supported on all CPUs, it is not supported at all. The PEBS-via-PT event
cannot be created successfully.
The PEBS-via-PT is no longer enumerated on the latest hybrid platform. It
will be deprecated on future platforms with Arch PEBS. Let's remove it
from the existing hybrid platforms.
Fixes: d9977c43bff8 ("perf/x86: Register hybrid PMUs")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20250129154820.3755948-2-kan.liang@linux.intel.com
|
|
The counters snapshotting is a new adaptive PEBS extension, which can
capture programmable counters, fixed-function counters, and performance
metrics in a PEBS record. The feature is available in the PEBS format
V6.
The target counters can be configured in the new fields of MSR_PEBS_CFG.
Then the PEBS HW will generate the bit mask of counters (Counters Group
Header) followed by the content of all the requested counters into a
PEBS record.
The current Linux perf sample read feature can read all events in the
group when any event in the group is overflowed. But the rdpmc in the
NMI/overflow handler has a small gap from overflow. Also, there is some
overhead for each rdpmc read. The counters snapshotting feature can be
used as an accurate and low-overhead replacement.
Extend intel_update_topdown_event() to accept the value from PEBS
records.
Add a new PEBS_CNTR flag to indicate a sample read group that utilizes
the counters snapshotting feature. When the group is scheduled, the
PEBS configure can be updated accordingly.
To prevent the case that a PEBS record value might be in the past
relative to what is already in the event, perf always stops the PMU and
drains the PEBS buffer before updating the corresponding event->count.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20250121152303.3128733-4-kan.liang@linux.intel.com
|
|
The WARN_ON(this_cpu_read(cpu_hw_events.enabled)) in the
intel_pmu_save_and_restart_reload() is triggered, when sampling read
topdown events.
In a NMI handler, the cpu_hw_events.enabled is set and used to indicate
the status of core PMU. The generic pmu->pmu_disable_count, updated in
the perf_pmu_disable/enable pair, is not touched.
However, the perf_pmu_disable/enable pair is invoked when sampling read
in a NMI handler. The cpuc->enabled is mistakenly set by the
perf_pmu_enable().
Avoid disabling PMU if the core PMU is already disabled.
Merge the logic together.
Fixes: 7b2c05a15d29 ("perf/x86/intel: Generic support for hardware TopDown metrics")
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20250121152303.3128733-2-kan.liang@linux.intel.com
|
|
The x86_pmu_drain_pebs static call was introduced in commit 7c9903c9bf71
("x86/perf, static_call: Optimize x86_pmu methods"), but it's not really
used to replace the old method.
Apply the static call for drain_pebs.
Fixes: 7c9903c9bf71 ("x86/perf, static_call: Optimize x86_pmu methods")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20250121152303.3128733-1-kan.liang@linux.intel.com
|
|
This CPU was mistakenly given the name INTEL_ATOM_AIRMONT_MID. But it
uses a Silvermont core, not Airmont.
Change #define name to INTEL_ATOM_SILVERMONT_MID2
Reported-by: Christian Ludloff <ludloff@gmail.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20241007165701.19693-1-tony.luck%40intel.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull performance events updates from Ingo Molnar:
"Seqlock optimizations that arose in a perf context and were merged
into the perf tree:
- seqlock: Add raw_seqcount_try_begin (Suren Baghdasaryan)
- mm: Convert mm_lock_seq to a proper seqcount (Suren Baghdasaryan)
- mm: Introduce mmap_lock_speculate_{try_begin|retry} (Suren
Baghdasaryan)
- mm/gup: Use raw_seqcount_try_begin() (Peter Zijlstra)
Core perf enhancements:
- Reduce 'struct page' footprint of perf by mapping pages in advance
(Lorenzo Stoakes)
- Save raw sample data conditionally based on sample type (Yabin Cui)
- Reduce sampling overhead by checking sample_type in
perf_sample_save_callchain() and perf_sample_save_brstack() (Yabin
Cui)
- Export perf_exclude_event() (Namhyung Kim)
