Age | Commit message (Collapse) | Author |
|
The CPUID(0x2) descriptors iterator has been renamed from:
for_each_leaf_0x2_entry()
to:
for_each_cpuid_0x2_desc()
since it iterates over CPUID(0x2) cache and TLB "descriptors", not
"entries".
In the macro's x86/cacheinfo call-site, rename the parameter denoting the
parsed descriptor at each iteration from 'entry' to 'desc'.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: x86-cpuid@lists.linux.dev
Link: https://lore.kernel.org/r/20250508150240.172915-7-darwi@linutronix.de
|
|
Rename the CPUID(0x2) register accessor function:
cpuid_get_leaf_0x2_regs(regs)
to:
cpuid_leaf_0x2(regs)
for consistency with other <cpuid/api.h> accessors that return full CPUID
registers outputs like:
cpuid_leaf(regs)
cpuid_subleaf(regs)
In the same vein, rename the CPUID(0x2) iteration macro:
for_each_leaf_0x2_entry()
to:
for_each_cpuid_0x2_desc()
to include "cpuid" in the macro name, and since what is iterated upon is
CPUID(0x2) cache and TLB "descriptos", not "entries". Prefix an
underscore to that iterator macro parameters, so that the newly renamed
'desc' parameter do not get mixed with "union leaf_0x2_regs :: desc[]" in
the macro's implementation.
Adjust all the affected call-sites accordingly.
While at it, use "CPUID(0x2)" instead of "CPUID leaf 0x2" as this is the
recommended style.
No change in functionality intended.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: x86-cpuid@lists.linux.dev
Link: https://lore.kernel.org/r/20250508150240.172915-6-darwi@linutronix.de
|
|
The main CPUID header <asm/cpuid.h> was originally a storefront for the
headers:
<asm/cpuid/api.h>
<asm/cpuid/leaf_0x2_api.h>
Now that the latter CPUID(0x2) header has been merged into the former,
there is no practical difference between <asm/cpuid.h> and
<asm/cpuid/api.h>.
Migrate all users to the <asm/cpuid/api.h> header, in preparation of
the removal of <asm/cpuid.h>.
Don't remove <asm/cpuid.h> just yet, in case some new code in -next
started using it.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: x86-cpuid@lists.linux.dev
Link: https://lore.kernel.org/r/20250508150240.172915-3-darwi@linutronix.de
|
|
Collect AMD specific platform header files in <asm/amd/*.h>.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mario Limonciello <superm1@kernel.org>
Link: https://lore.kernel.org/r/20250413084144.3746608-4-mingo@kernel.org
|
|
Reference header files using their canonical form <linux/cacheinfo.h>.
Standardize on CPUID(0xN), instead of CPUID(N), for all standard leaves.
This removes ambiguity and aligns them with their extended counterparts
like CPUID(0x8000001d).
References: 0dd09e215a39 ("x86/cacheinfo: Apply maintainer-tip coding style fixes")
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: John Ogness <john.ogness@linutronix.de>
Link: https://lore.kernel.org/r/20250411070401.1358760-3-darwi@linutronix.de
|
|
Complete the AMD CPUID(4) emulation logic, which uses CPUID(0x80000006)
for L2/L3 cache info and an assocs[] associativity mapping array, by
adding entries for 3-way caches and 6-way caches.
Properly handle the case where CPUID(0x80000006) returns an L2/L3
associativity of 9. This is not real associativity, but a marker to
indicate that the respective L2/L3 cache information should be retrieved
from CPUID(0x8000001d) instead. If such a marker is encountered, return
early from legacy_amd_cpuid4(), thus effectively emulating an "invalid
index" CPUID(4) response with a cache type of zero.
When checking if CPUID(0x80000006) L2/L3 cache info output is valid, and
given the associtivity marker 9 above, do not just check if the whole
ECX/EDX register is zero. Rather, check if the associativity is zero or
9. An associativity of zero implies no L2/L3 cache, which make it the
more correct check anyway vs. a zero check of the whole output register.
Fixes: a326e948c538 ("x86, cacheinfo: Fixup L3 cache information for AMD multi-node processors")
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: x86-cpuid@lists.linux.dev
Link: https://lore.kernel.org/r/20250409122233.1058601-3-darwi@linutronix.de
|
|
For the AMD CPUID(4) emulation cache info logic, the same associativity
mapping array, assocs[], is used for both CPUID(0x80000005) and
CPUID(0x80000006).
