Age | Commit message (Collapse) | Author |
|
A future user of the matrix allocator, does not know the size of the matrix
bitmaps at compile time.
To avoid wasting memory on unnecessary large bitmaps, size the bitmap at
matrix allocation time.
Signed-off-by: Björn Töpel <bjorn@rivosinc.com>
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240222094006.1030709-11-apatel@ventanamicro.com
|
|
Now that vmx->req_immediate_exit is used only in the scope of
vmx_vcpu_run(), use force_immediate_exit to detect that KVM should usurp
the VMX preemption to force a VM-Exit and let vendor code fully handle
forcing a VM-Exit.
Opportunsitically drop __kvm_request_immediate_exit() and just have
vendor code call smp_send_reschedule() directly. SVM already does this
when injecting an event while also trying to single-step an IRET, i.e.
it's not exactly secret knowledge that KVM uses a reschedule IPI to force
an exit.
Link: https://lore.kernel.org/r/20240110012705.506918-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Annotate the kvm_entry() tracepoint with "immediate exit" when KVM is
forcing a VM-Exit immediately after VM-Enter, e.g. when KVM wants to
inject an event but needs to first complete some other operation.
Knowing that KVM is (or isn't) forcing an exit is useful information when
debugging issues related to event injection.
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20240110012705.506918-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Convert kvm_get_dr()'s output parameter to a return value, and clean up
most of the mess that was created by forcing callers to provide a pointer.
No functional change intended.
Acked-by: Mathias Krause <minipli@grsecurity.net>
Reviewed-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20240209220752.388160-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a VMX flag in /proc/cpuinfo, ept_5level, so that userspace can query
whether or not the CPU supports 5-level EPT paging. EPT capabilities are
enumerated via MSR, i.e. aren't accessible to userspace without help from
the kernel, and knowing whether or not 5-level EPT is supported is useful
for debug, triage, testing, etc.
For example, when EPT is enabled, bits 51:48 of guest physical addresses
are consumed by the CPU if and only if 5-level EPT is enabled. For CPUs
with MAXPHYADDR > 48, KVM *can't* map all legal guest memory without
5-level EPT, making 5-level EPT support valuable information for userspace.
Reported-by: Yi Lai <yi1.lai@intel.com>
Cc: Tao Su <tao1.su@linux.intel.com>
Cc: Xudong Hao <xudong.hao@intel.com>
Link: https://lore.kernel.org/r/20240110002340.485595-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Core-mm needs to be able to advance the pfn by an arbitrary amount, so
override the new pte_advance_pfn() API to do so.
Link: https://lkml.kernel.org/r/20240215103205.2607016-6-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit e56d28df2f66 ("x86/virt/tdx: Configure global KeyID on all
packages") causes a sparse warning:
arch/x86/virt/vmx/tdx/tdx.c:683:27: warning: incorrect type in argument 1 (different address spaces)
arch/x86/virt/vmx/tdx/tdx.c:683:27: expected void [noderef] __iomem *dst
arch/x86/virt/vmx/tdx/tdx.c:683:27: got void *
The reason is TDX must use the MOVDIR64B instruction to convert TDX
private memory (which is normal RAM but not MMIO) back to normal. The
TDX code uses existing movdir64b() helper to do that, but the first
argument @dst of movdir64b() is annotated with __iomem.
When movdir64b() was firstly introduced in commit 0888e1030d3e
("x86/asm: Carve out a generic movdir64b() helper for general usage"),
it didn't have the __iomem annotation. But this commit also introduced
the same "incorrect type" sparse warning because the iosubmit_cmds512(),
which was the solo caller of movdir64b(), has the __iomem annotation.
This was later fixed by commit 6ae58d871319 ("x86/asm: Annotate
movdir64b()'s dst argument with __iomem"). That fix was reasonable
because until TDX code the movdir64b() was only used to move data to
MMIO location, as described by the commit message:
... The current usages send a 64-bytes command descriptor to an MMIO
location (portal) on a device for consumption. When future usages for
the MOVDIR64B instruction warrant a separate variant of a memory to
memory operation, the argument annotation can be revisited.
