summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/setup_percpu.c
AgeCommit message (Collapse)Author
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-08treewide: make "nr_cpu_ids" unsignedAlexey Dobriyan
First, number of CPUs can't be negative number. Second, different signnnedness leads to suboptimal code in the following cases: 1) kmalloc(nr_cpu_ids * sizeof(X)); "int" has to be sign extended to size_t. 2) while (loff_t *pos < nr_cpu_ids) MOVSXD is 1 byte longed than the same MOV. Other cases exist as well. Basically compiler is told that nr_cpu_ids can't be negative which can't be deduced if it is "int". Code savings on allyesconfig kernel: -3KB add/remove: 0/0 grow/shrink: 25/264 up/down: 261/-3631 (-3370) function old new delta coretemp_cpu_online 450 512 +62 rcu_init_one 1234 1272 +38 pci_device_probe 374 399 +25 ... pgdat_reclaimable_pages 628 556 -72 select_fallback_rq 446 369 -77 task_numa_find_cpu 1923 1807 -116 Link: http://lkml.kernel.org/r/20170819114959.GA30580@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-29x86/percpu: Use static initializer for GDT entryThomas Gleixner
The IDT cleanup is about to remove pack_descriptor(). The GDT setup for the per-cpu storage can be achieved with the static initializer as well. Replace it. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20170828064957.954214927@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-09x86/boot/32: Fix UP boot on Quark and possibly other platformsAndy Lutomirski
This partially reverts commit: 23b2a4ddebdd17f ("x86/boot/32: Defer resyncing initial_page_table until per-cpu is set up") That commit had one definite bug and one potential bug. The definite bug is that setup_per_cpu_areas() uses a differnet generic implementation on UP kernels, so initial_page_table never got resynced. This was fine for access to percpu data (it's in the identity map on UP), but it breaks other users of initial_page_table. The potential bug is that helpers like efi_init() would be called before the tables were synced. Avoid both problems by just syncing the page tables in setup_arch() *and* setup_per_cpu_areas(). Reported-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Shevchenko <andy.shevchenko@gmail.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Garnier <thgarnie@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-23x86/boot/32: Defer resyncing initial_page_table until per-cpu is set upAndy Lutomirski
The x86 smpboot trampoline expects initial_page_table to have the GDT mapped. If the GDT ends up in a virtually mapped per-cpu page, then it won't be in the page tables at all until perc-pu areas are set up. The result will be a triple fault the first time that the CPU attempts to access the GDT after LGDT loads the perc-pu GDT. This appears to be an old bug, but somehow the GDT fixmap rework is triggering it. This seems to have something to do with the memory layout. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Garnier <thgarnie@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/a553264a5972c6a86f9b5caac237470a0c74a720.1490218061.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-16x86: Remap GDT tables in the fixmap sectionThomas Garnier
Each processor holds a GDT in its per-cpu structure. The sgdt instruction gives the base address of the current GDT. This address can be used to bypass KASLR memory randomization. With another bug, an attacker could target other per-cpu structures or deduce the base of the main memory section (PAGE_OFFSET). This patch relocates the GDT table for each processor inside the fixmap section. The space is reserved based on number of supported processors. For consistency, the remapping is done by default on 32 and 64-bit. Each processor switches to its remapped GDT at the end of initialization. For hibernation, the main processor returns with the original GDT and switches back to the remapping at completion. This patch was tested on both architectures. Hibernation and KVM were both tested specially for their usage of the GDT. Thanks to Boris Ostrovsky <boris.ostrovsky@oracle.com> for testing and recommending changes for Xen support. Signed-off-by: Thomas Garnier <thgarnie@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@suse.de> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Kosina <jikos@kernel.org> Cc: Joerg Roedel <joro@8bytes.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: Len Brown <len.brown@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Lorenzo Stoakes <lstoakes@gmail.com> Cc: Luis R . Rodriguez <mcgrof@kernel.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michal Hocko <mhocko@suse.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rafael J . Wysocki <rjw@rjwysocki.net> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: kasan-dev@googlegroups.com Cc: kernel-hardening@lists.openwall.com Cc: kvm@vger.kernel.org Cc: lguest@lists.ozlabs.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Cc: linux-pm@vger.kernel.org Cc: xen-devel@lists.xenproject.org Cc: zijun_hu <zijun_hu@htc.com> Link: http://lkml.kernel.org/r/20170314170508.100882-2-thgarnie@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-15x86/percpu: Remove unnecessary include of module.h, add asm/desc.hPaul Gortmaker