Uprobes scalability enhancements: (Andrii Nakryiko)
- Simplify find_active_uprobe_rcu() VMA checks
- Add speculative lockless VMA-to-inode-to-uprobe resolution
- Simplify session consumer tracking
- Decouple return_instance list traversal and freeing
- Ensure return_instance is detached from the list before freeing
- Reuse return_instances between multiple uretprobes within task
- Guard against kmemdup() failing in dup_return_instance()
AMD core PMU driver enhancements:
- Relax privilege filter restriction on AMD IBS (Namhyung Kim)
AMD RAPL energy counters support: (Dhananjay Ugwekar)
- Introduce topology_logical_core_id() (K Prateek Nayak)
- Remove the unused get_rapl_pmu_cpumask() function
- Remove the cpu_to_rapl_pmu() function
- Rename rapl_pmu variables
- Make rapl_model struct global
- Add arguments to the init and cleanup functions
- Modify the generic variable names to *_pkg*
- Remove the global variable rapl_msrs
- Move the cntr_mask to rapl_pmus struct
- Add core energy counter support for AMD CPUs
Intel core PMU driver enhancements:
- Support RDPMC 'metrics clear mode' feature (Kan Liang)
- Clarify adaptive PEBS processing (Kan Liang)
- Factor out functions for PEBS records processing (Kan Liang)
- Simplify the PEBS records processing for adaptive PEBS (Kan Liang)
Intel uncore driver enhancements: (Kan Liang)
- Convert buggy pmu->func_id use to pmu->registered
- Support more units on Granite Rapids"
* tag 'perf-core-2025-01-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
perf: map pages in advance
perf/x86/intel/uncore: Support more units on Granite Rapids
perf/x86/intel/uncore: Clean up func_id
perf/x86/intel: Support RDPMC metrics clear mode
uprobes: Guard against kmemdup() failing in dup_return_instance()
perf/x86: Relax privilege filter restriction on AMD IBS
perf/core: Export perf_exclude_event()
uprobes: Reuse return_instances between multiple uretprobes within task
uprobes: Ensure return_instance is detached from the list before freeing
uprobes: Decouple return_instance list traversal and freeing
uprobes: Simplify session consumer tracking
uprobes: add speculative lockless VMA-to-inode-to-uprobe resolution
uprobes: simplify find_active_uprobe_rcu() VMA checks
mm: introduce mmap_lock_speculate_{try_begin|retry}
mm: convert mm_lock_seq to a proper seqcount
mm/gup: Use raw_seqcount_try_begin()
seqlock: add raw_seqcount_try_begin
perf/x86/rapl: Add core energy counter support for AMD CPUs
perf/x86/rapl: Move the cntr_mask to rapl_pmus struct
perf/x86/rapl: Remove the global variable rapl_msrs
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpuid updates from Borislav Petkov:
- Remove the less generic CPU matching infra around struct x86_cpu_desc
and use the generic struct x86_cpu_id thing
- Remove magic naked numbers for CPUID functions and use proper defines
of the prefix CPUID_LEAF_*. Consolidate some of the crazy use around
the tree
- Smaller cleanups and improvements
* tag 'x86_cpu_for_v6.14_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Make all all CPUID leaf names consistent
x86/fpu: Remove unnecessary CPUID level check
x86/fpu: Move CPUID leaf definitions to common code
x86/tsc: Remove CPUID "frequency" leaf magic numbers.
x86/tsc: Move away from TSC leaf magic numbers
x86/cpu: Move TSC CPUID leaf definition
x86/cpu: Refresh DCA leaf reading code
x86/cpu: Remove unnecessary MwAIT leaf checks
x86/cpu: Use MWAIT leaf definition
x86/cpu: Move MWAIT leaf definition to common header
x86/cpu: Remove 'x86_cpu_desc' infrastructure
x86/cpu: Move AMD erratum 1386 table over to 'x86_cpu_id'
x86/cpu: Replace PEBS use of 'x86_cpu_desc' use with 'x86_cpu_id'
x86/cpu: Expose only stepping min/max interface
x86/cpu: Introduce new microcode matching helper
x86/cpufeature: Document cpu_feature_enabled() as the default to use
x86/paravirt: Remove the WBINVD callback
x86/cpufeatures: Free up unused feature bits
|
|
The same CXL PMONs support is also avaiable on GNR. Apply
spr_uncore_cxlcm and spr_uncore_cxldp to GNR as well.