Now TDX code uses MOVDIR64B to move data to normal memory so it's time
to revisit.
The SDM says the destination of MOVDIR64B is "memory location specified
in a general register", thus it's more reasonable that movdir64b() does
not have the __iomem annotation on the @dst.
Remove the __iomem annotation from the @dst argument of movdir64b() to
fix the sparse warning in TDX code. Similar to memset_io(), introduce a
new movdir64b_io() to cover the case where the destination is an MMIO
location, and change the solo caller iosubmit_cmds512() to use the new
movdir64b_io().
In movdir64b_io() explicitly use __force in the type casting otherwise
there will be below sparse warning:
warning: cast removes address space '__iomem' of expression
[ dhansen: normal changelog tweaks ]
Closes: https://lore.kernel.org/oe-kbuild-all/202312311924.tGjsBIQD-lkp@intel.com/
Fixes: e56d28df2f66 ("x86/virt/tdx: Configure global KeyID on all packages")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/all/20240126023852.11065-1-kai.huang%40intel.com
|
|
Have ptdump_check_wx() return true when the check is successful or false
otherwise.
[akpm@linux-foundation.org: fix a couple of build issues (x86_64 allmodconfig)]
Link: https://lkml.kernel.org/r/7943149fe955458cb7b57cd483bf41a3aad94684.1706610398.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Aneesh Kumar K.V (IBM)" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Greg KH <greg@kroah.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Phong Tran <tranmanphong@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Steven Price <steven.price@arm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
All architectures using the core ptdump functionality also implement
CONFIG_DEBUG_WX, and they all do it more or less the same way, with a
function called debug_checkwx() that is called by mark_rodata_ro(), which
is a substitute to ptdump_check_wx() when CONFIG_DEBUG_WX is set and a
no-op otherwise.
Refactor by centrally defining debug_checkwx() in linux/ptdump.h and call
debug_checkwx() immediately after calling mark_rodata_ro() instead of
calling it at the end of every mark_rodata_ro().
On x86_32, mark_rodata_ro() first checks __supported_pte_mask has _PAGE_NX
before calling debug_checkwx(). Now the check is inside the callee
ptdump_walk_pgd_level_checkwx().
On powerpc_64, mark_rodata_ro() bails out early before calling
ptdump_check_wx() when the MMU doesn't have KERNEL_RO feature. The check
is now also done in ptdump_check_wx() as it is called outside
mark_rodata_ro().
Link: https://lkml.kernel.org/r/a59b102d7964261d31ead0316a9f18628e4e7a8e.1706610398.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Aneesh Kumar K.V (IBM)" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Greg KH <greg@kroah.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Phong Tran <tranmanphong@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Steven Price <steven.price@arm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The argument is unused since commit 3d28ebceaffa ("x86/mm: Rework lazy
TLB to track the actual loaded mm"), delete it.
Link: https://lkml.kernel.org/r/20240126080644.1714297-1-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If the guest does not explicitly set the GPA of vcpu_info structure in
memory then, for guests with 32 vCPUs or fewer, the vcpu_info embedded
in the shared_info page may be used. As described in a previous commit,
the shared_info page is an overlay at a fixed HVA within the VMM, so in
this case it also more optimal to activate the vcpu_info cache with a
fixed HVA to avoid unnecessary invalidation if the guest memory layout
is modified.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20240215152916.1158-14-paul@xen.org
[sean: use kvm_gpc_is_{gpa,hva}_active()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
The shared_info page is not guest memory as such. It is a dedicated page
allocated by the VMM and overlaid onto guest memory in a GFN chosen by the
guest and specified in the XENMEM_add_to_physmap hypercall. The guest may
even request that shared_info be moved from one GFN to another by
re-issuing that hypercall, but the HVA is never going to change.
