summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/mmu/mmu.c
AgeCommit message (Collapse)Author
2020-02-05kvm: mmu: Separate generating and setting mmio ptesBen Gardon
Separate the functions for generating MMIO page table entries from the function that inserts them into the paging structure. This refactoring will facilitate changes to the MMU sychronization model to use atomic compare / exchanges (which are not guaranteed to succeed) instead of a monolithic MMU lock. No functional change expected. Tested by running kvm-unit-tests on an Intel Haswell machine. This commit introduced no new failures. Signed-off-by: Ben Gardon <bgardon@google.com> Reviewed-by: Oliver Upton <oupton@google.com> Reviewed-by: Peter Shier <pshier@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-05kvm: mmu: Replace unsigned with unsigned int for PTE accessBen Gardon
There are several functions which pass an access permission mask for SPTEs as an unsigned. This works, but checkpatch complains about it. Switch the occurrences of unsigned to unsigned int to satisfy checkpatch. No functional change expected. Tested by running kvm-unit-tests on an Intel Haswell machine. This commit introduced no new failures. Signed-off-by: Ben Gardon <bgardon@google.com> Reviewed-by: Oliver Upton <oupton@google.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-31Merge tag 'kvm-5.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull KVM updates from Paolo Bonzini: "This is the first batch of KVM changes. ARM: - cleanups and corner case fixes. PPC: - Bugfixes x86: - Support for mapping DAX areas with large nested page table entries. - Cleanups and bugfixes here too. A particularly important one is a fix for FPU load when the thread has TIF_NEED_FPU_LOAD. There is also a race condition which could be used in guest userspace to exploit the guest kernel, for which the embargo expired today. - Fast path for IPI delivery vmexits, shaving about 200 clock cycles from IPI latency. - Protect against "Spectre-v1/L1TF" (bring data in the cache via speculative out of bound accesses, use L1TF on the sibling hyperthread to read it), which unfortunately is an even bigger whack-a-mole game than SpectreV1. Sean continues his mission to rewrite KVM. In addition to a sizable number of x86 patches, this time he contributed a pretty large refactoring of vCPU creation that affects all architectures but should not have any visible effect. s390 will come next week together with some more x86 patches" * tag 'kvm-5.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits) x86/KVM: Clean up host's steal time structure x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is not missed x86/kvm: Cache gfn to pfn translation x86/kvm: Introduce kvm_(un)map_gfn() x86/kvm: Be careful not to clear KVM_VCPU_FLUSH_TLB bit KVM: PPC: Book3S PR: Fix -Werror=return-type build failure KVM: PPC: Book3S HV: Release lock on page-out failure path KVM: arm64: Treat emulated TVAL TimerValue as a signed 32-bit integer KVM: arm64: pmu: Only handle supported event counters KVM: arm64: pmu: Fix chained SW_INCR counters KVM: arm64: pmu: Don't mark a counter as chained if the odd one is disabled KVM: arm64: pmu: Don't increment SW_INCR if PMCR.E is unset KVM: x86: Use a typedef for fastop functions KVM: X86: Add 'else' to unify fastop and execute call path KVM: x86: inline memslot_valid_for_gpte KVM: x86/mmu: Use huge pages for DAX-backed files KVM: x86/mmu: Remove lpage_is_disallowed() check from set_spte() KVM: x86/mmu: Fold max_mapping_level() into kvm_mmu_hugepage_adjust() KVM: x86/mmu: Zap any compound page when collapsing sptes KVM: x86/mmu: Remove obsolete gfn restoration in FNAME(fetch) ...