The other units were broken on early HW samples, so they were ignored in
the early enabling patch. The issue has been fixed and verified on the
later production HW. Add UPI, B2UPI, B2HOT, PCIEX16 and PCIEX8 for GNR.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Eric Hu <eric.hu@intel.com>
Link: https://lkml.kernel.org/r/20250108143017.1793781-2-kan.liang@linux.intel.com
|
|
The below warning may be triggered on GNR when the PCIE uncore units are
exposed.
WARNING: CPU: 4 PID: 1 at arch/x86/events/intel/uncore.c:1169 uncore_pci_pmu_register+0x158/0x190
The current uncore driver assumes that all the devices in the same PMU
have the exact same devfn. It's true for the previous platforms. But it
doesn't work for the new PCIE uncore units on GNR.
The assumption doesn't make sense. There is no reason to limit the
devices from the same PMU to the same devfn. Also, the current code just
throws the warning, but still registers the device. The WARN_ON_ONCE()
should be removed.
The func_id is used by the later event_init() to check if a event->pmu
has valid devices. For cpu and mmio uncore PMUs, they are always valid.
For pci uncore PMUs, it's set when the PMU is registered. It can be
replaced by the pmu->registered. Clean up the func_id.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Eric Hu <eric.hu@intel.com>
Link: https://lkml.kernel.org/r/20250108143017.1793781-1-kan.liang@linux.intel.com
|
|
The new RDPMC enhancement, metrics clear mode, is to clear the
PERF_METRICS-related resources as well as the fixed-function performance
monitoring counter 3 after the read is performed. It is available for
ring 3. The feature is enumerated by the
IA32_PERF_CAPABILITIES.RDPMC_CLEAR_METRICS[bit 19]. To enable the
feature, the IA32_FIXED_CTR_CTRL.METRICS_CLEAR_EN[bit 14] must be set.
Two ways were considered to enable the feature.
- Expose a knob in the sysfs globally. One user may affect the
measurement of other users when changing the knob. The solution is
dropped.
- Introduce a new event format, metrics_clear, for the slots event to
disable/enable the feature only for the current process. Users can
utilize the feature as needed.
The latter solution is implemented in the patch.
The current KVM doesn't support the perf metrics yet. For
virtualization, the feature can be enabled later separately.
Suggested-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Ian Rogers <irogers@google.com>
Link: https://lkml.kernel.org/r/20241211160318.235056-1-kan.liang@linux.intel.com
|
|
The released OCR and FRONTEND events utilized more bits on Lunar Lake
p-core. The corresponding mask in the extra_regs has to be extended to
unblock the extra bits.
Add a dedicated intel_lnc_extra_regs.
Fixes: a932aa0e868f ("perf/x86: Add Lunar Lake and Arrow Lake support")
Reported-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20241216160252.430858-1-kan.liang@linux.intel.com
|
|
The leaf names are not consistent. Give them all a CPUID_LEAF_ prefix
for consistency and vertical alignment.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Dave Jiang <dave.jiang@intel.com> # for ioatdma bits
Link: https://lore.kernel.org/all/20241213205040.7B0C3241%40davehans-spike.ostc.intel.com
|
|
Prepare to use the TSC CPUID leaf definition more widely by moving
it to the common header.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Link: https://lore.kernel.org/all/20241213205033.68799E53%40davehans-spike.ostc.intel.com
|
|
The 'x86_cpu_desc' and 'x86_cpu_id' structures are very similar.
Reduce duplicate infrastructure by moving the few users of
'x86_cpu_desc' to the much more common variant.
The existing X86_MATCH_VFM_STEPS() helper matches ranges of
steppings. Instead of introducing a single-stepping match function
which could get confusing when paired with the range, just use
the stepping min/max match helper and use min==max.
Note that this makes the table more vertically compact because
multiple entries like this:
INTEL_CPU_DESC(INTEL_SKYLAKE_X, 4, 0x00000000),
INTEL_CPU_DESC(INTEL_SKYLAKE_X, 5, 0x00000000),
INTEL_CPU_DESC(INTEL_SKYLAKE_X, 6, 0x00000000),
INTEL_CPU_DESC(INTEL_SKYLAKE_X, 7, 0x00000000),
can be consolidated down to a single stepping range.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20241213185131.8B610039%40davehans-spike.ostc.intel.com
|
|
The only difference between 5 and 6 is the new counters snapshotting
group, without the following counters snapshotting enabling patches,
it's impossible to utilize the feature in a PEBS record. It's safe to
share the same code path with format 5.