Because the shared_info page is an overlay the memory slots need to be
updated in response to the hypercall. However, memory slot adjustment is
not atomic and, whilst all vCPUs are paused, there is still the possibility
that events may be delivered (which requires the shared_info page to be
updated) whilst the shared_info GPA is absent. The HVA is never absent
though, so it makes much more sense to use that as the basis for the
kernel's mapping.
Hence add a new KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA attribute type for this
purpose and a KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA flag to advertize its
availability. Don't actually advertize it yet though. That will be done in
a subsequent patch, which will also add tests for the new attribute type.
Also update the KVM API documentation with the new attribute and also fix
it up to consistently refer to 'shared_info' (with the underscore).
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20240215152916.1158-13-paul@xen.org
[sean: store "hva" as a user pointer, use kvm_gpc_is_{gpa,hva}_active()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Daniel Borkmann says:
====================
pull-request: bpf 2024-02-22
The following pull-request contains BPF updates for your *net* tree.
We've added 11 non-merge commits during the last 24 day(s) which contain
a total of 15 files changed, 217 insertions(+), 17 deletions(-).
The main changes are:
1) Fix a syzkaller-triggered oops when attempting to read the vsyscall
page through bpf_probe_read_kernel and friends, from Hou Tao.
2) Fix a kernel panic due to uninitialized iter position pointer in
bpf_iter_task, from Yafang Shao.
3) Fix a race between bpf_timer_cancel_and_free and bpf_timer_cancel,
from Martin KaFai Lau.
4) Fix a xsk warning in skb_add_rx_frag() (under CONFIG_DEBUG_NET)
due to incorrect truesize accounting, from Sebastian Andrzej Siewior.
5) Fix a NULL pointer dereference in sk_psock_verdict_data_ready,
from Shigeru Yoshida.
6) Fix a resolve_btfids warning when bpf_cpumask symbol cannot be
resolved, from Hari Bathini.
bpf-for-netdev
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
bpf, sockmap: Fix NULL pointer dereference in sk_psock_verdict_data_ready()
selftests/bpf: Add negtive test cases for task iter
bpf: Fix an issue due to uninitialized bpf_iter_task
selftests/bpf: Test racing between bpf_timer_cancel_and_free and bpf_timer_cancel
bpf: Fix racing between bpf_timer_cancel_and_free and bpf_timer_cancel
selftest/bpf: Test the read of vsyscall page under x86-64
x86/mm: Disallow vsyscall page read for copy_from_kernel_nofault()
x86/mm: Move is_vsyscall_vaddr() into asm/vsyscall.h
bpf, scripts: Correct GPL license name
xsk: Add truesize to skb_add_rx_frag().
bpf: Fix warning for bpf_cpumask in verifier
====================
Link: https://lore.kernel.org/r/20240221231826.1404-1-daniel@iogearbox.net
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
The VERW mitigation at exit-to-user is enabled via a static branch
mds_user_clear. This static branch is never toggled after boot, and can
be safely replaced with an ALTERNATIVE() which is convenient to use in
asm.
Switch to ALTERNATIVE() to use the VERW mitigation late in exit-to-user
path. Also remove the now redundant VERW in exc_nmi() and
arch_exit_to_user_mode().
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20240213-delay-verw-v8-4-a6216d83edb7%40linux.intel.com
|
|
MDS mitigation requires clearing the CPU buffers before returning to
user. This needs to be done late in the exit-to-user path. Current
location of VERW leaves a possibility of kernel data ending up in CPU
buffers for memory accesses done after VERW such as:
1. Kernel data accessed by an NMI between VERW and return-to-user can
remain in CPU buffers since NMI returning to kernel does not
execute VERW to clear CPU buffers.
2. Alyssa reported that after VERW is executed,
CONFIG_GCC_PLUGIN_STACKLEAK=y scrubs the stack used by a system
call. Memory accesses during stack scrubbing can move kernel stack
contents into CPU buffers.
3. When caller saved registers are restored after a return from
function executing VERW, the kernel stack accesses can remain in
CPU buffers(since they occur after VERW).
