Age | Commit message (Collapse) | Author |
|
The hex values in CPU debug interface are not prefixed with 0x. This may
cause misinterpretation of values. Fix it.
[ mingo: Restore previous vertical alignment of the output. ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20241211-add-cpu-type-v5-1-2ae010f50370@linux.intel.com
|
|
On x86, topology_core_id() returns a unique core ID within the PKG
domain. Looking at match_smt() suggests that a core ID just needs to be
unique within a LLC domain. For use cases such as the core RAPL PMU,
there exists a need for a unique core ID across the entire system with
multiple PKG domains. Introduce topology_logical_core_id() to derive a
unique core ID across the system.
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Dhananjay Ugwekar <Dhananjay.Ugwekar@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: "Gautham R. Shenoy" <gautham.shenoy@amd.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Link: https://lore.kernel.org/r/20241115060805.447565-3-Dhananjay.Ugwekar@amd.com
|
|
Sometimes it is required to take actions based on if a CPU is a performance or
efficiency core. As an example, intel_pstate driver uses the Intel core-type
to determine CPU scaling. Also, some CPU vulnerabilities only affect
a specific CPU type, like RFDS only affects Intel Atom. Hybrid systems that
have variants P+E, P-only(Core) and E-only(Atom), it is not straightforward to
identify which variant is affected by a type specific vulnerability.
Such processors do have CPUID field that can uniquely identify them. Like,
P+E, P-only and E-only enumerates CPUID.1A.CORE_TYPE identification, while P+E
additionally enumerates CPUID.7.HYBRID. Based on this information, it is
possible for boot CPU to identify if a system has mixed CPU types.
Add a new field hw_cpu_type to struct cpuinfo_topology that stores the
hardware specific CPU type. This saves the overhead of IPIs to get the CPU
type of a different CPU. CPU type is populated early in the boot process,
before vulnerabilities are enumerated.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Co-developed-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20241025171459.1093-5-mario.limonciello@amd.com
|
|
Now that __num_cores_per_package and __num_threads_per_package are
available, cpuinfo::x86_max_cores and the related math all over the place
can be replaced with the ready to consume data.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210253.176147806@linutronix.de
|
|
It's really a non-intuitive name. Rename it to __max_threads_per_core which
is obvious.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210253.011307973@linutronix.de
|
|
Now that all possible APIC IDs are tracked in the topology bitmaps, its
trivial to retrieve the real information from there.
This gets rid of the guesstimates for the maximal packages and dies per
package as the actual numbers can be determined before a single AP has been
brought up.
The number of SMT threads can now be determined correctly from the bitmaps
in all situations. Up to now a system which has SMT disabled in the BIOS
will still claim that it is SMT capable, because the lowest APIC ID bit is
reserved for that and CPUID leaf 0xb/0x1f still enumerates the SMT domain
accordingly. By calculating the bitmap weights of the SMT and the CORE
domain and setting them into relation the SMT disabled in BIOS situation
reports correctly that the system is not SMT capable.
It also handles the situation correctly when a hybrid systems boot CPU does
not have SMT as it takes the SMT capability of the APs fully into account.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.681709880@linutronix.de
|
|
AMD/HYGON uses various methods for topology evaluation:
- Leaf 0x80000008 and 0x8000001e based with an optional leaf 0xb,
which is the preferred variant for modern CPUs.
Leaf 0xb will be superseded by leaf 0x80000026 soon, which is just
another variant of the Intel 0x1f leaf for whatever reasons.
- Subleaf 0x80000008 and NODEID_MSR base
- Legacy fallback
That code is following the principle of random bits and pieces all over the
place which results in multiple evaluations and impenetrable code flows in
the same way as the Intel parsing did.
Provide a sane implementation by clearly separating the three variants and
bringing them in the proper preference order in one place.
This provides the parsing for both AMD and HYGON because there is no point
in having a separate HYGON parser which only differs by 3 lines of
code. Any further divergence between AMD and HYGON can be handled in
different functions, while still sharing the existing parsers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153625.020038641@linutronix.de
|
|
Topology evaluation is a complete disaster and impenetrable mess. It's
scattered all over the place with some vendor implementations doing early
evaluation and some not. The most horrific part is the permanent
overwriting of smt_max_siblings and __max_die_per_package, instead of
establishing them once on the boot CPU and validating the result on the
APs.
The goals are:
- One topology evaluation entry point
- Proper sharing of pointlessly duplicated code
- Proper structuring of the evaluation logic and preferences.
- Evaluating important system wide information only once on the boot CPU
- Making the 0xb/0x1f leaf parsing less convoluted and actually fixing
the short comings of leaf 0x1f evaluation.
Start to consolidate the topology evaluation code by providing the entry
points for the early boot CPU evaluation and for the final parsing on the
boot CPU and the APs.
Move the trivial pieces into that new code:
- The initialization of cpuinfo_x86::topo
- The evaluation of CPUID leaf 1, which presets topo::initial_apicid
- topo_apicid is set to topo::initial_apicid when invoked from early
boot. When invoked for the final evaluation on the boot CPU it reads
the actual APIC ID, which makes apic_get_initial_apicid() obsolete
once everything is converted over.
Provide a temporary helper function topo_converted() which shields off the
not yet converted CPU vendors from invoking code which would break them.
This shielding covers all vendor CPUs which support SMP, but not the
historical pure UP ones as they only need the topology info init and
eventually the initial APIC initialization.
Provide two new members in cpuinfo_x86::topo to store the maximum number of
SMT siblings and the number of dies per package and add them to the debugfs
readout. These two members will be used to populate this information on the
boot CPU and to validate the APs against it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20240212153624.581436579@linutronix.de
|
|
Provide debug files which dump the topology related information of
cpuinfo_x86. This is useful to validate the upcoming conversion of the
topology evaluation for correctness or bug compatibility.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.353191313@linutronix.de
|