Add format 6, so the end user can at least utilize the legacy PEBS
features.
Fixes: a932aa0e868f ("perf/x86: Add Lunar Lake and Arrow Lake support")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20241216204505.748363-1-kan.liang@linux.intel.com
|
|
From the perspective of the uncore PMU, the Clearwater Forest is the
same as the previous Sierra Forest. The only difference is the event
list, which will be supported in the perf tool later.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241211161146.235253-1-kan.liang@linux.intel.com
|
|
The current code may iterate all the PEBS records in the DS area several
times. The first loop is to find all active events and calculate the
available records for each event. Then iterate the whole buffer again
and again to process available records until all active events are
processed.
The algorithm is inherited from the old generations. The old PEBS
hardware does not deal well with the situation when events happen near
each other. SW has to drop the error records. Multiple iterations are
required.
The hardware limit has been addressed on newer platforms with adaptive
PEBS. A simple one-iteration algorithm is introduced.
The samples are output by record order with the patch, rather than the
event order. It doesn't impact the post-processing. The perf tool always
sorts the records by time before presenting them to the end user.
In an NMI, the last record has to be specially handled. Add a last[]
variable to track the last unprocessed record of each event.
Test:
11 PEBS events are used in the perf test. Only the basic information is
collected.
perf record -e instructions:up,...,instructions:up -c 2000003 benchmark
The ftrace is used to record the duration of the
intel_pmu_drain_pebs_icl().
The average duration reduced from 62.04us to 57.94us.
A small improvement can be observed with the new algorithm.
Also, the implementation becomes simpler and more straightforward.
Suggested-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20241119135504.1463839-5-kan.liang@linux.intel.com
|
|
Factor out functions to process normal and the last PEBS records, which
can be shared with the later patch.
Move the event updating related codes (intel_pmu_save_and_restart())
to the end, where all samples have been processed.
For the current usage, it doesn't matter when perf updates event counts
and reset the counter. Because all counters are stopped when the PEBS
buffer is drained.
Drop the return of the !intel_pmu_save_and_restart(event) check. Because
it never happen. The intel_pmu_save_and_restart(event) only returns 0,
when !hwc->event_base or the period_left > 0.
- The !hwc->event_base is impossible for the PEBS event, since the PEBS
event is only available on GP and fixed counters, which always have
a valid hwc->event_base.
- The check only happens for the case of non-AUTO_RELOAD and single
PEBS, which implies that the event must be overflowed. The period_left
must be always <= 0 for an overflowed event after the
x86_pmu_update().
Co-developed-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241119135504.1463839-4-kan.liang@linux.intel.com
|
|
Modify the pebs_basic and pebs_meminfo structs to make the bitfields
more explicit to ease readability of the code.
Co-developed-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241119135504.1463839-3-kan.liang@linux.intel.com
|
|
The PEBS kernel warnings can still be observed with the below case.
when the below commands are running in parallel for a while.
while true;
do
perf record --no-buildid -a --intr-regs=AX \
-e cpu/event=0xd0,umask=0x81/pp \
-c 10003 -o /dev/null ./triad;
done &
while true;
do
perf record -e 'cpu/mem-loads,ldlat=3/uP' -W -d -- ./dtlb
done
The commit b752ea0c28e3 ("perf/x86/intel/ds: Flush PEBS DS when changing
PEBS_DATA_CFG") intends to flush the entire PEBS buffer before the
hardware is reprogrammed. However, it fails in the above case.
The first perf command utilizes the large PEBS, while the second perf
command only utilizes a single PEBS. When the second perf event is
added, only the n_pebs++. The intel_pmu_pebs_enable() is invoked after
intel_pmu_pebs_add(). So the cpuc->n_pebs == cpuc->n_large_pebs check in
the intel_pmu_drain_large_pebs() fails. The PEBS DS is not flushed.
The new PEBS event should not be taken into account when flushing the
existing PEBS DS.
The check is unnecessary here. Before the hardware is reprogrammed, all
the stale records must be drained unconditionally.
For single PEBS or PEBS-vi-pt, the DS must be empty. The drain_pebs()
can handle the empty case. There is no harm to unconditionally drain the
PEBS DS.