To fix this VERW needs to be moved very late in exit-to-user path.
In preparation for moving VERW to entry/exit asm code, create macros
that can be used in asm. Also make VERW patching depend on a new feature
flag X86_FEATURE_CLEAR_CPU_BUF.
Reported-by: Alyssa Milburn <alyssa.milburn@intel.com>
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20240213-delay-verw-v8-1-a6216d83edb7%40linux.intel.com
|
|
resctrl reads rdt_alloc_capable or rdt_mon_capable to determine whether any of
the resources support the corresponding features. resctrl also uses the
static keys that affect the architecture's context-switch code to determine the
same thing.
This forces another architecture to have the same static keys.
As the static key is enabled based on the capable flag, and none of the
filesystem uses of these are in the scheduler path, move the capable flags
behind helpers, and use these in the filesystem code instead of the static key.
After this change, only the architecture code manages and uses the static keys
to ensure __resctrl_sched_in() does not need runtime checks.
This avoids multiple architectures having to define the same static keys.
Cases where the static key implicitly tested if the resctrl filesystem was
mounted all have an explicit check now.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-20-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
rdt_enable_key is switched when resctrl is mounted. It was also previously used
to prevent a second mount of the filesystem.
Any other architecture that wants to support resctrl has to provide identical
static keys.
Now that there are helpers for enabling and disabling the alloc/mon keys,
resctrl doesn't need to switch this extra key, it can be done by the arch code.
Use the static-key increment and decrement helpers, and change resctrl to
ensure the calls are balanced.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-19-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
resctrl enables three static keys depending on the features it has enabled.
Another architecture's context switch code may look different, any static keys
that control it should be buried behind helpers.
Move the alloc/mon logic into arch-specific helpers as a preparatory step for
making the rdt_enable_key's status something the arch code decides.
This means other architectures don't have to mirror the static keys.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-18-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
Depending on the number of monitors available, Arm's MPAM may need to
allocate a monitor prior to reading the counter value. Allocating a
contended resource may involve sleeping.
__check_limbo() and mon_event_count() each make multiple calls to
resctrl_arch_rmid_read(), to avoid extra work on contended systems,
the allocation should be valid for multiple invocations of
resctrl_arch_rmid_read().
The memory or hardware allocated is not specific to a domain.
Add arch hooks for this allocation, which need calling before
resctrl_arch_rmid_read(). The allocated monitor is passed to
resctrl_arch_rmid_read(), then freed again afterwards. The helper
can be called on any CPU, and can sleep.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-16-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
When switching tasks, the CLOSID and RMID that the new task should use
are stored in struct task_struct. For x86 the CLOSID known by resctrl,
the value in task_struct, and the value written to the CPU register are
all the same thing.
MPAM's CPU interface has two different PARTIDs - one for data accesses
the other for instruction fetch. Storing resctrl's CLOSID value in
struct task_struct implies the arch code knows whether resctrl is using
CDP.
Move the matching and setting of the struct task_struct properties to
use helpers. This allows arm64 to store the hardware format of the
register, instead of having to convert it each time.
__rdtgroup_move_task()s use of READ_ONCE()/WRITE_ONCE() ensures torn
values aren't seen as another CPU may schedule the task being moved
while the value is being changed. MPAM has an additional corner-case
here as the PMG bits extend the PARTID space.
If the scheduler sees a new-CLOSID but old-RMID, the task will dirty an
RMID that the limbo code is not watching causing an inaccurate count.
x86's RMID are independent values, so the limbo code will still be
watching the old-RMID in this circumstance.
To avoid this, arm64 needs both the CLOSID/RMID WRITE_ONCE()d together.
Both values must be provided together.
Because MPAM's RMID values are not unique, the CLOSID must be provided
when matching the RMID.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-12-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
x86 systems identify traffic using the CLOSID and RMID. The CLOSID is
used to lookup the control policy, the RMID is used for monitoring. For
x86 these are independent numbers.