This was originally a part of commit 186f43608a5c: ("x86/kernel: Audit and remove any unnecessary uses of module.h") ...but without the asm/desc.h addition. As such, Ingo reported a build failure on i386 allnoconfig with SMP=y during his pre-merge testing. For expediency the chunk was just dropped at that time. The failure was as follows: arch/x86/kernel/setup_percpu.c: In function ‘setup_percpu_segment’: arch/x86/kernel/setup_percpu.c:159:2: error: implicit declaration of function ‘pack_descriptor’ [-Werror=implicit-function-declaration] arch/x86/kernel/setup_percpu.c:162:2: error: implicit declaration of function ‘write_gdt_entry’ [-Werror=implicit-function-declaration] arch/x86/kernel/setup_percpu.c:162:18: error: implicit declaration of function ‘get_cpu_gdt_table’ [-Werror=implicit-function-declaration] As pack_descriptor(), write_gdt_entry() and get_cpu_gdt_table() all live in the file arch/x86/include/asm/desc.h -- calling that header out explicitly should fix things. Reported-by: Ingo Molnar <mingo@redhat.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20161114190443.10873-1-paul.gortmaker@windriver.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-08Merge branch 'x86/mm' into x86/asm, to unify the two branches for simplicityIngo Molnar
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-08-18x86/dumpstack: Remove 64-byte gap at end of irq stackJosh Poimboeuf
There has been a 64-byte gap at the end of the irq stack for at least 12 years. It predates git history, and I can't find any good reason for it. Remove it. What's the worst that could happen? Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/14f9281c5475cc44af95945ea7546bff2e3836db.1471535549.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-08-10x86: Apply more __ro_after_init and constKees Cook
Guided by grsecurity's analogous __read_only markings in arch/x86, this applies several uses of __ro_after_init to structures that are only updated during __init, and const for some structures that are never updated. Additionally extends __init markings to some functions that are only used during __init, and cleans up some missing C99 style static initializers. Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brad Spengler <spender@grsecurity.net> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Brown <david.brown@linaro.org> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Emese Revfy <re.emese@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathias Krause <minipli@googlemail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: PaX Team <pageexec@freemail.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: kernel-hardening@lists.openwall.com Link: http://lkml.kernel.org/r/20160808232906.GA29731@www.outflux.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-07-25x86/acpi: store ACPI ids from MADT for future usageVitaly Kuznetsov
Currently we don't save ACPI ids (unlike LAPIC ids which go to x86_cpu_to_apicid) from MADT and we may need this information later. Particularly, ACPI ids is the only existent way for a PVHVM Xen guest to figure out Xen's idea of its vCPUs ids before these CPUs boot and in some cases these ids diverge from Linux's cpu ids. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2014-11-04x86: Convert a few more per-CPU items to read-mostly onesJan Beulich
Both this_cpu_off and cpu_info aren't getting modified post boot, yet are being accessed on enough code paths that grouping them with other frequently read items seems desirable. For cpu_info this at the same time implies removing the cache line alignment (which afaict became pointless when it got converted to per-CPU data years ago). Signed-off-by: Jan Beulich <jbeulich@suse.com> Link: http://lkml.kernel.org/r/54589BD20200007800044A84@mail.emea.novell.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-06-14x86: Add read_mostly declaration/definition to variables from smp.hVlad Zolotarov
Add "read-mostly" qualifier to the following variables in smp.h: - cpu_sibling_map - cpu_core_map - cpu_llc_shared_map - cpu_llc_id - cpu_number - x86_cpu_to_apicid - x86_bios_cpu_apicid - x86_cpu_to_logical_apicid As long as all the variables above are only written during the initialization, this change is meant to prevent the false sharing. More specifically, on vSMP Foundation platform x86_cpu_to_apicid shared the same internode_cache_line with frequently written lapic_events. From the analysis of the first 33 per_cpu variables out of 219 (memories they describe, to be more specific) the 8 have read_mostly nature (tlb_vector_offset, cpu_loops_per_jiffy, xen_debug_irq, etc.) and 25 are frequently written (irq_stack_union, gdt_page, exception_stacks, idt_desc, etc.). Assuming that the spread of the rest of the per_cpu variables is similar, identifying the read mostly memories will make more sense in terms of long-term code maintenance comparing to identifying frequently written memories. Signed-off-by: Vlad Zolotarov <vlad@scalemp.com> Acked-by: Shai Fultheim <shai@scalemp.com> Cc: Shai Fultheim (Shai@ScaleMP.com) <Shai@scalemp.com> Cc: ido@wizery.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1719258.EYKzE4Zbq5@vlad Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-05-08percpu, x86: don't use PMD_SIZE as embedded atom_size on 32bitTejun Heo