Fixes: b752ea0c28e3 ("perf/x86/intel/ds: Flush PEBS DS when changing PEBS_DATA_CFG")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20241119135504.1463839-2-kan.liang@linux.intel.com
|
|
Keep in sync with the urgent bits.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
|
|
From PMU's perspective, the new Arrow Lake U is the same as the
Meteor Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241121180526.2364759-1-kan.liang@linux.intel.com
|
|
Check sample_type in perf_sample_save_brstack() to prevent
saving branch stack data when it isn't required.
Suggested-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Yabin Cui <yabinc@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ian Rogers <irogers@google.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/r/20240515193610.2350456-4-yabinc@google.com
|
|
Check sample_type in perf_sample_save_callchain() to prevent
saving callchain data when it isn't required.
Suggested-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Yabin Cui <yabinc@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ian Rogers <irogers@google.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/r/20240515193610.2350456-3-yabinc@google.com
|
|
sampling
Events with aux actions or aux sampling expect the PMI to coincide with the
event, which does not happen for large PEBS, so do not enable large PEBS in
that case.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20241022155920.17511-5-adrian.hunter@intel.com
|
|
Prevent tracing to start if aux_paused.
Implement support for PERF_EF_PAUSE / PERF_EF_RESUME. When aux_paused, stop
tracing. When not aux_paused, only start tracing if it isn't currently
meant to be stopped.
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20241022155920.17511-4-adrian.hunter@intel.com
|
|
If the trace data buffer becomes full, a truncated flag [T] is reported
in PERF_RECORD_AUX. In some cases, the size reported is 0, even though
data must have been added to make the buffer full.
That happens when the buffer fills up from empty to full before the
Intel PT driver has updated the buffer position. Then the driver
calculates the new buffer position before calculating the data size.
If the old and new positions are the same, the data size is reported
as 0, even though it is really the whole buffer size.
Fix by detecting when the buffer position is wrapped, and adjust the
data size calculation accordingly.
Example
Use a very small buffer size (8K) and observe the size of truncated [T]
data. Before the fix, it is possible to see records of 0 size.
Before:
$ perf record -m,8K -e intel_pt// uname
Linux
[ perf record: Woken up 2 times to write data ]
[ perf record: Captured and wrote 0.105 MB perf.data ]
$ perf script -D --no-itrace | grep AUX | grep -F '[T]'
Warning:
AUX data lost 2 times out of 3!
5 19462712368111 0x19710 [0x40]: PERF_RECORD_AUX offset: 0 size: 0 flags: 0x1 [T]
5 19462712700046 0x19ba8 [0x40]: PERF_RECORD_AUX offset: 0x170 size: 0xe90 flags: 0x1 [T]
After:
$ perf record -m,8K -e intel_pt// uname
Linux
[ perf record: Woken up 3 times to write data ]
[ perf record: Captured and wrote 0.040 MB perf.data ]
$ perf script -D --no-itrace | grep AUX | grep -F '[T]'
Warning:
AUX data lost 2 times out of 3!
1 113720802995 0x4948 [0x40]: PERF_RECORD_AUX offset: 0 size: 0x2000 flags: 0x1 [T]
1 113720979812 0x6b10 [0x40]: PERF_RECORD_AUX offset: 0x2000 size: 0x2000 flags: 0x1 [T]
Fixes: 52ca9ced3f70 ("perf/x86/intel/pt: Add Intel PT PMU driver")
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20241022155920.17511-2-adrian.hunter@intel.com
|
|
ArrowLake-H contains 3 different uarchs, LionCove, Skymont and Crestmont.
It is different with previous hybrid processors which only contains two
kinds of uarchs.
This patch adds PMU support for ArrowLake-H processor, adds ARL-H
specific events which supports the 3 kinds of uarchs, such as
td_retiring_arl_h, and extends some existed format attributes like
offcore_rsp to make them be available to support ARL-H as well. Althrough
these format attributes like offcore_rsp have been extended to support
ARL-H, they can still support the regular hybrid platforms with 2 kinds
of uarchs since the helper hybrid_format_is_visible() would filter PMU
types and only show the format attribute for available PMUs.
Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Link: https://lkml.kernel.org/r/20240820073853.1974746-5-dapeng1.mi@linux.intel.com
|
|
The upcoming ARL-H hybrid processor contains 2 different atom uarchs
which have different PMU capabilities. To distinguish these atom uarchs,
CPUID.1AH.EAX[23:0] defines a native model ID which can be used to
uniquely identify the uarch of the core by combining with core type.