This is incorrect since per the AMD manuals, the mappings for
CPUID(0x80000005) L1d/L1i associativity is:
n = 0x1 -> 0xfe n
n = 0xff fully associative
while assocs[] maps these values to:
n = 0x1, 0x2, 0x4 n
n = 0x3, 0x7, 0x9 0
n = 0x6 8
n = 0x8 16
n = 0xa 32
n = 0xb 48
n = 0xc 64
n = 0xd 96
n = 0xe 128
n = 0xf fully associative
which is only valid for CPUID(0x80000006).
Parse CPUID(0x80000005) L1d/L1i associativity values as shown in the AMD
manuals. Since the 0xffff literal is used to denote full associativity
at the AMD CPUID(4)-emulation logic, define AMD_CPUID4_FULLY_ASSOCIATIVE
for it instead of spreading that literal in more places.
Mark the assocs[] mapping array as only valid for CPUID(0x80000006) L2/L3
cache information.
Fixes: a326e948c538 ("x86, cacheinfo: Fixup L3 cache information for AMD multi-node processors")
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: x86-cpuid@lists.linux.dev
Link: https://lore.kernel.org/r/20250409122233.1058601-2-darwi@linutronix.de
|
|
The x86/cacheinfo code has been heavily refactored and fleshed out at
parent commits, where any necessary coding style fixes were also done
in place.
Apply Documentation/process/maintainer-tip.rst coding style fixes to the
rest of the code, and align its assignment expressions for readability.
Standardize on CPUID(n) when mentioning leaf queries.
Avoid breaking long lines when doing so helps readability.
At cacheinfo_amd_init_llc_id(), rename variable 'msb' to 'index_msb' as
this is how it's called at the rest of cacheinfo.c code.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-30-darwi@linutronix.de
|
|
Multiple code paths at cacheinfo.c and amd_nb.c check for AMD/Hygon CPUs
L3 cache presensce by directly checking leaf 0x80000006 EDX output.
Extract that logic into its own function. While at it, rework the
AMD/Hygon LLC topology ID caclculation comments for clarity.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-29-darwi@linutronix.de
|
|
The cache_type_map[] array is used to map Intel leaf 0x4 cache_type
values to their corresponding types at <linux/cacheinfo.h>.
Move that array's definition after the actual CPUID leaf 0x4 structures,
instead of having it in the middle of AMD leaf 0x4 emulation code.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-28-darwi@linutronix.de
|
|
The logic of not doing a cache flush if the CPU declares cache self
snooping support is repeated across the x86/cacheinfo code. Extract it
into its own function.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-27-darwi@linutronix.de
|
|
For Intel CPUID leaf 0x4 parsing, refactor the cache level topology ID
calculation code into its own method instead of repeating the same logic
twice for L2 and L3.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-26-darwi@linutronix.de
|
|
init_intel_cacheinfo() was overly complex. It parsed leaf 0x4 data,
leaf 0x2 data, and performed post-processing, all within one function.
Parent commit moved leaf 0x2 parsing and the post-processing logic into
their own functions.
Continue the refactoring by extracting leaf 0x4 parsing into its own
function. Initialize local L2/L3 topology ID variables to BAD_APICID by
default, thus ensuring they can be used unconditionally.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-25-darwi@linutronix.de
|
|
The logic of init_intel_cacheinfo() is quite convoluted: it mixes leaf
0x4 parsing, leaf 0x2 parsing, plus some post-processing, in a single
place.
Begin simplifying its logic by extracting the leaf 0x2 parsing code, and
the post-processing logic, into their own functions. While at it,
rework the SMT LLC topology ID comment for clarity.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-24-darwi@linutronix.de
|
|
CPUID leaf 0x2 output is a stream of one-byte descriptors, each implying
certain details about the CPU's cache and TLB entries.
At previous commits, the mapping tables for such descriptors were merged
into one consolidated table. The mapping was also transformed into a
hash lookup instead of a loop-based lookup for each descriptor.
Use the new consolidated table and its hash-based lookup through the
for_each_leaf_0x2_tlb_entry() accessor. Remove the old cache-specific
mapping, cache_table[], as it is no longer used.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-22-darwi@linutronix.de
|
|
The leaf 0x2 one-byte cache descriptor types:
CACHE_L1_INST
CACHE_L1_DATA
CACHE_L2
CACHE_L3
are just discriminators to be used within the cache_table[] mapping.