With the embed percpu first chunk allocator, x86 uses either PAGE_SIZE or PMD_SIZE for atom_size. PMD_SIZE is used when CPU supports PSE so that percpu areas are aligned to PMD mappings and possibly allow using PMD mappings in vmalloc areas in the future. Using larger atom_size doesn't waste actual memory; however, it does require larger vmalloc space allocation later on for !first chunks. With reasonably sized vmalloc area, PMD_SIZE shouldn't be a problem but x86_32 at this point is anything but reasonable in terms of address space and using larger atom_size reportedly leads to frequent percpu allocation failures on certain setups. As there is no reason to not use PMD_SIZE on x86_64 as vmalloc space is aplenty and most x86_64 configurations support PSE, fix the issue by always using PMD_SIZE on x86_64 and PAGE_SIZE on x86_32. v2: drop cpu_has_pse test and make x86_64 always use PMD_SIZE and x86_32 PAGE_SIZE as suggested by hpa. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Yanmin Zhang <yanmin.zhang@intel.com> Reported-by: ShuoX Liu <shuox.liu@intel.com> Acked-by: H. Peter Anvin <hpa@zytor.com> LKML-Reference: <4F97BA98.6010001@intel.com> Cc: stable@vger.kernel.org
2011-01-28x86: Unify CPU -> NUMA node mapping between 32 and 64bitTejun Heo
Unlike 64bit, 32bit has been using its own cpu_to_node_map[] for CPU -> NUMA node mapping. Replace it with early_percpu variable x86_cpu_to_node_map and share the mapping code with 64bit. * USE_PERCPU_NUMA_NODE_ID is now enabled for 32bit too. * x86_cpu_to_node_map and numa_set/clear_node() are moved from numa_64 to numa. For now, on 32bit, x86_cpu_to_node_map is initialized with 0 instead of NUMA_NO_NODE. This is to avoid introducing unexpected behavior change and will be updated once init path is unified. * srat_detect_node() is now enabled for x86_32 too. It calls numa_set_node() and initializes the mapping making explicit cpu_to_node_map[] updates from map/unmap_cpu_to_node() unnecessary. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: eric.dumazet@gmail.com Cc: yinghai@kernel.org Cc: brgerst@gmail.com Cc: gorcunov@gmail.com Cc: penberg@kernel.org Cc: shaohui.zheng@intel.com Cc: rientjes@google.com LKML-Reference: <1295789862-25482-15-git-send-email-tj@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu> Cc: David Rientjes <rientjes@google.com>
2011-01-28x86: Replace cpu_2_logical_apicid[] with early percpu variableTejun Heo
Unlike x86_64, on x86_32, the mapping from cpu to logical apicid may vary depending on apic in use. cpu_2_logical_apicid[] array is used for this mapping. Replace it with early percpu variable x86_cpu_to_logical_apicid to make it better aligned with other mappings. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: eric.dumazet@gmail.com Cc: yinghai@kernel.org Cc: brgerst@gmail.com Cc: gorcunov@gmail.com Cc: penberg@kernel.org Cc: shaohui.zheng@intel.com Cc: rientjes@google.com LKML-Reference: <1295789862-25482-5-git-send-email-tj@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-10-21Merge branch 'core-memblock-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'core-memblock-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (74 commits) x86-64: Only set max_pfn_mapped to 512 MiB if we enter via head_64.S xen: Cope with unmapped pages when initializing kernel pagetable memblock, bootmem: Round pfn properly for memory and reserved regions memblock: Annotate memblock functions with __init_memblock memblock: Allow memblock_init to be called early memblock/arm: Fix memblock_region_is_memory() typo x86, memblock: Remove __memblock_x86_find_in_range_size() memblock: Fix wraparound in find_region() x86-32, memblock: Make add_highpages honor early reserved ranges x86, memblock: Fix crashkernel allocation arm, memblock: Fix the sparsemem build memblock: Fix section mismatch warnings powerpc, memblock: Fix memblock API change fallout memblock, microblaze: Fix memblock API change fallout x86: Remove old bootmem code x86, memblock: Use memblock_memory_size()/memblock_free_memory_size() to get correct dma_reserve x86: Remove not used early_res code x86, memblock: Replace e820_/_early string with memblock_ x86: Use memblock to replace early_res x86, memblock: Use memblock_debug to control debug message print out ... Fix up trivial conflicts in arch/x86/kernel/setup.c and kernel/Makefile
2010-08-27x86: Use memblock to replace early_resYinghai Lu
1. replace find_e820_area with memblock_find_in_range 2. replace reserve_early with memblock_x86_reserve_range 3. replace free_early with memblock_x86_free_range. 