Thus a 3rd hybrid pmu type "hybrid_tiny" is defined to mark the 2nd
atom uarch. The helper find_hybrid_pmu_for_cpu() would compare the
hybrid pmu type and dynamically read core native id from cpu to identify
the corresponding hybrid pmu structure.
Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Link: https://lkml.kernel.org/r/20240820073853.1974746-4-dapeng1.mi@linux.intel.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf events updates from Ingo Molnar:
- Implement per-PMU context rescheduling to significantly improve
single-PMU performance, and related cleanups/fixes (Peter Zijlstra
and Namhyung Kim)
- Fix ancient bug resulting in a lot of events being dropped
erroneously at higher sampling frequencies (Luo Gengkun)
- uprobes enhancements:
- Implement RCU-protected hot path optimizations for better
performance:
"For baseline vs SRCU, peak througput increased from 3.7 M/s
(million uprobe triggerings per second) up to about 8 M/s. For
uretprobes it's a bit more modest with bump from 2.4 M/s to
5 M/s.
For SRCU vs RCU Tasks Trace, peak throughput for uprobes
increases further from 8 M/s to 10.3 M/s (+28%!), and for
uretprobes from 5.3 M/s to 5.8 M/s (+11%), as we have more
work to do on uretprobes side.
Even single-thread (no contention) performance is slightly
better: 3.276 M/s to 3.396 M/s (+3.5%) for uprobes, and 2.055
M/s to 2.174 M/s (+5.8%) for uretprobes."
(Andrii Nakryiko et al)
- Document mmap_lock, don't abuse get_user_pages_remote() (Oleg
Nesterov)
- Cleanups & fixes to prepare for future work:
- Remove uprobe_register_refctr()
- Simplify error handling for alloc_uprobe()
- Make uprobe_register() return struct uprobe *
- Fold __uprobe_unregister() into uprobe_unregister()
- Shift put_uprobe() from delete_uprobe() to uprobe_unregister()
- BPF: Fix use-after-free in bpf_uprobe_multi_link_attach()
(Oleg Nesterov)
- New feature & ABI extension: allow events to use PERF_SAMPLE READ
with inheritance, enabling sample based profiling of a group of
counters over a hierarchy of processes or threads (Ben Gainey)
- Intel uncore & power events updates:
- Add Arrow Lake and Lunar Lake support
- Add PERF_EV_CAP_READ_SCOPE
- Clean up and enhance cpumask and hotplug support
(Kan Liang)
- Add LNL uncore iMC freerunning support
- Use D0:F0 as a default device
(Zhenyu Wang)
- Intel PT: fix AUX snapshot handling race (Adrian Hunter)
- Misc fixes and cleanups (James Clark, Jiri Olsa, Oleg Nesterov and
Peter Zijlstra)
* tag 'perf-core-2024-09-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
dmaengine: idxd: Clean up cpumask and hotplug for perfmon
iommu/vt-d: Clean up cpumask and hotplug for perfmon
perf/x86/intel/cstate: Clean up cpumask and hotplug
perf: Add PERF_EV_CAP_READ_SCOPE
perf: Generic hotplug support for a PMU with a scope
uprobes: perform lockless SRCU-protected uprobes_tree lookup
rbtree: provide rb_find_rcu() / rb_find_add_rcu()
perf/uprobe: split uprobe_unregister()
uprobes: travers uprobe's consumer list locklessly under SRCU protection
uprobes: get rid of enum uprobe_filter_ctx in uprobe filter callbacks
uprobes: protected uprobe lifetime with SRCU
uprobes: revamp uprobe refcounting and lifetime management
bpf: Fix use-after-free in bpf_uprobe_multi_link_attach()
perf/core: Fix small negative period being ignored
perf: Really fix event_function_call() locking
perf: Optimize __pmu_ctx_sched_out()
perf: Add context time freeze
perf: Fix event_function_call() locking
perf: Extract a few helpers
perf: Optimize context reschedule for single PMU cases
...
|
|
The BPF subsystem may capture LBR data on a counting event. However, the
current implementation assumes that LBR can/should only be used with
sampling events.