Their specific values are irrelevant.
Use enums for such types.
Make the enum packed and static assert that its values remain within a
single byte so that the cache_table[] array size do not go out of hand.
Use a __CHECKER__ guard for the static_assert(sizeof(enum) == 1) line as
sparse ignores the __packed annotation on enums.
This is similar to:
fe3944fb245a ("fs: Move enum rw_hint into a new header file")
for the core SCSI code.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/Z9rsTirs9lLfEPD9@lx-t490
Link: https://lore.kernel.org/r/20250324133324.23458-19-darwi@linutronix.de
|
|
CPUID leaf 0x2 output is a stream of one-byte descriptors, each implying
certain details about the CPU's cache and TLB entries.
Two separate tables exist for interpreting these descriptors: one for
TLBs at intel.c and one for caches at cacheinfo.c. These mapping tables
will be merged in further commits, among other improvements to their
model.
In preparation for this, use more descriptive type names for the leaf
0x2 descriptors associated with cpu caches. Namely:
LVL_1_INST => CACHE_L1_INST
LVL_1_DATA => CACHE_L1_DATA
LVL_2 => CACHE_L2
LVL_3 => CACHE_L3
After the TLB and cache descriptors mapping tables are merged, this will
make it clear that such descriptors correspond to cpu caches.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-18-darwi@linutronix.de
|
|
Parent commits decoupled amd_northbridge from _cpuid4_info_regs, moved
AMD L3 northbridge cache_disable_0/1 sysfs code to its own file, and
splitted AMD vs. Intel leaf 0x4 handling into:
amd_fill_cpuid4_info()
intel_fill_cpuid4_info()
fill_cpuid4_info()
After doing all that, the "_cpuid4_info_regs" name becomes a mouthful.
It is also not totally accurate, as the structure holds cpuid4 derived
information like cache node ID and size -- not just regs.
Rename struct _cpuid4_info_regs to _cpuid4_info. That new name also
better matches the AMD/Intel leaf 0x4 functions mentioned above.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-17-darwi@linutronix.de
|
|
The CPUID leaf 0x4 parsing code at cpuid4_cache_lookup_regs() is ugly and
convoluted. It is tangled with multiple nested conditions to handle:
* AMD with TOPEXT, or Hygon CPUs via leaf 0x8000001d
* Legacy AMD fallback via leaf 0x4 emulation
* Intel CPUs via the actual CPUID leaf 0x4
Moreover, AMD L3 northbridge initialization is also awkwardly placed
alongside the CPUID calls of the first two scenarios above. Refactor all
of that as follows:
* Update AMD's leaf 0x4 emulation comment to represent current state
* Clearly label the AMD leaf 0x4 emulation function as a fallback
* Split AMD/Hygon and Intel code paths into separate functions
* Move AMD L3 northbridge initialization out of CPUID leaf 0x4 code,
and into populate_cache_leaves() where it belongs. There,
ci_info_init() can directly store the initialized object in the
private pointer of the <linux/cacheinfo.h> API.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-16-darwi@linutronix.de
|
|
Parent commit decoupled amd_northbridge out of _cpuid4_info_regs, where
it was merely "parked" there until ci_info_init() can store it in the
private pointer of the <linux/cacheinfo.h> API.
Given that decoupling, move the AMD-specific L3 cache_disable_0/1 sysfs
code from the generic (and already extremely convoluted) x86/cacheinfo
code into its own file.
Compile the file only if CONFIG_AMD_NB and CONFIG_SYSFS are both
enabled, which mirrors the existing logic.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-14-darwi@linutronix.de
|
|
'struct _cpuid4_info_regs' is meant to hold the CPUID leaf 0x4
output registers (EAX, EBX, and ECX), as well as derived information
such as the cache node ID and size.
It also contains a reference to amd_northbridge, which is there only to
be "parked" until ci_info_init() can store it in the priv pointer of the
<linux/cacheinfo.h> API. That priv pointer is then used by AMD-specific
L3 cache_disable_0/1 sysfs attributes.