2020-01-27KVM: x86: inline memslot_valid_for_gptePaolo Bonzini
The function now has a single caller, so there is no point in keeping it separate. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: x86/mmu: Use huge pages for DAX-backed filesSean Christopherson
Walk the host page tables to identify hugepage mappings for ZONE_DEVICE pfns, i.e. DAX pages. Explicitly query kvm_is_zone_device_pfn() when deciding whether or not to bother walking the host page tables, as DAX pages do not set up the head/tail infrastructure, i.e. will return false for PageCompound() even when using huge pages. Zap ZONE_DEVICE sptes when disabling dirty logging, e.g. if live migration fails, to allow KVM to rebuild large pages for DAX-based mappings. Presumably DAX favors large pages, and worst case scenario is a minor performance hit as KVM will need to re-fault all DAX-based pages. Suggested-by: Barret Rhoden <brho@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jason Zeng <jason.zeng@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Liran Alon <liran.alon@oracle.com> Cc: linux-nvdimm <linux-nvdimm@lists.01.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: x86/mmu: Remove lpage_is_disallowed() check from set_spte()Sean Christopherson
Remove the late "lpage is disallowed" check from set_spte() now that the initial check is performed after acquiring mmu_lock. Fold the guts of the remaining helper, __mmu_gfn_lpage_is_disallowed(), into kvm_mmu_hugepage_adjust() to eliminate the unnecessary slot !NULL check. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: x86/mmu: Fold max_mapping_level() into kvm_mmu_hugepage_adjust()Sean Christopherson
Fold max_mapping_level() into kvm_mmu_hugepage_adjust() now that HugeTLB mappings are handled in kvm_mmu_hugepage_adjust(), i.e. there isn't a need to pre-calculate the max mapping level. Co-locating all hugepage checks eliminates a memslot lookup, at the cost of performing the __mmu_gfn_lpage_is_disallowed() checks while holding mmu_lock. The latency of lpage_is_disallowed() is likely negligible relative to the rest of the code run while holding mmu_lock, and can be offset to some extent by eliminating the mmu_gfn_lpage_is_disallowed() check in set_spte() in a future patch. Eliminating the check in set_spte() is made possible by performing the initial lpage_is_disallowed() checks while holding mmu_lock. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: x86/mmu: Zap any compound page when collapsing sptesSean Christopherson
Zap any compound page, e.g. THP or HugeTLB pages, when zapping sptes that can potentially be converted to huge sptes after disabling dirty logging on the associated memslot. Note, this approach could result in false positives, e.g. if a random compound page is mapped into the guest, but mapping non-huge compound pages into the guest is far from the norm, and toggling dirty logging is not a frequent operation. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: x86/mmu: Rely on host page tables to find HugeTLB mappingsSean Christopherson
Remove KVM's HugeTLB specific logic and instead rely on walking the host page tables (already done for THP) to identify HugeTLB mappings. Eliminating the HugeTLB-only logic avoids taking mmap_sem and calling find_vma() for all hugepage compatible page faults, and simplifies KVM's page fault code by consolidating all hugepage adjustments into a common helper. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: x86/mmu: Drop level optimization from fast_page_fault()Sean Christopherson
Remove fast_page_fault()'s optimization to stop the shadow walk if the iterator level drops below the intended map level. The intended map level is only acccurate for HugeTLB mappings (THP mappings are detected after fast_page_fault()), i.e. it's not required for correctness, and a future patch will also move HugeTLB mapping detection to after fast_page_fault(). Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: x86/mmu: Walk host page tables to find THP mappingsSean Christopherson
Explicitly walk the host page tables to identify THP mappings instead of relying solely on the metadata in struct page. This sets the stage for using a common method of identifying huge mappings regardless of the underlying implementation (HugeTLB vs THB vs DAX), and hopefully avoids the pitfalls of relying on metadata to identify THP mappings, e.g. see commit 169226f7e0d2 ("mm: thp: handle page cache THP correctly in PageTransCompoundMap") and the need for KVM to explicitly check for a THP compound page. KVM will also naturally work with 1gb THP pages, if they are ever supported. Walking the tables for THP mappings is likely marginally slower than querying metadata, but a future patch will reuse the walk to identify HugeTLB mappings, at which point eliminating the existing VMA lookup for HugeTLB will make this a net positive. Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Barret Rhoden <brho@google.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: x86/mmu: Refactor THP adjust to prep for changing querySean Christopherson
