summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/mmu/mmu.c
AgeCommit message (Collapse)Author
2024-04-16Merge tag 'kvm-x86-fixes-6.9-rcN' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
- Fix a mostly benign bug in the gfn_to_pfn_cache infrastructure where KVM would allow userspace to refresh the cache with a bogus GPA. The bug has existed for quite some time, but was exposed by a new sanity check added in 6.9 (to ensure a cache is either GPA-based or HVA-based). - Drop an unused param from gfn_to_pfn_cache_invalidate_start() that got left behind during a 6.9 cleanup. - Disable support for virtualizing adaptive PEBS, as KVM's implementation is architecturally broken and can leak host LBRs to the guest. - Fix a bug where KVM neglects to set the enable bits for general purpose counters in PERF_GLOBAL_CTRL when initializing the virtual PMU. Both Intel and AMD architectures require the bits to be set at RESET in order for v2 PMUs to be backwards compatible with software that was written for v1 PMUs, i.e. for software that will never manually set the global enables. - Disable LBR virtualization on CPUs that don't support LBR callstacks, as KVM unconditionally uses PERF_SAMPLE_BRANCH_CALL_STACK when creating the virtual LBR perf event, i.e. KVM will always fail to create LBR events on such CPUs. - Fix a math goof in x86's hugepage logic for KVM_SET_MEMORY_ATTRIBUTES that results in an array overflow (detected by KASAN). - Fix a flaw in the max_guest_memory selftest that results in it exhausting the supply of ucall structures when run with more than 256 vCPUs. - Mark KVM_MEM_READONLY as supported for RISC-V in set_memory_region_test. - Fix a bug where KVM incorrectly thinks a TDP MMU root is an indirect shadow root due KVM unnecessarily clobbering root_role.direct when userspace sets guest CPUID. - Fix a dirty logging bug in the where KVM fails to write-protect TDP MMU SPTEs used for L2 if Page-Modification Logging is enabled for L1 and the L1 hypervisor is NOT using EPT (if nEPT is enabled, KVM doesn't use the TDP MMU to run L2). For simplicity, KVM always disables PML when running L2, but the TDP MMU wasn't accounting for root-specific conditions that force write- protect based dirty logging.
2024-04-11KVM: x86/mmu: Precisely invalidate MMU root_role during CPUID updateSean Christopherson
Set kvm_mmu_page_role.invalid to mark the various MMU root_roles invalid during CPUID update in order to force a refresh, instead of zeroing out the entire role. This fixes a bug where kvm_mmu_free_roots() incorrectly thinks a root is indirect, i.e. not a TDP MMU, due to "direct" being zeroed, which in turn causes KVM to take mmu_lock for write instead of read. Note, paving over the entire role was largely unintentional, commit 7a458f0e1ba1 ("KVM: x86/mmu: remove extended bits from mmu_role, rename field") simply missed that "invalid" could be set. Fixes: 576a15de8d29 ("KVM: x86/mmu: Free TDP MMU roots while holding mmy_lock for read") Reported-by: syzbot+dc308fcfcd53f987de73@syzkaller.appspotmail.com Closes: https://lore.kernel.org/all/0000000000009b38080614c49bdb@google.com Cc: Phi Nguyen <phind.uet@gmail.com> Link: https://lore.kernel.org/r/20240408231115.1387279-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-04-11KVM: x86: Snapshot if a vCPU's vendor model is AMD vs. Intel compatibleSean Christopherson
Add kvm_vcpu_arch.is_amd_compatible to cache if a vCPU's vendor model is compatible with AMD, i.e. if the vCPU vendor is AMD or Hygon, along with helpers to check if a vCPU is compatible AMD vs. Intel. To handle Intel vs. AMD behavior related to masking the LVTPC entry, KVM will need to check for vendor compatibility on every PMI injection, i.e. querying for AMD will soon be a moderately hot path. Note! This subtly (or maybe not-so-subtly) makes "Intel compatible" KVM's default behavior, both if userspace omits (or never sets) CPUID 0x0 and if userspace sets a completely unknown vendor. One could argue that KVM should treat such vCPUs as not being compatible with Intel *or* AMD, but that would add useless complexity to KVM. KVM needs to do *something* in the face of vendor specific behavior, and so unless KVM conjured up a magic third option, choosing to treat unknown vendors as neither Intel nor AMD means that checks on AMD compatibility would yield Intel behavior, and checks for Intel compatibility would yield AMD behavior. And that's far worse as it would effectively yield random behavior depending on whether KVM checked for AMD vs. Intel vs. !AMD vs. !Intel. And practically speaking, all x86 CPUs follow either Intel or AMD architecture, i.e. "supporting" an unknown third architecture adds no value. Deliberately don't convert any of the existing guest_cpuid_is_intel() checks, as the Intel side of things is messier due to some flows explicitly checking for exactly vendor==Intel, versus some flows assuming anything that isn't "AMD compatible" gets Intel behavior. The Intel code will be cleaned up in the future. Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20240405235603.1173076-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-08KVM: x86/mmu: x86: Don't overflow lpage_info when checking attributesRick Edgecombe