Decouple amd_northbridge from _cpuid4_info_regs and pass it explicitly
through the functions at x86/cacheinfo. Doing so clarifies when
amd_northbridge is actually needed (AMD-only code) and when it is
not (Intel-specific code). It also prepares for moving the AMD-specific
L3 cache_disable_0/1 sysfs code into its own file in next commit.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-13-darwi@linutronix.de
|
|
While gathering CPU cache info, CPUID leaf 0x8000001d is invoked in two
separate if blocks: one for Hygon CPUs and one for AMDs with topology
extensions. After each invocation, amd_init_l3_cache() is called.
Merge the two if blocks into a single condition, thus removing the
duplicated code. Future commits will expand these if blocks, so
combining them now is both cleaner and more maintainable.
Note, while at it, remove a useless "better error?" comment that was
within the same function since the 2005 commit e2cac78935ff ("[PATCH]
x86_64: When running cpuid4 need to run on the correct CPU").
Note, as previously done at commit aec28d852ed2 ("x86/cpuid: Standardize
on u32 in <asm/cpuid/api.h>"), standardize on using 'u32' and 'u8' types.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-12-darwi@linutronix.de
|
|
The cacheinfo code frequently uses the output registers from CPUID leaf
0x4. Such registers are cached in 'struct _cpuid4_info_regs', augmented
with related information, and are then passed across functions.
The naming of these _cpuid4_info_regs instances is confusing at best.
Some instances are called "this_leaf", which is vague as "this" lacks
context and "leaf" is overly generic given that other CPUID leaves are
also processed within cacheinfo. Other _cpuid4_info_regs instances are
just called "base", adding further ambiguity.
Standardize on id4 for all instances.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-11-darwi@linutronix.de
|
|
The ci_info_init() function initializes 10 members of a 'struct cacheinfo'
instance using passed data from CPUID leaf 0x4.
Such assignment expressions are difficult to read in their current form.
Align them for clarity.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-10-darwi@linutronix.de
|
|
_cpuid4_info_regs instances are passed through a large number of
functions at cacheinfo.c. For clarity, constify the instance parameters
where _cpuid4_info_regs is only read from.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-9-darwi@linutronix.de
|
|
The cacheinfo structure defined at <include/linux/cacheinfo.h> is a
generic cache info object representation.
Calling its instances at x86 cacheinfo.c "leaf" confuses it with a CPUID
leaf -- especially that multiple CPUID calls are already sprinkled across
that file. Most of such instances also have a redundant "this_" prefix.
Rename all of the cacheinfo "this_leaf" instances to just "ci".
[ darwi: Move into separate commit and write commit log ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-8-darwi@linutronix.de
|
|
amd_cpuid4()'s first parameter, "leaf", is not a CPUID leaf as the name
implies. Rather, it's an index emulating CPUID(4)'s subleaf semantics;
i.e. an ID for the cache object currently enumerated. Rename that
parameter to "index".
Apply minor coding style fixes to the rest of the function as well.
[ darwi: Move into a separate commit and write commit log.
Use "index" instead of "subleaf" for amd_cpuid4() first param,
as that's the name typically used at the whole of cacheinfo.c. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-7-darwi@linutronix.de
|
|
Extract the cache descriptor lookup logic out of the leaf 0x2 parsing
code and into a dedicated function. This disentangles such lookup from
the deeply nested leaf 0x2 parsing loop.
Remove the cache table termination entry, as it is no longer needed
after the ARRAY_SIZE()-based lookup.
[ darwi: Move refactoring logic into this separate commit + commit log.
Remove the cache table termination entry. ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-6-darwi@linutronix.de
|
|
Parent commit introduced CPUID leaf 0x2 parsing helpers at
<asm/cpuid/leaf_0x2_api.h>. The new API allows sharing leaf 0x2's output
validation and iteration logic across both intel.c and cacheinfo.c.
Convert cacheinfo.c to that new API.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-5-darwi@linutronix.de
|
|
Leaf 0x2 output includes a "query count" byte where it was supposed to
specify the number of repeated CPUID leaf 0x2 subleaf 0 queries needed to
extract all of the CPU's cache and TLB descriptors.
Per current Intel manuals, all CPUs supporting this leaf "will always"
return an iteration count of 1.
Remove the leaf 0x2 query loop and just query the hardware once.