Refactor transparent_hugepage_adjust() in preparation for walking the host page tables to identify hugepage mappings, initially for THP pages, and eventualy for HugeTLB and DAX-backed pages as well. The latter cases support 1gb pages, i.e. the adjustment logic needs access to the max allowed level. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: Use vcpu-specific gva->hva translation when querying host page sizeSean Christopherson
Use kvm_vcpu_gfn_to_hva() when retrieving the host page size so that the correct set of memslots is used when handling x86 page faults in SMM. Fixes: 54bf36aac520 ("KVM: x86: use vcpu-specific functions to read/write/translate GFNs") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27mm: thp: KVM: Explicitly check for THP when populating secondary MMUSean Christopherson
Add a helper, is_transparent_hugepage(), to explicitly check whether a compound page is a THP and use it when populating KVM's secondary MMU. The explicit check fixes a bug where a remapped compound page, e.g. for an XDP Rx socket, is mapped into a KVM guest and is mistaken for a THP, which results in KVM incorrectly creating a huge page in its secondary MMU. Fixes: 936a5fe6e6148 ("thp: kvm mmu transparent hugepage support") Reported-by: syzbot+c9d1fb51ac9d0d10c39d@syzkaller.appspotmail.com Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: x86/mmu: Enforce max_level on HugeTLB mappingsSean Christopherson
Limit KVM's mapping level for HugeTLB based on its calculated max_level. The max_level check prior to invoking host_mapping_level() only filters out the case where KVM cannot create a 2mb mapping, it doesn't handle the scenario where KVM can create a 2mb but not 1gb mapping, and the host is using a 1gb HugeTLB mapping. Fixes: 2f57b7051fe8 ("KVM: x86/mmu: Persist gfn_lpage_is_disallowed() to max_level") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-23KVM: x86: fix overlap between SPTE_MMIO_MASK and generationPaolo Bonzini
The SPTE_MMIO_MASK overlaps with the bits used to track MMIO generation number. A high enough generation number would overwrite the SPTE_SPECIAL_MASK region and cause the MMIO SPTE to be misinterpreted. Likewise, setting bits 52 and 53 would also cause an incorrect generation number to be read from the PTE, though this was partially mitigated by the (useless if it weren't for the bug) removal of SPTE_SPECIAL_MASK from the spte in get_mmio_spte_generation. Drop that removal, and replace it with a compile-time assertion. Fixes: 6eeb4ef049e7 ("KVM: x86: assign two bits to track SPTE kinds") Reported-by: Ben Gardon <bgardon@google.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21KVM: x86/mmu: Apply max PA check for MMIO sptes to 32-bit KVMSean Christopherson
Remove the bogus 64-bit only condition from the check that disables MMIO spte optimization when the system supports the max PA, i.e. doesn't have any reserved PA bits. 32-bit KVM always uses PAE paging for the shadow MMU, and per Intel's SDM: PAE paging translates 32-bit linear addresses to 52-bit physical addresses. The kernel's restrictions on max physical addresses are limits on how much memory the kernel can reasonably use, not what physical addresses are supported by hardware. Fixes: ce88decffd17 ("KVM: MMU: mmio page fault support") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21KVM: x86/mmu: Micro-optimize nEPT's bad memptype/XWR checksSean Christopherson