Fix KVM_SET_MEMORY_ATTRIBUTES to not overflow lpage_info array and trigger KASAN splat, as seen in the private_mem_conversions_test selftest. When memory attributes are set on a GFN range, that range will have specific properties applied to the TDP. A huge page cannot be used when the attributes are inconsistent, so they are disabled for those the specific huge pages. For internal KVM reasons, huge pages are also not allowed to span adjacent memslots regardless of whether the backing memory could be mapped as huge. What GFNs support which huge page sizes is tracked by an array of arrays 'lpage_info' on the memslot, of ‘kvm_lpage_info’ structs. Each index of lpage_info contains a vmalloc allocated array of these for a specific supported page size. The kvm_lpage_info denotes whether a specific huge page (GFN and page size) on the memslot is supported. These arrays include indices for unaligned head and tail huge pages. Preventing huge pages from spanning adjacent memslot is covered by incrementing the count in head and tail kvm_lpage_info when the memslot is allocated, but disallowing huge pages for memory that has mixed attributes has to be done in a more complicated way. During the KVM_SET_MEMORY_ATTRIBUTES ioctl KVM updates lpage_info for each memslot in the range that has mismatched attributes. KVM does this a memslot at a time, and marks a special bit, KVM_LPAGE_MIXED_FLAG, in the kvm_lpage_info for any huge page. This bit is essentially a permanently elevated count. So huge pages will not be mapped for the GFN at that page size if the count is elevated in either case: a huge head or tail page unaligned to the memslot or if KVM_LPAGE_MIXED_FLAG is set because it has mixed attributes. To determine whether a huge page has consistent attributes, the KVM_SET_MEMORY_ATTRIBUTES operation checks an xarray to make sure it consistently has the incoming attribute. Since level - 1 huge pages are aligned to level huge pages, it employs an optimization. As long as the level - 1 huge pages are checked first, it can just check these and assume that if each level - 1 huge page contained within the level sized huge page is not mixed, then the level size huge page is not mixed. This optimization happens in the helper hugepage_has_attrs(). Unfortunately, although the kvm_lpage_info array representing page size 'level' will contain an entry for an unaligned tail page of size level, the array for level - 1 will not contain an entry for each GFN at page size level. The level - 1 array will only contain an index for any unaligned region covered by level - 1 huge page size, which can be a smaller region. So this causes the optimization to overflow the level - 1 kvm_lpage_info and perform a vmalloc out of bounds read. In some cases of head and tail pages where an overflow could happen, callers skip the operation completely as KVM_LPAGE_MIXED_FLAG is not required to prevent huge pages as discussed earlier. But for memslots that are smaller than the 1GB page size, it does call hugepage_has_attrs(). In this case the huge page is both the head and tail page. The issue can be observed simply by compiling the kernel with CONFIG_KASAN_VMALLOC and running the selftest “private_mem_conversions_test”, which produces the output like the following: BUG: KASAN: vmalloc-out-of-bounds in hugepage_has_attrs+0x7e/0x110 Read of size 4 at addr ffffc900000a3008 by task private_mem_con/169 Call Trace: dump_stack_lvl print_report ? __virt_addr_valid ? hugepage_has_attrs ? hugepage_has_attrs kasan_report ? hugepage_has_attrs hugepage_has_attrs kvm_arch_post_set_memory_attributes kvm_vm_ioctl It is a little ambiguous whether the unaligned head page (in the bug case also the tail page) should be expected to have KVM_LPAGE_MIXED_FLAG set. It is not functionally required, as the unaligned head/tail pages will already have their kvm_lpage_info count incremented. The comments imply not setting it on unaligned head pages is intentional, so fix the callers to skip trying to set KVM_LPAGE_MIXED_FLAG in this case, and in doing so not call hugepage_has_attrs(). Cc: stable@vger.kernel.org Fixes: 90b4fe17981e ("KVM: x86: Disallow hugepages when memory attributes are mixed") Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Chao Peng <chao.p.peng@linux.intel.com> Link: https://lore.kernel.org/r/20240314212902.2762507-1-rick.p.edgecombe@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-03-15Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull kvm updates from Paolo Bonzini: "S390: - Changes to FPU handling came in via the