Note, as previously done at commit aec28d852ed2 ("x86/cpuid: Standardize
on u32 in <asm/cpuid/api.h>"), standardize on using 'u32' and 'u8' types.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250324133324.23458-3-darwi@linutronix.de
|
|
Remove the headers at cacheinfo.c that are no longer required.
Alphabetically reorder what remains since more headers will be included
in further commits.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250304085152.51092-13-darwi@linutronix.de
|
|
Commit 851026a2bf54 ("x86/cacheinfo: Remove unused trace variable") removed
the switch case for LVL_TRACE but did not get rid of the surrounding gunk.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250304085152.51092-12-darwi@linutronix.de
|
|
CPUID leaf 0x2 emits one-byte descriptors in its four output registers
EAX, EBX, ECX, and EDX. For these descriptors to be valid, the most
significant bit (MSB) of each register must be clear.
The historical Git commit:
019361a20f016 ("- pre6: Intel: start to add Pentium IV specific stuff (128-byte cacheline etc)...")
introduced leaf 0x2 output parsing. It only validated the MSBs of EAX,
EBX, and ECX, but left EDX unchecked.
Validate EDX's most-significant bit.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250304085152.51092-2-darwi@linutronix.de
|
|
Linux remembers cpu_cachinfo::num_leaves per CPU, but x86 initializes all
CPUs from the same global "num_cache_leaves".
This is erroneous on systems such as Meteor Lake, where each CPU has a
distinct num_leaves value. Delete the global "num_cache_leaves" and
initialize num_leaves on each CPU.
init_cache_level() no longer needs to set num_leaves. Also, it never had to
set num_levels as it is unnecessary in x86. Keep checking for zero cache
leaves. Such condition indicates a bug.
[ bp: Cleanup. ]
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org # 6.3+
Link: https://lore.kernel.org/r/20241128002247.26726-3-ricardo.neri-calderon@linux.intel.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 MTRR update from Borislav Petkov:
- Relax the PAT MSR programming which was unnecessarily using the MTRR
programming protocol of disabling the cache around the changes. The
reason behind this is the current algorithm triggering a #VE
exception for TDX guests and unnecessarily complicating things
* tag 'x86_mtrr_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pat: Simplify the PAT programming protocol
|
|
The programming protocol for the PAT MSR follows the MTRR programming
protocol. However, this protocol is cumbersome and requires disabling
caching (CR0.CD=1), which is not possible on some platforms.
Specifically, a TDX guest is not allowed to set CR0.CD. It triggers
a #VE exception.
It turns out that the requirement to follow the MTRR programming
protocol for PAT programming is unnecessarily strict. The new Intel
Software Developer Manual (http://www.intel.com/sdm) (December 2023)
relaxes this requirement, please refer to the section titled
"Programming the PAT" for more information.
In short, this section provides an alternative PAT update sequence which
doesn't need to disable caches around the PAT update but only to flush
those caches and TLBs.
The AMD documentation does not link PAT programming to MTRR and is there
fore, fine too.
The kernel only needs to flush the TLB after updating the PAT MSR. The
set_memory code already takes care of flushing the TLB and cache when
changing the memory type of a page.
[ bp: Expand commit message. ]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20240124130650.496056-1-kirill.shutemov@linux.intel.com
|
|
Now that __num_cores_per_package and __num_threads_per_package are
available, cpuinfo::x86_max_cores and the related math all over the place
can be replaced with the ready to consume data.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210253.176147806@linutronix.de
|
|
AMD/HYGON uses various methods for topology evaluation:
- Leaf 0x80000008 and 0x8000001e based with an optional leaf 0xb,
which is the preferred variant for modern CPUs.
Leaf 0xb will be superseded by leaf 0x80000026 soon, which is just
another variant of the Intel 0x1f leaf for whatever reasons.
- Subleaf 0x80000008 and NODEID_MSR base
- Legacy fallback
That code is following the principle of random bits and pieces all over the
place which results in multiple evaluations and impenetrable code flows in
the same way as the Intel parsing did.
Provide a sane implementation by clearly separating the three variants and
bringing them in the proper preference order in one place.
This provides the parsing for both AMD and HYGON because there is no point
in having a separate HYGON parser which only differs by 3 lines of
code. Any further divergence between AMD and HYGON can be handled in
different functions, while still sharing the existing parsers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153625.020038641@linutronix.de
|
|
AMD (ab)uses topology_die_id() to store the Node ID information and
topology_max_dies_per_pkg to store the number of nodes per package.