For instance, retsnoop tool ([0]) makes an extensive use of this
functionality and sets up perf event as follows:
struct perf_event_attr attr;
memset(&attr, 0, sizeof(attr));
attr.size = sizeof(attr);
attr.type = PERF_TYPE_HARDWARE;
attr.config = PERF_COUNT_HW_CPU_CYCLES;
attr.sample_type = PERF_SAMPLE_BRANCH_STACK;
attr.branch_sample_type = PERF_SAMPLE_BRANCH_KERNEL;
To limit the LBR for a sampling event is to avoid unnecessary branch
stack setup for a counting event in the sample read. Because LBR is only
read in the sampling event's overflow.
Although in most cases LBR is used in sampling, there is no HW limit to
bind LBR to the sampling mode. Allow an LBR setup for a counting event
unless in the sample read mode.
Fixes: 85846b27072d ("perf/x86: Add PERF_X86_EVENT_NEEDS_BRANCH_STACK flag")
Closes: https://lore.kernel.org/lkml/20240905180055.1221620-1-andrii@kernel.org/
Reported-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Tested-by: Andrii Nakryiko <andrii@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240909155848.326640-1-kan.liang@linux.intel.com
|
|
There are three cstate PMUs with different scopes, core, die and module.
The scopes are supported by the generic perf_event subsystem now.
Set the scope for each PMU and remove all the cpumask and hotplug codes.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240802151643.1691631-4-kan.liang@linux.intel.com
|
|
This also refreshes the -rc1 based branch to -rc5.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Running the ltp test cve-2015-3290 concurrently reports the following
warnings.
perfevents: irq loop stuck!
WARNING: CPU: 31 PID: 32438 at arch/x86/events/intel/core.c:3174
intel_pmu_handle_irq+0x285/0x370
Call Trace:
<NMI>
? __warn+0xa4/0x220
? intel_pmu_handle_irq+0x285/0x370
? __report_bug+0x123/0x130
? intel_pmu_handle_irq+0x285/0x370
? __report_bug+0x123/0x130
? intel_pmu_handle_irq+0x285/0x370
? report_bug+0x3e/0xa0
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x50
? asm_exc_invalid_op+0x1a/0x20
? irq_work_claim+0x1e/0x40
? intel_pmu_handle_irq+0x285/0x370
perf_event_nmi_handler+0x3d/0x60
nmi_handle+0x104/0x330
Thanks to Thomas Gleixner's analysis, the issue is caused by the low
initial period (1) of the frequency estimation algorithm, which triggers
the defects of the HW, specifically erratum HSW11 and HSW143. (For the
details, please refer https://lore.kernel.org/lkml/87plq9l5d2.ffs@tglx/)
The HSW11 requires a period larger than 100 for the INST_RETIRED.ALL
event, but the initial period in the freq mode is 1. The erratum is the
same as the BDM11, which has been supported in the kernel. A minimum
period of 128 is enforced as well on HSW.
HSW143 is regarding that the fixed counter 1 may overcount 32 with the
Hyper-Threading is enabled. However, based on the test, the hardware
has more issues than it tells. Besides the fixed counter 1, the message
'interrupt took too long' can be observed on any counter which was armed
with a period < 32 and two events expired in the same NMI. A minimum
period of 32 is enforced for the rest of the events.
The recommended workaround code of the HSW143 is not implemented.
Because it only addresses the issue for the fixed counter. It brings
extra overhead through extra MSR writing. No related overcounting issue
has been reported so far.
Fixes: 3a632cb229bf ("perf/x86/intel: Add simple Haswell PMU support")
Reported-by: Li Huafei <lihuafei1@huawei.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240819183004.3132920-1-kan.liang@linux.intel.com
Closes: https://lore.kernel.org/lkml/20240729223328.327835-1-lihuafei1@huawei.com/
|
|
The default paranoid setting was updated in commit 0161028b7c8a
("perf/core: Change the default paranoia level to 2") so this comment is
no longer true.
Signed-off-by: James Clark <james.clark@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20240802105256.335961-1-james.clark@linaro.org
|
|
Some uncore PMON registers are located in the MMIO space of the Host
Bridge and DRAM Controller device, which is located at D0:F0 for
Tiger Lake and later client generation.
Use D0:F0 as a default device. So it doesn't need to keep adding the
complete Device ID list for each generation anymore.
Signed-off-by: Zhenyu Wang <zhenyuw@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lore.kernel.org/r/20240731141353.759643-5-kan.liang@linux.intel.com
|