main s390 pull request - Only deliver to the guest the SCLP events that userspace has requested - More virtual vs physical address fixes (only a cleanup since virtual and physical address spaces are currently the same) - Fix selftests undefined behavior x86: - Fix a restriction that the guest can't program a PMU event whose encoding matches an architectural event that isn't included in the guest CPUID. The enumeration of an architectural event only says that if a CPU supports an architectural event, then the event can be programmed *using the architectural encoding*. The enumeration does NOT say anything about the encoding when the CPU doesn't report support the event *in general*. It might support it, and it might support it using the same encoding that made it into the architectural PMU spec - Fix a variety of bugs in KVM's emulation of RDPMC (more details on individual commits) and add a selftest to verify KVM correctly emulates RDMPC, counter availability, and a variety of other PMC-related behaviors that depend on guest CPUID and therefore are easier to validate with selftests than with custom guests (aka kvm-unit-tests) - Zero out PMU state on AMD if the virtual PMU is disabled, it does not cause any bug but it wastes time in various cases where KVM would check if a PMC event needs to be synthesized - Optimize triggering of emulated events, with a nice ~10% performance improvement in VM-Exit microbenchmarks when a vPMU is exposed to the guest - Tighten the check for "PMI in guest" to reduce false positives if an NMI arrives in the host while KVM is handling an IRQ VM-Exit - Fix a bug where KVM would report stale/bogus exit qualification information when exiting to userspace with an internal error exit code - Add a VMX flag in /proc/cpuinfo to report 5-level EPT support - Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for read, e.g. to avoid serializing vCPUs when userspace deletes a memslot - Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB). KVM doesn't support yielding in the middle of processing a zap, and 1GiB granularity resulted in multi-millisecond lags that are quite impolite for CONFIG_PREEMPT kernels - Allocate write-tracking metadata on-demand to avoid the memory overhead when a kernel is built with i915 virtualization support but the workloads use neither shadow paging nor i915 virtualization - Explicitly initialize a variety of on-stack variables in the emulator that triggered KMSAN false positives - Fix the debugregs ABI for 32-bit KVM - Rework the "force immediate exit" code so that vendor code ultimately decides how and when to force the exit, which allowed some optimization for both Intel and AMD - Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if vCPU creation ultimately failed, causing extra unnecessary work - Cleanup the logic for checking if the currently loaded vCPU is in-kernel - Harden against underflowing the active mmu_notifier invalidation count, so that "bad" invalidations (usually due to bugs elsehwere in the kernel) are detected earlier and are less likely to hang the kernel x86 Xen emulation: - Overlay pages can now be cached based on host virtual address, instead of guest physical addresses. This removes the need to reconfigure and invalidate the cache if the guest changes the gpa but the underlying host virtual address remains the same - When possible, use a single host TSC value when computing the deadline for Xen timers in order to improve the accuracy of the timer emulation - Inject pending upcall events when the vCPU software-enables its APIC to fix a bug where an upcall can be lost (and to follow Xen's behavior) - Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen events fails, e.g. if the guest has aliased xAPIC IDs RISC-V: - Support exception and interrupt handling in selftests - New self test for RISC-V architectural timer (Sstc extension) - New extension support (Ztso, Zacas) - Support userspace emulation of random number seed CSRs ARM: - Infrastructure for building KVM's trap configuration based on the architectural features (or lack thereof) advertised in the VM's ID registers - Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to x86's WC) at stage-2, improving the performance of interacting with assigned devices that can tolerate it - Conversion of KVM's representation of LPIs to an xarray, utilized to address serialization some of the serialization on the LPI injection path - Support for _architectural_ VHE-only systems, advertised through the absence of FEAT_E2H0 in the CPU's ID register - Miscellaneous cleanups, fixes, and spelling corrections to KVM and selftests LoongArch: - Set reserved bits as zero in CPUCFG - Start SW timer only when vcpu is blocking - Do not restart SW timer when it is expired - Remove unnecessary CSR register saving during enter guest - Misc cleanups and fixes as usual Generic: - Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically always true on all architectures except MIPS (where Kconfig determines the available depending on CPU capabilities). It is replaced either by an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM) everywhere else - Factor common "select" statements in common code instead of requiring each architecture to specify it - Remove thoroughly obsolete APIs from the uapi headers - Move architecture-dependent stuff to uapi/asm/kvm.h - Always flush the async page fault workqueue when a work item is being removed, especially during vCPU destruction, to ensure that there are no workers running in KVM code when all references to KVM-the-module are gone, i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded - Grab a reference to the VM's mm_struct in the async #PF worker itself instead of gifting the worker a reference, so that there's no need to remember to *conditionally* clean up after the worker Selftests: - Reduce boilerplate especially when utilize selftest TAP infrastructure - Add basic smoke tests for SEV and SEV-ES, along with a pile of library support for handling private/encrypted/protected memory - Fix benign bugs where tests neglect to close() guest_memfd files" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits) selftests: kvm: remove meaningless assignments in Makefiles KVM: riscv: selftests: Add Zacas extension to get-reg-list test RISC-V: KVM: Allow Zacas extension for Guest/VM KVM: riscv: selftests: Add Ztso extension to get-reg-list test RISC-V: KVM: Allow Ztso extension for Guest/VM RISC-V: KVM: Forward SEED CSR access to user space KVM: riscv: selftests: Add sstc timer test KVM: riscv: selftests: Change vcpu_has_ext to a common function KVM: riscv: selftests: Add guest helper to get vcpu id KVM: riscv: selftests: Add exception handling support LoongArch: KVM: Remove unnecessary CSR register saving during enter guest LoongArch: KVM: Do not restart SW timer when it is expired LoongArch: KVM: Start SW timer only when vcpu is blocking LoongArch: KVM: Set reserved bits as zero in CPUCFG KVM: selftests: Explicitly close guest_memfd files in some gmem tests KVM: x86/xen: fix recursive deadlock in timer injection KVM: pfncache: simplify locking and make more self-contained KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled KVM: x86/xen: improve accuracy of Xen timers ...
2024-03-14Merge tag 'mm-stable-2024-03-13-20-04' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames from hotplugged memory rather than only from main memory. Series "implement "memmap on memory" feature on s390". - More folio conversions from Matthew Wilcox in the series "Convert memcontrol charge moving to use folios" "mm: convert mm counter to take a folio" - Chengming Zhou has optimized zswap's rbtree locking, providing significant reductions in system time and modest but measurable reductions in overall runtimes. The series is "mm/zswap: optimize the scalability of zswap rb-tree". - Chengming Zhou has also provided the series "mm/zswap: optimize zswap lru list" which provides measurable runtime benefits in some swap-intensive situations. - And Chengming Zhou further optimizes zswap in the series "mm/zswap: optimize for dynamic zswap_pools". Measured improvements are modest. - zswap cleanups and simplifications from Yosry Ahmed in the series "mm: zswap: simplify zswap_swapoff()". - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has contributed several DAX cleanups as well as adding a sysfs tunable to control the memmap_on_memory setting when the dax device is hotplugged as system memory. - Johannes Weiner has added the large series "mm: zswap: cleanups", which does that. - More DAMON work from SeongJae Park in the series "mm/damon: make DAMON debugfs interface deprecation unignorable" "selftests/damon: add more tests for core functionalities and corner cases" "Docs/mm/damon: misc readability improvements" "mm/damon: let DAMOS feeds and tame/auto-tune itself" - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs extension" Rakie Kim has developed a new mempolicy interleaving policy wherein we allocate memory across nodes in a weighted fashion rather than uniformly. This is beneficial in heterogeneous memory environments appearing with CXL. - Christophe Leroy has contributed some cleanup and consolidation work against the ARM pagetable dumping code in the series "mm: ptdump: Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute". - Luis Chamberlain has added some additional xarray selftesting in the series "test_xarray: advanced API multi-index tests". - Muhammad Usama Anjum has reworked the selftest code to make its human-readable output conform to the TAP ("Test Anything Protocol") format. Amongst other things, this opens up the use of third-party tools to parse and process out selftesting results. - Ryan Roberts has added fork()-time PTE batching of THP ptes