Rework the handling of nEPT's bad memtype/XWR checks to micro-optimize the checks as much as possible. Move the check to a separate helper, __is_bad_mt_xwr(), which allows the guest_rsvd_check usage in paging_tmpl.h to omit the check entirely for paging32/64 (bad_mt_xwr is always zero for non-nEPT) while retaining the bitwise-OR of the current code for the shadow_zero_check in walk_shadow_page_get_mmio_spte(). Add a comment for the bitwise-OR usage in the mmio spte walk to avoid future attempts to "fix" the code, which is what prompted this optimization in the first place[*]. Opportunistically remove the superfluous '!= 0' and parantheses, and use BIT_ULL() instead of open coding its equivalent. The net effect is that code generation is largely unchanged for walk_shadow_page_get_mmio_spte(), marginally better for ept_prefetch_invalid_gpte(), and significantly improved for paging32/64_prefetch_invalid_gpte(). Note, walk_shadow_page_get_mmio_spte() can't use a templated version of the memtype/XRW as it works on the host's shadow PTEs, e.g. checks that KVM hasn't borked its EPT tables. Even if it could be templated, the benefits of having a single implementation far outweight the few uops that would be saved for NPT or non-TDP paging, e.g. most compilers inline it all the way to up kvm_mmu_page_fault(). [*] https://lkml.kernel.org/r/20200108001859.25254-1-sean.j.christopherson@intel.com Cc: Jim Mattson <jmattson@google.com> Cc: David Laight <David.Laight@ACULAB.COM> Cc: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86/mmu: WARN if root_hpa is invalid when handling a page faultSean Christopherson
WARN if root_hpa is invalid when handling a page fault. The check on root_hpa exists for historical reasons that no longer apply to the current KVM code base. Remove an equivalent debug-only warning in direct_page_fault(), whose existence more or less confirms that root_hpa should always be valid when handling a page fault. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86/mmu: WARN on an invalid root_hpaSean Christopherson
WARN on the existing invalid root_hpa checks in __direct_map() and FNAME(fetch). The "legitimate" path that invalidated root_hpa in the middle of a page fault is long since gone, i.e. it should no longer be impossible to invalidate in the middle of a page fault[*]. The root_hpa checks were added by two related commits 989c6b34f6a94 ("KVM: MMU: handle invalid root_hpa at __direct_map") 37f6a4e237303 ("KVM: x86: handle invalid root_hpa everywhere") to fix a bug where nested_vmx_vmexit() could be called *in the middle* of a page fault. At the time, vmx_interrupt_allowed(), which was and still is used by kvm_can_do_async_pf() via ->interrupt_allowed(), directly invoked nested_vmx_vmexit() to switch from L2 to L1 to emulate a VM-Exit on a pending interrupt. Emulating the nested VM-Exit resulted in root_hpa being invalidated by kvm_mmu_reset_context() without explicitly terminating the page fault. Now that root_hpa is checked for validity by kvm_mmu_page_fault(), WARN on an invalid root_hpa to detect any flows that reset the MMU while handling a page fault. The broken vmx_interrupt_allowed() behavior has long since been fixed and resetting the MMU during a page fault should not be considered legal behavior. [*] It's actually technically possible in FNAME(page_fault)() because it calls inject_page_fault() when the guest translation is invalid, but in that case the page fault handling is immediately terminated. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86/mmu: Move root_hpa validity checks to top of page fault handlerSean Christopherson
Add a check on root_hpa at the beginning of the page fault handler to consolidate several checks on root_hpa that are scattered throughout the page fault code. This is a preparatory step towards eventually removing such checks altogether, or at the very least WARNing if an invalid root is encountered. Remove only the checks that can be easily audited to confirm that root_hpa cannot be invalidated between their current location and the new check in kvm_mmu_page_fault(), and aren't currently protected by mmu_lock, i.e. keep the checks in __direct_map() and FNAME(fetch) for the time being. The root_hpa checks that are consolidate were all added by commit 37f6a4e237303 ("KVM: x86: handle invalid root_hpa everywhere") which was a follow up to a bug fix for __direct_map(), commit 989c6b34f6a94 ("KVM: MMU: handle invalid root_hpa at __direct_map") At the time, nested VMX had, in hindsight, crazy handling of nested interrupts and would trigger a nested VM-Exit in ->interrupt_allowed(), and thus unexpectedly reset the MMU in flows such as can_do_async_pf(). Now that the wonky nested VM-Exit behavior is gone, the root_hpa checks are bogus and confusing, e.g. it's not at all obvious what they actually protect against, and at first glance they appear to be broken since many of them run without holding mmu_lock. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86/mmu: Move calls to thp_adjust() down a levelSean Christopherson