4. NO_BOOTMEM will switch to use memblock too. 5. use _e820, _early wrap in the patch, in following patch, will replace them all 6. because memblock_x86_free_range support partial free, we can remove some special care 7. Need to make sure that memblock_find_in_range() is called after memblock_x86_fill() so adjust some calling later in setup.c::setup_arch() -- corruption_check and mptable_update -v2: Move reserve_brk() early Before fill_memblock_area, to avoid overlap between brk and memblock_find_in_range() that could happen We have more then 128 RAM entry in E820 tables, and memblock_x86_fill() could use memblock_find_in_range() to find a new place for memblock.memory.region array. and We don't need to use extend_brk() after fill_memblock_area() So move reserve_brk() early before fill_memblock_area(). -v3: Move find_smp_config early To make sure memblock_find_in_range not find wrong place, if BIOS doesn't put mptable in right place. -v4: Treat RESERVED_KERN as RAM in memblock.memory. and they are already in memblock.reserved already.. use __NOT_KEEP_MEMBLOCK to make sure memblock related code could be freed later. -v5: Generic version __memblock_find_in_range() is going from high to low, and for 32bit active_region for 32bit does include high pages need to replace the limit with memblock.default_alloc_limit, aka get_max_mapped() -v6: Use current_limit instead -v7: check with MEMBLOCK_ERROR instead of -1ULL or -1L -v8: Set memblock_can_resize early to handle EFI with more RAM entries -v9: update after kmemleak changes in mainline Suggested-by: David S. Miller <davem@davemloft.net> Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-08-12x86, cleanup: Remove obsolete boot_cpu_id variableRobert Richter
boot_cpu_id is there for historical reasons and was renamed to boot_cpu_physical_apicid in patch: c70dcb7 x86: change boot_cpu_id to boot_cpu_physical_apicid However, there are some remaining occurrences of boot_cpu_id that are never touched in the kernel and thus its value is always 0. This patch removes boot_cpu_id completely. Signed-off-by: Robert Richter <robert.richter@amd.com> LKML-Reference: <1279731838-1522-8-git-send-email-robert.richter@amd.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2010-07-21Fix up trivial spelling errors ('taht' -> 'that')Linus Torvalds
Pointed out by Lucas who found the new one in a comment in setup_percpu.c. And then I fixed the others that I grepped for. Reported-by: Lucas <canolucas@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-20x86, numa: fix boot without RAM on node0 againYinghai Lu
Commit e534c7c5f8d6 ("numa: x86_64: use generic percpu var numa_node_id() implementation") broke numa systems that don't have ram on node0 when MEMORY_HOTPLUG is enabled, because cpu_up() will call cpu_to_node() before per_cpu(numa_node) is setup for APs. When Node0 doesn't have RAM, on x86, cpus already round it to nearest node with RAM in x86_cpu_to_node_map. and per_cpu(numa_node) is not set up until in c_init for APs. When later cpu_up() calling cpu_to_node() will get 0 again, and make it online even there is no RAM on node0. so later all APs can not booted up, and later will have panic. [ 1.611101] On node 0 totalpages: 0 ......... [ 2.608558] On node 0 totalpages: 0 [ 2.612065] Brought up 1 CPUs [ 2.615199] Total of 1 processors activated (3990.31 BogoMIPS). ... 93.225341] calling loop_init+0x0/0x1a4 @ 1 [ 93.229314] PERCPU: allocation failed, size=80 align=8, failed to populate [ 93.246539] Pid: 1, comm: swapper Tainted: G W 2.6.35-rc4-tip-yh-04371-gd64e6c4-dirty #354 [ 93.264621] Call Trace: [ 93.266533] [<ffffffff81125e43>] pcpu_alloc+0x83a/0x8e7 [ 93.270710] [<ffffffff81125f15>] __alloc_percpu+0x10/0x12 [ 93.285849] [<ffffffff8140786c>] alloc_disk_node+0x94/0x16d [ 93.291811] [<ffffffff81407956>] alloc_disk+0x11/0x13 [ 93.306157] [<ffffffff81503e51>] loop_alloc+0xa7/0x180 [ 93.310538] [<ffffffff8277ef48>] loop_init+0x9b/0x1a4 [ 93.324909] [<ffffffff8277eead>] ? loop_init+0x0/0x1a4 [ 93.329650] [<ffffffff810001f2>] do_one_initcall+0x57/0x136 [ 93.345197] [<ffffffff827486d0>] kernel_init+0x184/0x20e [ 93.348146] [<ffffffff81034954>] kernel_thread_helper+0x4/0x10 [ 93.365194] [<ffffffff81c7cc3c>] ? restore_args+0x0/0x30 [ 93.369305] [<ffffffff8274854c>] ? kernel_init+0x0/0x20e [ 93.386011] [<ffffffff81034950>] ? kernel_thread_helper+0x0/0x10 [ 93.392047] loop: out of memory ... Try to assign per_cpu(numa_node) early [akpm@linux-foundation.org: tidy up code comment] Signed-off-by: Yinghai <yinghai@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Tejun Heo <tj@kernel.org> Cc: Denys Vlasenko <vda.linux@googlemail.com> Acked-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-06-03Merge branch 'x86-fixes-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: x86, smpboot: Fix cores per node printing on boot x86/amd-iommu: Fall back to GART if initialization fails x86/amd-iommu: Fix crash when request_mem_region fails x86/mm: Remove unused DBG() macro arch/x86/kernel: Add missing spin_unlock
2010-06-01Merge branch 'for-35' of git://repo.or.cz/linux-kbuildLinus Torvalds
* 'for-35' of git://repo.or.cz/linux-kbuild: (81 commits) kbuild: Revert part of e8d400a to resolve a conflict kbuild: Fix checking of scm-identifier variable gconfig: add support to show hidden options that have prompts menuconfig: add support to show hidden options which have prompts gconfig: remove show_debug option gconfig: remove dbg_print_ptype() and dbg_print_stype() kconfig: fix zconfdump() kconfig: some small fixes add random binaries to .gitignore kbuild: Include gen_initramfs_list.sh and the file list in the .d file kconfig: recalc symbol value before showing search results .gitignore: ignore *.lzo files headerdep: perlcritic warning scripts/Makefile.lib: Align the output of LZO kbuild: Generate modules.builtin in make modules_install Revert "kbuild: specify absolute paths for cscope" kbuild: Do not unnecessarily regenerate modules.builtin headers_install: use local file handles headers_check: fix perl warnings export_report: fix perl warnings ...