in the series "mm/memory: optimize fork() with PTE-mapped THP". Mainly targeted at arm64, this significantly speeds up fork() when the process has a large number of pte-mapped folios. - David Hildenbrand also gets in on the THP pte batching game in his series "mm/memory: optimize unmap/zap with PTE-mapped THP". It implements batching during munmap() and other pte teardown situations. The microbenchmark improvements are nice. - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte mappings"). Kernel build times on arm64 improved nicely. Ryan's series "Address some contpte nits" provides some followup work. - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has fixed an obscure hugetlb race which was causing unnecessary page faults. He has also added a reproducer under the selftest code. - In the series "selftests/mm: Output cleanups for the compaction test", Mark Brown did what the title claims. - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring". - Even more zswap material from Nhat Pham. The series "fix and extend zswap kselftests" does as claimed. - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in our handling of DAX on archiecctures which have virtually aliasing data caches. The arm architecture is the main beneficiary. - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic improvements in worst-case mmap_lock hold times during certain userfaultfd operations. - Some page_owner enhancements and maintenance work from Oscar Salvador in his series "page_owner: print stacks and their outstanding allocations" "page_owner: Fixup and cleanup" - Uladzislau Rezki has contributed some vmalloc scalability improvements in his series "Mitigate a vmap lock contention". It realizes a 12x improvement for a certain microbenchmark. - Some kexec/crash cleanup work from Baoquan He in the series "Split crash out from kexec and clean up related config items". - Some zsmalloc maintenance work from Chengming Zhou in the series "mm/zsmalloc: fix and optimize objects/page migration" "mm/zsmalloc: some cleanup for get/set_zspage_mapping()" - Zi Yan has taught the MM to perform compaction on folios larger than order=0. This a step along the path to implementaton of the merging of large anonymous folios. The series is named "Enable >0 order folio memory compaction". - Christoph Hellwig has done quite a lot of cleanup work in the pagecache writeback code in his series "convert write_cache_pages() to an iterator". - Some modest hugetlb cleanups and speedups in Vishal Moola's series "Handle hugetlb faults under the VMA lock". - Zi Yan has changed the page splitting code so we can split huge pages into sizes other than order-0 to better utilize large folios. The series is named "Split a folio to any lower order folios". - David Hildenbrand has contributed the series "mm: remove total_mapcount()", a cleanup. - Matthew Wilcox has sought to improve the performance of bulk memory freeing in his series "Rearrange batched folio freeing". - Gang Li's series "hugetlb: parallelize hugetlb page init on boot" provides large improvements in bootup times on large machines which are configured to use large numbers of hugetlb pages. - Matthew Wilcox's series "PageFlags cleanups" does that. - Qi Zheng's series "minor fixes and supplement for ptdesc" does that also. S390 is affected. - Cleanups to our pagemap utility functions from Peter Xu in his series "mm/treewide: Replace pXd_large() with pXd_leaf()". - Nico Pache has fixed a few things with our hugepage selftests in his series "selftests/mm: Improve Hugepage Test Handling in MM Selftests". - Also, of course, many singleton patches to many things. Please see the individual changelogs for details. * tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits) mm/zswap: remove the memcpy if acomp is not sleepable crypto: introduce: acomp_is_async to expose if comp drivers might sleep memtest: use {READ,WRITE}_ONCE in memory scanning mm: prohibit the last subpage from reusing the entire large folio mm: recover pud_leaf() definitions in nopmd case selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements selftests/mm: skip uffd hugetlb tests with insufficient hugepages selftests/mm: dont fail testsuite due to a lack of hugepages mm/huge_memory: skip invalid debugfs new_order input for folio split mm/huge_memory: check new folio order when split a folio mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure mm: add an explicit smp_wmb() to UFFDIO_CONTINUE mm: fix list corruption in put_pages_list mm: remove folio from deferred split list before uncharging it filemap: avoid unnecessary major faults in filemap_fault() mm,page_owner: drop unnecessary check mm,page_owner: check for null stack_record before bumping its refcount mm: swap: fix race between free_swap_and_cache() and swapoff() mm/treewide: align up pXd_leaf() retval across archs mm/treewide: drop pXd_large() ...