Move the calls to thp_adjust() down a level from the page fault handlers to the map/fetch helpers and remove the page count shuffling done in thp_adjust(). Despite holding a reference to the underlying page while processing a page fault, the page fault flows don't actually rely on holding a reference to the page when thp_adjust() is called. At that point, the fault handlers hold mmu_lock, which prevents mmu_notifier from completing any invalidations, and have verified no invalidations from mmu_notifier have occurred since the page reference was acquired (which is done prior to taking mmu_lock). The kvm_release_pfn_clean()/kvm_get_pfn() dance in thp_adjust() is a quirk that is necessitated because thp_adjust() modifies the pfn that is consumed by its caller. Because the page fault handlers call kvm_release_pfn_clean() on said pfn, thp_adjust() needs to transfer the reference to the correct pfn purely for correctness when the pfn is released. Calling thp_adjust() from __direct_map() and FNAME(fetch) means the pfn adjustment doesn't change the pfn as seen by the page fault handlers, i.e. the pfn released by the page fault handlers is the same pfn that was returned by gfn_to_pfn(). Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86/mmu: Move transparent_hugepage_adjust() above __direct_map()Sean Christopherson
Move thp_adjust() above __direct_map() in preparation of calling thp_adjust() from __direct_map() and FNAME(fetch). No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86/mmu: Consolidate tdp_page_fault() and nonpaging_page_fault()Sean Christopherson
Consolidate the direct MMU page fault handlers into a common helper, direct_page_fault(). Except for unique max level conditions, the tdp and nonpaging fault handlers are functionally identical. No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86/mmu: Rename lpage_disallowed to account_disallowed_nx_lpageSean Christopherson
Rename __direct_map()'s param that controls whether or not a disallowed NX large page should be accounted to match what it actually does. The nonpaging_page_fault() case unconditionally passes %false for the param even though it locally sets lpage_disallowed. No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86/mmu: Persist gfn_lpage_is_disallowed() to max_levelSean Christopherson
Persist the max page level calculated via gfn_lpage_is_disallowed() to the max level "returned" by mapping_level() so that its naturally taken into account by the max level check that conditions calling transparent_hugepage_adjust(). Drop the gfn_lpage_is_disallowed() check in thp_adjust() as it's now handled by mapping_level() and its callers. Add a comment to document the behavior of host_mapping_level() and its interaction with max level and transparent huge pages. Note, transferring the gfn_lpage_is_disallowed() from thp_adjust() to mapping_level() superficially affects how changes to a memslot's disallow_lpage count will be handled due to thp_adjust() being run while holding mmu_lock. In the more common case where a different vCPU increments the count via account_shadowed(), gfn_lpage_is_disallowed() is rechecked by set_spte() to ensure a writable large page isn't created. In the less common case where the count is decremented to zero due to all shadow pages in the memslot being zapped, THP behavior now matches hugetlbfs behavior in the sense that a small page will be created when a large page could be used if the count reaches zero in the miniscule window between mapping_level() and acquiring mmu_lock. Lastly, the new THP behavior also follows hugetlbfs behavior in the absurdly unlikely scenario of a memslot being moved such that the memslot's compatibility with respect to large pages changes, but without changing the validity of the gpf->pfn walk. I.e. if a memslot is moved between mapping_level() and snapshotting mmu_seq, it's theoretically possible to consume a stale disallow_lpage count. But, since KVM zaps all shadow pages when moving a memslot and forces all vCPUs to reload a new MMU, the inserted spte will always be thrown away prior to completing the memslot move, i.e. whether or not the spte accurately reflects disallow_lpage is irrelevant. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86/mmu: Refactor handling of forced 4k pages in page faultsSean Christopherson
Refactor the page fault handlers and mapping_level() to track the max allowed page level instead of only tracking if a 4k page is mandatory due to one restriction or another. This paves the way for cleanly consolidating tdp_page_fault() and nonpaging_page_fault(), and for eliminating a redundant check on mmu_gfn_lpage_is_disallowed(). No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86/mmu: Refactor the per-slot level calculation in mapping_level()Sean Christopherson