2010-05-31x86/mm: Remove unused DBG() macroAkinobu Mita
DBG() macro for CONFIG_DEBUG_PER_CPU_MAPS is unused. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> LKML-Reference: <1274706291-13554-1-git-send-email-akinobu.mita@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-05-27numa: x86_64: use generic percpu var numa_node_id() implementationLee Schermerhorn
x86 arch specific changes to use generic numa_node_id() based on generic percpu variable infrastructure. Back out x86's custom version of numa_node_id() Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Tejun Heo <tj@kernel.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <npiggin@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-03Rename .data.init to .data..init.Denys Vlasenko
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com> Signed-off-by: Michal Marek <mmarek@suse.cz>
2010-02-26early_res: Add free_early_partial()Yinghai Lu
To free partial areas in pcpu_setup... Reported-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jesse Barnes <jbarnes@virtuousgeek.org> Cc: Pekka Enberg <penberg@cs.helsinki.fi> LKML-Reference: <4B85E245.5030001@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-12-10x86: setup_percpu.c: Use pr_<level> and add pr_fmt(fmt)Joe Perches
- Added #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt - Stripped PERCPU: from a pr_warning Signed-off-by: Joe Perches <joe@perches.com> LKML-Reference: <7ead24eccbea8f2b11795abad3e2893a98e1e111.1260383912.git.joe@perches.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-14x86,percpu: use embedding for 64bit NUMA and page for 32bit NUMATejun Heo
Embedding percpu first chunk allocator can now handle very sparse unit mapping. Use embedding allocator instead of lpage for 64bit NUMA. This removes extra TLB pressure and the need to do complex and fragile dancing when changing page attributes. For 32bit, using very sparse unit mapping isn't a good idea because the vmalloc space is very constrained. 32bit NUMA machines aren't exactly the focus of optimization and it isn't very clear whether lpage performs better than page. Use page first chunk allocator for 32bit NUMAs. As this leaves setup_pcpu_*() functions pretty much empty, fold them into setup_per_cpu_areas(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Andi Kleen <andi@firstfloor.org>
2009-08-14percpu: update embedding first chunk allocator to handle sparse unitsTejun Heo
Now that percpu core can handle very sparse units, given that vmalloc space is large enough, embedding first chunk allocator can use any memory to build the first chunk. This patch teaches pcpu_embed_first_chunk() about distances between cpus and to use alloc/free callbacks to allocate node specific areas for each group and use them for the first chunk. This brings the benefits of embedding allocator to NUMA configurations - no extra TLB pressure with the flexibility of unified dynamic allocator and no need to restructure arch code to build memory layout suitable for percpu. With units put into atom_size aligned groups according to cpu distances, using large page for dynamic chunks is also easily possible with falling back to reuglar pages if large allocation fails. Embedding allocator users are converted to specify NULL cpu_distance_fn, so this patch doesn't cause any visible behavior difference. Following patches will convert them. Signed-off-by: Tejun Heo <tj@kernel.org>
2009-08-14percpu: add pcpu_unit_offsets[]Tejun Heo
Currently units are mapped sequentially into address space. This patch adds pcpu_unit_offsets[] which allows units to be mapped to arbitrary offsets from the chunk base address. This is necessary to allow sparse embedding which might would need to allocate address ranges and memory areas which aren't aligned to unit size but allocation atom size (page or large page size). This also simplifies things a bit by removing the need to calculate offset from unit number. With this change, there's no need for the arch code to know pcpu_unit_size. Update pcpu_setup_first_chunk() and first chunk allocators to return regular 0 or -errno return code instead of unit size or -errno. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: David S. Miller <davem@davemloft.net>
2009-08-14percpu: introduce pcpu_alloc_info and pcpu_group_infoTejun Heo