This collides with the proper processor die level enumeration which is
coming on AMD with CPUID 8000_0026, unless there is a correlation between
the two. There is zero documentation about that.
So provide new storage and new accessors which for now still access die_id
and topology_max_die_per_pkg(). Will be mopped up after AMD and HYGON are
converted over.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153624.956116738@linutronix.de
|
|
The topology IDs which identify the LLC and L2 domains clearly belong to
the per CPU topology information.
Move them into cpuinfo_x86::cpuinfo_topo and get rid of the extra per CPU
data and the related exports.
This also paves the way to do proper topology evaluation during early boot
because it removes the only per CPU dependency for that.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.803864641@linutronix.de
|
|
Move the next member.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.388185134@linutronix.de
|
|
Rename it to pkg_id which is the terminology used in the kernel.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.329006989@linutronix.de
|
|
The topology related information is randomly scattered across cpuinfo_x86.
Create a new structure cpuinfo_topo and move in a first step initial_apicid
and apicid into it.
Aside of being better readable this is in preparation for replacing the
horribly fragile CPU topology evaluation code further down the road.
Consolidate APIC ID fields to u32 as that represents the hardware type.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.269787744@linutronix.de
|
|
cpu_callout_mask is used for the stop machine based MTRR/PAT init.
In preparation of moving the BP/AP synchronization to the core hotplug
code, use a private CPU mask for cacheinfo and manage it in the
starting/dying hotplug state.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205256.035041005@linutronix.de
|
|
15cd8812ab2c ("x86: Remove the CPU cache size printk's") removed the
last use of the trace local var. Remove it too and the useless trace
cache case.
No functional changes.
Reported-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230210234541.9694-1-bp@alien8.de
Link: http://lore.kernel.org/r/20220705073349.1512-1-jiapeng.chong@linux.alibaba.com
|
|
Instead of explicitly calling cache_ap_init() in
identify_secondary_cpu() use a CPU hotplug callback instead. By
registering the callback only after having started the non-boot CPUs
and initializing cache_aps_delayed_init with "true", calling
set_cache_aps_delayed_init() at boot time can be dropped.
It should be noted that this change results in cache_ap_init() being
called a little bit later when hotplugging CPUs. By using a new
hotplug slot right at the start of the low level bringup this is not
problematic, as no operations requiring a specific caching mode are
performed that early in CPU initialization.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-15-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Today, PAT is usable only with MTRR being active, with some nasty tweaks
to make PAT usable when running as a Xen PV guest which doesn't support
MTRR.
The reason for this coupling is that both PAT MSR changes and MTRR
changes require a similar sequence and so full PAT support was added
using the already available MTRR handling.
Xen PV PAT handling can work without MTRR, as it just needs to consume
the PAT MSR setting done by the hypervisor without the ability and need
to change it. This in turn has resulted in a convoluted initialization
sequence and wrong decisions regarding cache mode availability due to
misguiding PAT availability flags.
Fix all of that by allowing to use PAT without MTRR and by reworking
the current PAT initialization sequence to match better with the newly
introduced generic cache initialization.
This removes the need of the recently added pat_force_disabled flag, so
remove the remnants of the patch adding it.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-14-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Instead of having a stop_machine() handler for either a specific
MTRR register or all state at once, add a handler just for calling
cache_cpu_init() if appropriate.
Add functions for calling stop_machine() with this handler as well.
Add a generic replacement for mtrr_bp_restore() and a wrapper for
mtrr_bp_init().
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-13-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
In order to prepare decoupling MTRR and PAT replace the MTRR-specific
mtrr_aps_delayed_init flag with a more generic cache_aps_delayed_init
one.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-12-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Add a main cache_cpu_init() init routine which initializes MTRR and/or
PAT support depending on what has been detected on the system.
Leave the MTRR-specific initialization in a MTRR-specific init function
where the smp_changes_mask setting happens now with caches disabled.
This global mask update was done with caches enabled before probably
because atomic operations while running uncached might have been quite
expensive.
But since only systems with a broken BIOS should ever require to set any
bit in smp_changes_mask, hurting those devices with a penalty of a few
microseconds during boot shouldn't be a real issue.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221102074713.21493-8-jgross@suse.com
Signed-off-by: Borislav Petkov <bp@suse.de>
|