Invert the loop which adjusts the allowed page level based on what's compatible with the associated memslot to use a largest-to-smallest page size walk. This paves the way for passing around a "max level" variable instead of having redundant checks and/or multiple booleans. No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86/mmu: Refactor handling of cache consistency with TDPSean Christopherson
Pre-calculate the max level for a TDP page with respect to MTRR cache consistency in preparation of replacing force_pt_level with max_level, and eventually combining the bulk of nonpaging_page_fault() and tdp_page_fault() into a common helper. No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86/mmu: Move nonpaging_page_fault() below try_async_pf()Sean Christopherson
Move nonpaging_page_fault() below try_async_pf() to eliminate the forward declaration of try_async_pf() and to prepare for combining the bulk of nonpaging_page_fault() and tdp_page_fault() into a common helper. No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86/mmu: Fold nonpaging_map() into nonpaging_page_fault()Sean Christopherson
Fold nonpaging_map() into its sole caller, nonpaging_page_fault(), in preparation for combining the bulk of nonpaging_page_fault() and tdp_page_fault() into a common helper. No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86/mmu: Move definition of make_mmu_pages_available() upSean Christopherson
Move make_mmu_pages_available() above its first user to put it closer to related code and eliminate a forward declaration. No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86: Use gpa_t for cr2/gpa to fix TDP support on 32-bit KVMSean Christopherson
Convert a plethora of parameters and variables in the MMU and page fault flows from type gva_t to gpa_t to properly handle TDP on 32-bit KVM. Thanks to PSE and PAE paging, 32-bit kernels can access 64-bit physical addresses. When TDP is enabled, the fault address is a guest physical address and thus can be a 64-bit value, even when both KVM and its guest are using 32-bit virtual addressing, e.g. VMX's VMCS.GUEST_PHYSICAL is a 64-bit field, not a natural width field. Using a gva_t for the fault address means KVM will incorrectly drop the upper 32-bits of the GPA. Ditto for gva_to_gpa() when it is used to translate L2 GPAs to L1 GPAs. Opportunistically rename variables and parameters to better reflect the dual address modes, e.g. use "cr2_or_gpa" for fault addresses and plain "addr" instead of "vaddr" when the address may be either a GVA or an L2 GPA. Similarly, use "gpa" in the nonpaging_page_fault() flows to avoid a confusing "gpa_t gva" declaration; this also sets the stage for a future patch to combing nonpaging_page_fault() and tdp_page_fault() with minimal churn. Sprinkle in a few comments to document flows where an address is known to be a GVA and thus can be safely truncated to a 32-bit value. Add WARNs in kvm_handle_page_fault() and FNAME(gva_to_gpa_nested)() to help document such cases and detect bugs. Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86: Fix some comment typosMiaohe Lin
Fix some typos in comment. Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: explicitly set rmap_head->val to 0 in pte_list_desc_remove_entry()Miaohe Lin
When we reach here, we have desc->sptes[j] = NULL with j = 0. So we can replace desc->sptes[0] with 0 to make it more clear. Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86: use CPUID to locate host page table reserved bitsPaolo Bonzini
The comment in kvm_get_shadow_phys_bits refers to MKTME, but the same is actually true of SME and SEV. Just use CPUID[0x8000_0008].EAX[7:0] unconditionally if available, it is simplest and works even if memory is not encrypted. Cc: stable@vger.kernel.org Reported-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-12-10x86/mm/pat: Rename <asm/pat.h> => <asm/memtype.h>Ingo Molnar
pat.h is a file whose main purpose is to provide the memtype_*() APIs. PAT is the low level hardware mechanism - but the high level abstraction is memtype. So name the header <memtype.h> as well - this goes hand in hand with memtype.c and memtype_interval.c. Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-21KVM: x86: create mmu/ subdirectoryPaolo Bonzini
Preparatory work for shattering mmu.c into multiple files. Besides making it easier to follow, this will also make it possible to write unit tests for various parts. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>