Till now, non-linear cpu->unit map was expressed using an integer array which maps each cpu to a unit and used only by lpage allocator. Although how many units have been placed in a single contiguos area (group) is known while building unit_map, the information is lost when the result is recorded into the unit_map array. For lpage allocator, as all allocations are done by lpages and whether two adjacent lpages are in the same group or not is irrelevant, this didn't cause any problem. Non-linear cpu->unit mapping will be used for sparse embedding and this grouping information is necessary for that. This patch introduces pcpu_alloc_info which contains all the information necessary for initializing percpu allocator. pcpu_alloc_info contains array of pcpu_group_info which describes how units are grouped and mapped to cpus. pcpu_group_info also has base_offset field to specify its offset from the chunk's base address. pcpu_build_alloc_info() initializes this field as if all groups are allocated back-to-back as is currently done but this will be used to sparsely place groups. pcpu_alloc_info is a rather complex data structure which contains a flexible array which in turn points to nested cpu_map arrays. * pcpu_alloc_alloc_info() and pcpu_free_alloc_info() are provided to help dealing with pcpu_alloc_info. * pcpu_lpage_build_unit_map() is updated to build pcpu_alloc_info, generalized and renamed to pcpu_build_alloc_info(). @cpu_distance_fn may be NULL indicating that all cpus are of LOCAL_DISTANCE. * pcpul_lpage_dump_cfg() is updated to process pcpu_alloc_info, generalized and renamed to pcpu_dump_alloc_info(). It now also prints which group each alloc unit belongs to. * pcpu_setup_first_chunk() now takes pcpu_alloc_info instead of the separate parameters. All first chunk allocators are updated to use pcpu_build_alloc_info() to build alloc_info and call pcpu_setup_first_chunk() with it. This has the side effect of packing units for sparse possible cpus. ie. if cpus 0, 2 and 4 are possible, they'll be assigned unit 0, 1 and 2 instead of 0, 2 and 4. * x86 setup_pcpu_lpage() is updated to deal with alloc_info. * sparc64 setup_per_cpu_areas() is updated to build alloc_info. Although the changes made by this patch are pretty pervasive, it doesn't cause any behavior difference other than packing of sparse cpus. It mostly changes how information is passed among initialization functions and makes room for more flexibility. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: David Miller <davem@davemloft.net>
2009-08-14percpu: add @align to pcpu_fc_alloc_fn_tTejun Heo
pcpu_fc_alloc_fn_t is about to see more interesting usage, add @align parameter. Signed-off-by: Tejun Heo <tj@kernel.org>
2009-08-14percpu: drop @static_size from first chunk allocatorsTejun Heo
First chunk allocators assume percpu areas have been linked using one of PERCPU_*() macros and depend on __per_cpu_load symbol defined by those macros, so there isn't much point in passing in static area size explicitly when it can be easily calculated from __per_cpu_start and __per_cpu_end. Drop @static_size from all percpu first chunk allocators and helpers. Signed-off-by: Tejun Heo <tj@kernel.org>
2009-08-14percpu: generalize first chunk allocator selectionTejun Heo
Now that all first chunk allocators are in mm/percpu.c, it makes sense to make generalize percpu_alloc kernel parameter. Define PCPU_FC_* and set pcpu_chosen_fc using early_param() in mm/percpu.c. Arch code can use the set value to determine which first chunk allocator to use. Signed-off-by: Tejun Heo <tj@kernel.org>
2009-08-14percpu: rename 4k first chunk allocator to pageTejun Heo
Page size isn't always 4k depending on arch and configuration. Rename 4k first chunk allocator to page. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: David Howells <dhowells@redhat.com>
2009-08-14Merge branch 'percpu-for-linus' into percpu-for-nextTejun Heo
Conflicts: arch/sparc/kernel/smp_64.c arch/x86/kernel/cpu/perf_counter.c arch/x86/kernel/setup_percpu.c drivers/cpufreq/cpufreq_ondemand.c mm/percpu.c Conflicts in core and arch percpu codes are mostly from commit ed78e1e078dd44249f88b1dd8c76dafb39567161 which substituted many num_possible_cpus() with nr_cpu_ids. As for-next branch has moved all the first chunk allocators into mm/percpu.c, the changes are moved from arch code to mm/percpu.c. Signed-off-by: Tejun Heo <tj@kernel.org>
2009-08-14percpu, sparc64: fix sparse possible cpu map handlingTejun Heo
percpu code has been assuming num_possible_cpus() == nr_cpu_ids which is incorrect if cpu_possible_map contains holes. This causes percpu code to access beyond allocated memories and vmalloc areas. On a sparc64 machine with cpus 0 and 2 (u60), this triggers the following warning or fails boot. WARNING: at /devel/tj/os/work/mm/vmalloc.c:106 vmap_page_range_noflush+0x1f0/0x240() Modules linked in: Call Trace: [00000000004b17d0] vmap_page_range_noflush+0x1f0/0x240 [00000000004b1840] map_vm_area+0x20/0x60 [00000000004b1950] __vmalloc_area_node+0xd0/0x160 [0000000000593434] deflate_init+0x14/0xe0 [0000000000583b94] __crypto_alloc_tfm+0xd4/0x1e0 [00000000005844f0] crypto_alloc_base+0x50/0xa0 [000000000058b898] alg_test_comp+0x18/0x80 [000000000058dad4] alg_test+0x54/0x180 [000000000058af00] cryptomgr_test+0x40/0x60 [0000000000473098] kthread+0x58/0x80 [000000000042b590] kernel_thread+0x30/0x60 [0000000000472fd0] kthreadd+0xf0/0x160 ---[ end trace 429b268a213317ba ]--- This patch fixes generic percpu functions and sparc64 setup_per_cpu_areas() so that they handle sparse cpu_possible_map properly. Please note that on x86, cpu_possible_map() doesn't contain holes and thus num_possible_cpus() == nr_cpu_ids and this patch doesn't cause any behavior difference. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David S. Miller <davem@davemloft.net> Cc: Ingo Molnar <mingo@elte.hu>