2024-03-12Merge tag 'hardening-v6.9-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull hardening updates from Kees Cook: "As is pretty normal for this tree, there are changes all over the place, especially for small fixes, selftest improvements, and improved macro usability. Some header changes ended up landing via this tree as they depended on the string header cleanups. Also, a notable set of changes is the work for the reintroduction of the UBSAN signed integer overflow sanitizer so that we can continue to make improvements on the compiler side to make this sanitizer a more viable future security hardening option. Summary: - string.h and related header cleanups (Tanzir Hasan, Andy Shevchenko) - VMCI memcpy() usage and struct_size() cleanups (Vasiliy Kovalev, Harshit Mogalapalli) - selftests/powerpc: Fix load_unaligned_zeropad build failure (Michael Ellerman) - hardened Kconfig fragment updates (Marco Elver, Lukas Bulwahn) - Handle tail call optimization better in LKDTM (Douglas Anderson) - Use long form types in overflow.h (Andy Shevchenko) - Add flags param to string_get_size() (Andy Shevchenko) - Add Coccinelle script for potential struct_size() use (Jacob Keller) - Fix objtool corner case under KCFI (Josh Poimboeuf) - Drop 13 year old backward compat CAP_SYS_ADMIN check (Jingzi Meng) - Add str_plural() helper (Michal Wajdeczko, Kees Cook) - Ignore relocations in .notes section - Add comments to explain how __is_constexpr() works - Fix m68k stack alignment expectations in stackinit Kunit test - Convert string selftests to KUnit - Add KUnit tests for fortified string functions - Improve reporting during fortified string warnings - Allow non-type arg to type_max() and type_min() - Allow strscpy() to be called with only 2 arguments - Add binary mode to leaking_addresses scanner - Various small cleanups to leaking_addresses scanner - Adding wrapping_*() arithmetic helper - Annotate initial signed integer wrap-around in refcount_t - Add explicit UBSAN section to MAINTAINERS - Fix UBSAN self-test warnings - Simplify UBSAN build via removal of CONFIG_UBSAN_SANITIZE_ALL - Reintroduce UBSAN's signed overflow sanitizer" * tag 'hardening-v6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (51 commits) selftests/powerpc: Fix load_unaligned_zeropad build failure string: Convert helpers selftest to KUnit string: Convert selftest to KUnit sh: Fix build with CONFIG_UBSAN=y compiler.h: Explain how __is_constexpr() works overflow: Allow non-type arg to type_max() and type_min() VMCI: Fix possible memcpy() run-time warning in vmci_datagram_invoke_guest_handler() lib/string_helpers: Add flags param to string_get_size() x86, relocs: Ignore relocations in .notes section objtool: Fix UNWIND_HINT_{SAVE,RESTORE} across basic blocks overflow: Use POD in check_shl_overflow() lib: stackinit: Adjust target string to 8 bytes for m68k sparc: vdso: Disable UBSAN instrumentation kernel.h: Move lib/cmdline.c prototypes to string.h leaking_addresses: Provide mechanism to scan binary files leaking_addresses: Ignore input device status lines leaking_addresses: Use File::Temp for /tmp files MAINTAINERS: Update LEAKING_ADDRESSES details fortify: Improve buffer overflow reporting fortify: Add KUnit tests for runtime overflows ...
2024-03-11Merge tag 'x86-core-2024-03-11' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core x86 updates from Ingo Molnar: - The biggest change is the rework of the percpu code, to support the 'Named Address Spaces' GCC feature, by Uros Bizjak: - This allows C code to access GS and FS segment relative memory via variables declared with such attributes, which allows the compiler to better optimize those accesses than the previous inline assembly code. - The series also includes a number of micro-optimizations for various percpu access methods, plus a number of cleanups of %gs accesses in assembly code. - These changes have been exposed to linux-next testing for the last ~5 months, with no known regressions in this area. - Fix/clean up __switch_to()'s broken but accidentally working handling of FPU switching - which also generates better code - Propagate more RIP-relative addressing in assembly code, to generate slightly better code - Rework the CPU mitigations Kconfig space to be less idiosyncratic, to make it easier for distros to follow & maintain these options - Rework the x86 idle code to cure RCU violations and to clean up the logic - Clean up the vDSO Makefile logic - Misc cleanups and fixes * tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits) x86/idle: Select idle routine only once x86/idle: Let prefer_mwait_c1_over_halt() return bool x86/idle: Cleanup idle_setup() x86/idle: Clean up idle selection x86/idle: Sanitize X86_BUG_AMD_E400 handling sched/idle: Conditionally handle tick broadcast in default_idle_call() x86: Increase brk randomness entropy for 64-bit systems x86/vdso: Move vDSO to mmap region x86/vdso/kbuild: Group non-standard build attributes and primary object file rules together x86/vdso: Fix rethunk patching for vdso-image-{32,64}.o x86/retpoline: Ensure default return thunk isn't used at runtime x86/vdso: Use CONFIG_COMPAT_32 to specify vdso32 x86/vdso: Use $(addprefix ) instead of $(foreach ) x86/vdso: Simplify obj-y addition x86/vdso: Consolidate targets and clean-files x86/bugs: Rename CONFIG_RETHUNK => CONFIG_MITIGATION_RETHUNK x86/bugs: Rename CONFIG_CPU_SRSO => CONFIG_MITIGATION_SRSO x86/bugs: Rename CONFIG_CPU_IBRS_ENTRY => CONFIG_MITIGATION_IBRS_ENTRY x86/bugs: Rename CONFIG_CPU_UNRET_ENTRY => CONFIG_MITIGATION_UNRET_ENTRY x86/bugs: Rename CONFIG_SLS => CONFIG_MITIGATION_SLS ...