Arm's MPAM has equivalent features PARTID and PMG, where the PARTID is
used to lookup the control policy. The PMG in contrast is a small number
of bits that are used to subdivide PARTID when monitoring. The
cache-occupancy monitors require the PARTID to be specified when
monitoring.
This means MPAM's PMG field is not unique. There are multiple PMG-0, one
per allocated CLOSID/PARTID. If PMG is treated as equivalent to RMID, it
cannot be allocated as an independent number. Bitmaps like rmid_busy_llc
need to be sized by the number of unique entries for this resource.
Treat the combined CLOSID and RMID as an index, and provide architecture
helpers to pack and unpack an index. This makes the MPAM values unique.
The domain's rmid_busy_llc and rmid_ptrs[] are then sized by index, as
are domain mbm_local[] and mbm_total[].
x86 can ignore the CLOSID field when packing and unpacking an index, and
report as many indexes as RMID.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-7-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
x86's RMID are independent of the CLOSID. An RMID can be allocated,
used and freed without considering the CLOSID.
MPAM's equivalent feature is PMG, which is not an independent number,
it extends the CLOSID/PARTID space. For MPAM, only PMG-bits worth of
'RMID' can be allocated for a single CLOSID.
i.e. if there is 1 bit of PMG space, then each CLOSID can have two
monitor groups.
To allow resctrl to disambiguate RMID values for different CLOSID,
everything in resctrl that keeps an RMID value needs to know the CLOSID
too. This will always be ignored on x86.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com> # arm64
Link: https://lore.kernel.org/r/20240213184438.16675-6-james.morse@arm.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
Now that __num_cores_per_package and __num_threads_per_package are
available, cpuinfo::x86_max_cores and the related math all over the place
can be replaced with the ready to consume data.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210253.176147806@linutronix.de
|
|
Move is_vsyscall_vaddr() into asm/vsyscall.h to make it available for
copy_from_kernel_nofault_allowed() in arch/x86/mm/maccess.c.
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20240202103935.3154011-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Expose properly accounted information and accessors so the fiddling with
other topology variables can be replaced.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210253.120958987@linutronix.de
|
|
The plural of die is dies.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210253.065874205@linutronix.de
|
|
It's really a non-intuitive name. Rename it to __max_threads_per_core which
is obvious.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210253.011307973@linutronix.de
|
|
Replace the logical package and die management functionality and retrieve
the logical IDs from the topology bitmaps.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.901865302@linutronix.de
|
|
With the topology bitmaps in place the logical package and die IDs can
trivially be retrieved by determining the bitmap weight of the relevant
topology domain level up to and including the physical ID in question.
Provide a function to that effect.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.846136196@linutronix.de
|
|
Now that all possible APIC IDs are tracked in the topology bitmaps, its
trivial to retrieve the real information from there.
This gets rid of the guesstimates for the maximal packages and dies per
package as the actual numbers can be determined before a single AP has been
brought up.
The number of SMT threads can now be determined correctly from the bitmaps
in all situations. Up to now a system which has SMT disabled in the BIOS
will still claim that it is SMT capable, because the lowest APIC ID bit is
reserved for that and CPUID leaf 0xb/0x1f still enumerates the SMT domain
accordingly. By calculating the bitmap weights of the SMT and the CORE
domain and setting them into relation the SMT disabled in BIOS situation
reports correctly that the system is not SMT capable.
It also handles the situation correctly when a hybrid systems boot CPU does
not have SMT as it takes the SMT capability of the APs fully into account.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.681709880@linutronix.de
|
|
Managing possible CPUs is an unreadable and uncomprehensible maze. Aside of
that it's backwards because it applies command line limits after
registering all APICs.
Rewrite it so that it:
- Applies the command line limits upfront so that only the allowed amount
of APIC IDs can be registered.
- Applies eventual late restrictions in an understandable way
- Uses simple min_t() calculations which are trivial to follow.