2009-07-04percpu: teach large page allocator about NUMATejun Heo
Large page first chunk allocator is primarily used for NUMA machines; however, its NUMA handling is extremely simplistic. Regardless of their proximity, each cpu is put into separate large page just to return most of the allocated space back wasting large amount of vmalloc space and increasing cache footprint. This patch teachs NUMA details to large page allocator. Given processor proximity information, pcpu_lpage_build_unit_map() will find fitting cpu -> unit mapping in which cpus in LOCAL_DISTANCE share the same large page and not too much virtual address space is wasted. This greatly reduces the unit and thus chunk size and wastes much less address space for the first chunk. For example, on 4/4 NUMA machine, the original code occupied 16MB of virtual space for the first chunk while the new code only uses 4MB - one 2MB page for each node. [ Impact: much better space efficiency on NUMA machines ] Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jan Beulich <JBeulich@novell.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: David Miller <davem@davemloft.net>
2009-07-04x86,percpu: generalize lpage first chunk allocatorTejun Heo
Generalize and move x86 setup_pcpu_lpage() into pcpu_lpage_first_chunk(). setup_pcpu_lpage() now is a simple wrapper around the generalized version. Other than taking size parameters and using arch supplied callbacks to allocate/free/map memory, pcpu_lpage_first_chunk() is identical to the original implementation. This simplifies arch code and will help converting more archs to dynamic percpu allocator. While at it, factor out pcpu_calc_fc_sizes() which is common to pcpu_embed_first_chunk() and pcpu_lpage_first_chunk(). [ Impact: code reorganization and generalization ] Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@elte.hu>
2009-07-04x86,percpu: generalize 4k first chunk allocatorTejun Heo
Generalize and move x86 setup_pcpu_4k() into pcpu_4k_first_chunk(). setup_pcpu_4k() now is a simple wrapper around the generalized version. Other than taking size parameters and using arch supplied callbacks to allocate/free memory, pcpu_4k_first_chunk() is identical to the original implementation. This simplifies arch code and will help converting more archs to dynamic percpu allocator. While at it, s/pcpu_populate_pte_fn_t/pcpu_fc_populate_pte_fn_t/ for consistency. [ Impact: code reorganization and generalization ] Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@elte.hu>
2009-07-04percpu: drop @unit_size from embed first chunk allocatorTejun Heo
The only extra feature @unit_size provides is making dead space at the end of the first chunk which doesn't have any valid usecase. Drop the parameter. This will increase consistency with generalized 4k allocator. James Bottomley spotted missing conversion for the default setup_per_cpu_areas() which caused build breakage on all arcsh which use it. [ Impact: drop unused code path ] Signed-off-by: Tejun Heo <tj@kernel.org> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Ingo Molnar <mingo@elte.hu>
2009-06-22x86: ensure percpu lpage doesn't consume too much vmalloc spaceTejun Heo
On extreme configuration (e.g. 32bit 32-way NUMA machine), lpage percpu first chunk allocator can consume too much of vmalloc space. Make it fall back to 4k allocator if the consumption goes over 20%. [ Impact: add sanity check for lpage percpu first chunk allocator ] Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jan Beulich <JBeulich@novell.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu>
2009-06-22x86: implement percpu_alloc kernel parameterTejun Heo
According to Andi, it isn't clear whether lpage allocator is worth the trouble as there are many processors where PMD TLB is far scarcer than PTE TLB. The advantage or disadvantage probably depends on the actual size of percpu area and specific processor. As performance degradation due to TLB pressure tends to be highly workload specific and subtle, it is difficult to decide which way to go without more data. This patch implements percpu_alloc kernel parameter to allow selecting which first chunk allocator to use to ease debugging and testing. While at it, make sure all the failure paths report why something failed to help determining why certain allocator isn't working. Also, kill the "Great future plan" comment which had already been realized quite some time ago. [ Impact: allow explicit percpu first chunk allocator selection ] Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jan Beulich <JBeulich@novell.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu>