2024-03-11Merge tag 'x86-cleanups-2024-03-11' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cleanups from Ingo Molnar: "Misc cleanups, including a large series from Thomas Gleixner to cure sparse warnings" * tag 'x86-cleanups-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/nmi: Drop unused declaration of proc_nmi_enabled() x86/callthunks: Use EXPORT_PER_CPU_SYMBOL_GPL() for per CPU variables x86/cpu: Provide a declaration for itlb_multihit_kvm_mitigation x86/cpu: Use EXPORT_PER_CPU_SYMBOL_GPL() for x86_spec_ctrl_current x86/uaccess: Add missing __force to casts in __access_ok() and valid_user_address() x86/percpu: Cure per CPU madness on UP smp: Consolidate smp_prepare_boot_cpu() x86/msr: Add missing __percpu annotations x86/msr: Prepare for including <linux/percpu.h> into <asm/msr.h> perf/x86/amd/uncore: Fix __percpu annotation x86/nmi: Remove an unnecessary IS_ENABLED(CONFIG_SMP) x86/apm_32: Remove dead function apm_get_battery_status() x86/insn-eval: Fix function param name in get_eff_addr_sib()
2024-03-06mm/treewide: drop pXd_large()Peter Xu
They're not used anymore, drop all of them. Link: https://lkml.kernel.org/r/20240305043750.93762-10-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06mm/treewide: replace pud_large() with pud_leaf()Peter Xu
pud_large() is always defined as pud_leaf(). Merge their usages. Chose pud_leaf() because pud_leaf() is a global API, while pud_large() is not. Link: https://lkml.kernel.org/r/20240305043750.93762-9-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06mm/treewide: replace pmd_large() with pmd_leaf()Peter Xu
pmd_large() is always defined as pmd_leaf(). Merge their usages. Chose pmd_leaf() because pmd_leaf() is a global API, while pmd_large() is not. Link: https://lkml.kernel.org/r/20240305043750.93762-8-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-04x86/cpu: Provide a declaration for itlb_multihit_kvm_mitigationThomas Gleixner
Sparse complains rightfully about the missing declaration which has been placed sloppily into the usage site: bugs.c:2223:6: sparse: warning: symbol 'itlb_multihit_kvm_mitigation' was not declared. Should it be static? Add it to <asm/spec-ctrl.h> where it belongs and remove the one in the KVM code. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20240304005104.787173239@linutronix.de
2024-02-23KVM: x86/mmu: Retry fault before acquiring mmu_lock if mapping is changingSean Christopherson
Retry page faults without acquiring mmu_lock, and without even faulting the page into the primary MMU, if the resolved gfn is covered by an active invalidation. Contending for mmu_lock is especially problematic on preemptible kernels as the mmu_notifier invalidation task will yield mmu_lock (see rwlock_needbreak()), delay the in-progress invalidation, and ultimately increase the latency of resolving the page fault. And in the worst case scenario, yielding will be accompanied by a remote TLB flush, e.g. if the invalidation covers a large range of memory and vCPUs are accessing addresses that were already zapped. Faulting the page into the primary MMU is similarly problematic, as doing so may acquire locks that need to be taken for the invalidation to complete (the primary MMU has finer grained locks than KVM's MMU), and/or may cause unnecessary churn (getting/putting pages, marking them accessed, etc). Alternatively, the yielding issue could be mitigated by teaching KVM's MMU iterators to perform more work before yielding, but that wouldn't solve the lock contention and would negatively affect scenarios where a vCPU is trying to fault in an address that is NOT covered by the in-progress invalidation. Add a dedicated lockess version of the range-based retry check to avoid false positives on the sanity check on start+end WARN, and so that it's super obvious that checking for a racing invalidation without holding mmu_lock is unsafe (though obviously useful). Wrap mmu_invalidate_in_progress in READ_ONCE() to ensure that pre-checking invalidation in a loop won't put KVM into an infinite loop, e.g. due to caching the in-progress flag and never seeing it go to '0'. Force a load of mmu_invalidate_seq as well, even though it isn't strictly necessary to avoid an infinite loop, as doing so improves the probability that KVM will detect an invalidation that already completed before acquiring mmu_lock and bailing anyways. Do the pre-check even for non-preemptible kernels, as waiting to detect the invalidation until mmu_lock is held guarantees the vCPU will observe the worst case latency in terms of handling the fault, and can generate even more mmu_lock contention. E.g. the vCPU will acquire mmu_lock, detect retry, drop mmu_lock, re-enter the