- Provides a separate function for resetting to UP mode late in the
bringup process.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.290098853@linutronix.de
|
|
Now that all external fiddling with num_processors and disabled_cpus is
gone, move the last user prefill_possible_map() into the topology code too
and remove the global visibility of these variables.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210251.994756960@linutronix.de
|
|
Aside of switching over to the new interface, record the number of
registered CPUs locally, which allows to make num_processors and
disabled_cpus confined to the topology code.
No functional change intended.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210251.830955273@linutronix.de
|
|
generic_processor_info() aside of being a complete misnomer is used for
both early boot registration and ACPI CPU hotplug.
While it's arguable that this can share some code, it results in code which
is hard to understand and kept around post init for no real reason.
Also the call sites do lots of manual fiddling in topology related
variables instead of having proper interfaces for the purpose which handle
the topology internals correctly.
Provide topology_register_apic(), topology_hotplug_apic() and
topology_hotunplug_apic() which have the extra magic of the call sites
incorporated and for now are wrappers around generic_processor_info().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210251.605007456@linutronix.de
|
|
The APIC/CPU registration sits in the middle of the APIC code. In fact this
is a topology evaluation function and has nothing to do with the inner
workings of the local APIC.
Move it out into a file which reflects what this is about.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210251.543948812@linutronix.de
|
|
The ACPI ID for CPUs is preset with U32_MAX which is completely non
obvious. Use a proper define for it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154640.177504138@linutronix.de
|
|
Paranoia is not wrong, but having an APIC callback which is in most
implementations a complete NOOP and in one actually looking whether the
APICID of an upcoming CPU has been registered. The same APICID which was
used to bring the CPU out of wait for startup.
That's paranoia for the paranoia sake. Remove the voodoo.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154640.116510935@linutronix.de
|
|
There is absolutely no point to write the APIC ID which was read from the
local APIC earlier, back into the local APIC for the 64-bit UP case.
Remove that along with the apic callback which is solely there for this
pointless exercise.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154640.055288922@linutronix.de
|
|
physid_t is a wrapper around bitmap. Just remove the onion layer and use
bitmap functionality directly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154639.994904510@linutronix.de
|
|
There is no reason to have the early mptable evaluation conditionally
invoked only from the AMD numa topology code.
Make it explicit and invoke it from setup_arch() right after the
corresponding ACPI init call. Remove the pointless wrapper and invoke
x86_init::mpparse::early_parse_smp_config() directly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154639.931761608@linutronix.de
|
|
Now that all platforms have the new split SMP configuration callbacks set
up, flip the switch and remove the old callback pointer and mop up the
platform code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154639.870883080@linutronix.de
|
|
x86_dtb_init() is a misnomer and it really should be used as a SMP
configuration parser which is selected by the platform via
x86_init::mpparse:parse_smp_config().
Rename it to x86_dtb_parse_smp_config() in preparation for that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154639.495992801@linutronix.de
|
|
In preparation of splitting the get_smp_config() callback, rename
default_get_smp_config() to mpparse_get_smp_config() and provide an early
and late wrapper.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154639.433811243@linutronix.de
|
|
The early argument of x86_init::mpparse::get_smp_config() is more than
confusing. Provide two callbacks, one for each purpose.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154639.370491894@linutronix.de
|
|
MPTABLE is no longer the default SMP configuration mechanism. Rename it to
mpparse_find_mptable() because that's what it does.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154639.306287711@linutronix.de
|
|
No more users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154639.243307499@linutronix.de
|
|
Yet another set_bit() operation wrapped in oring a mask.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154638.995080989@linutronix.de
|
|
There is no point to do that. The ATOMs have an XAPIC for which this
function is a pointless exercise.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154638.931617775@linutronix.de
|
|
Detect all possible combinations of mismatch right in the CPUID evaluation
code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154638.867699078@linutronix.de
|
|
The package shift has been already evaluated by the early CPU init.
Put the mindless copy right next to the original leaf 0xb parser.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153625.637385562@linutronix.de
|