2009-06-22x86: fix pageattr handling for lpage percpu allocator and re-enable itTejun Heo
lpage allocator aliases a PMD page for each cpu and returns whatever is unused to the page allocator. When the pageattr of the recycled pages are changed, this makes the two aliases point to the overlapping regions with different attributes which isn't allowed and known to cause subtle data corruption in certain cases. This can be handled in simliar manner to the x86_64 highmap alias. pageattr code should detect if the target pages have PMD alias and split the PMD alias and synchronize the attributes. pcpur allocator is updated to keep the allocated PMD pages map sorted in ascending address order and provide pcpu_lpage_remapped() function which binary searches the array to determine whether the given address is aliased and if so to which address. pageattr is updated to use pcpu_lpage_remapped() to detect the PMD alias and split it up as necessary from cpa_process_alias(). Jan Beulich spotted the original problem and incorrect usage of vaddr instead of laddr for lookup. With this, lpage percpu allocator should work correctly. Re-enable it. [ Impact: fix subtle lpage pageattr bug and re-enable lpage ] Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Jan Beulich <JBeulich@novell.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu>
2009-06-22x86: prepare setup_pcpu_lpage() for pageattr fixTejun Heo
Make the following changes in preparation of coming pageattr updates. * Define and use array of struct pcpul_ent instead of array of pointers. The only difference is ->cpu field which is set but unused yet. * Rename variables according to the above change. * Rename local variable vm to pcpul_vm and move it out of the function. [ Impact: no functional difference ] Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jan Beulich <JBeulich@novell.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu>
2009-06-22x86: rename remap percpu first chunk allocator to lpageTejun Heo
The "remap" allocator remaps large pages to build the first chunk; however, the name isn't very good because 4k allocator remaps too and the whole point of the remap allocator is using large page mapping. The allocator will be generalized and exported outside of x86, rename it to lpage before that happens. percpu_alloc kernel parameter is updated to accept both "remap" and "lpage" for lpage allocator. [ Impact: code cleanup, kernel parameter argument updated ] Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@elte.hu>
2009-06-22x86: fix duplicate free in setup_pcpu_remap() failure pathTejun Heo
In the failure path, setup_pcpu_remap() tries to free the area which has already been freed to make holes in the large page. Fix it. [ Impact: fix duplicate free in failure path ] Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@elte.hu>
2009-06-10Merge branch 'x86-mm-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (22 commits) x86: fix system without memory on node0 x86, mm: Fix node_possible_map logic mm, x86: remove MEMORY_HOTPLUG_RESERVE related code x86: make sparse mem work in non-NUMA mode x86: process.c, remove useless headers x86: merge process.c a bit x86: use sparse_memory_present_with_active_regions() on UMA x86: unify 64-bit UMA and NUMA paging_init() x86: Allow 1MB of slack between the e820 map and SRAT, not 4GB x86: Sanity check the e820 against the SRAT table using e820 map only x86: clean up and and print out initial max_pfn_mapped x86/pci: remove rounding quirk from e820_setup_gap() x86, e820, pci: reserve extra free space near end of RAM x86: fix typo in address space documentation x86: 46 bit physical address support on 64 bits x86, mm: fault.c, use printk_once() in is_errata93() x86: move per-cpu mmu_gathers to mm/init.c x86: move max_pfn_mapped and max_low_pfn_mapped to setup.c x86: unify noexec handling x86: remove (null) in /sys kernel_page_tables ...
2009-05-25x86: Remove remap percpu allocator for the time beingTejun Heo
Remap percpu allocator has subtle bug when combined with page attribute changing. Remap percpu allocator aliases PMD pages for the first chunk and as pageattr doesn't know about the alias it ends up updating page attributes of the original mapping thus leaving the alises in inconsistent state which might lead to subtle data corruption. Please read the following threads for more information: http://thread.gmane.org/gmane.linux.kernel/835783 The following is the proposed fix which teaches pageattr about percpu aliases. http://thread.gmane.org/gmane.linux.kernel/837157 However, the above changes are deemed too pervasive for upstream inclusion for 2.6.30 release, so this patch essentially disables the remap allocator for the time being. Signed-off-by: Tejun Heo <tj@kernel.org> LKML-Reference: <4A1A0A27.4050301@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>