guest, retake the fault, and eventually re-acquire mmu_lock. This behavior is also why there are no new starvation issues due to losing the fairness guarantees provided by rwlocks: if the vCPU needs to retry, it _must_ drop mmu_lock, i.e. waiting on mmu_lock doesn't guarantee forward progress in the face of _another_ mmu_notifier invalidation event. Note, adding READ_ONCE() isn't entirely free, e.g. on x86, the READ_ONCE() may generate a load into a register instead of doing a direct comparison (MOV+TEST+Jcc instead of CMP+Jcc), but practically speaking the added cost is a few bytes of code and maaaaybe a cycle or three. Reported-by: Yan Zhao <yan.y.zhao@intel.com> Closes: https://lore.kernel.org/all/ZNnPF4W26ZbAyGto@yzhao56-desk.sh.intel.com Reported-by: Friedrich Weber <f.weber@proxmox.com> Cc: Kai Huang <kai.huang@intel.com> Cc: Yan Zhao <yan.y.zhao@intel.com> Cc: Yuan Yao <yuan.yao@linux.intel.com> Cc: Xu Yilun <yilun.xu@linux.intel.com> Acked-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Yan Zhao <yan.y.zhao@intel.com> Link: https://lore.kernel.org/r/20240222012640.2820927-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22KVM: x86/mmu: Free TDP MMU roots while holding mmy_lock for readSean Christopherson
Free TDP MMU roots from vCPU context while holding mmu_lock for read, it is completely legal to invoke kvm_tdp_mmu_put_root() as a reader. This eliminates the last mmu_lock writer in the TDP MMU's "fast zap" path after requesting vCPUs to reload roots, i.e. allows KVM to zap invalidated roots, free obsolete roots, and allocate new roots in parallel. On large VMs, e.g. 100+ vCPUs, allowing the bulk of the "fast zap" operation to run in parallel with freeing and allocating roots reduces the worst case latency for a vCPU to reload a root from 2-3ms to <100us. Link: https://lore.kernel.org/r/20240111020048.844847-9-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22KVM: x86/mmu: Check for usable TDP MMU root while holding mmu_lock for readSean Christopherson
When allocating a new TDP MMU root, check for a usable root while holding mmu_lock for read and only acquire mmu_lock for write if a new root needs to be created. There is no need to serialize other MMU operations if a vCPU is simply grabbing a reference to an existing root, holding mmu_lock for write is "necessary" (spoiler alert, it's not strictly necessary) only to ensure KVM doesn't end up with duplicate roots. Allowing vCPUs to get "new" roots in parallel is beneficial to VM boot and to setups that frequently delete memslots, i.e. which force all vCPUs to reload all roots. Link: https://lore.kernel.org/r/20240111020048.844847-7-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-14Merge branch 'x86/bugs' into x86/core, to pick up pending changes before ↵Ingo Molnar
dependent patches Merge in pending alternatives patching infrastructure changes, before applying more patches. Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-02-01kernel.h: removed REPEAT_BYTE from kernel.hTanzir Hasan
This patch creates wordpart.h and includes it in asm/word-at-a-time.h for all architectures. WORD_AT_A_TIME_CONSTANTS depends on kernel.h because of REPEAT_BYTE. Moving this to another header and including it where necessary allows us to not include the bloated kernel.h. Making this implicit dependency on REPEAT_BYTE explicit allows for later improvements in the lib/string.c inclusion list. Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Suggested-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Tanzir Hasan <tanzirh@google.com> Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Link: https://lore.kernel.org/r/20231226-libstringheader-v6-1-80aa08c7652c@google.com Signed-off-by: Kees Cook <keescook@chromium.org>
2024-01-31KVM: x86/mmu: Use KMEM_CACHE instead of kmem_cache_create()Kunwu Chan
Use the new KMEM_CACHE() macro instead of direct kmem_cache_create to simplify the creation of SLAB caches. Note, KMEM_CACHE() uses the required alignment of the struct, '8' as the alignment, whereas KVM's existing code passes '0'. In the end, the two values yield the same result as x86's minimum slab alignment is also '8' (which is not at all coincidental). Signed-off-by: Kunwu Chan <chentao@kylinos.cn> Link: https://lore.kernel.org/r/20240116100025.95702-1-chentao@kylinos.cn [sean: call out alignment behavior] Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-01-17Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull kvm updates from Paolo Bonzini: "Generic: - Use memdup_array_user() to harden against overflow. - Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures. - Clean up Kconfigs that all KVM architectures were selecting - New functionality around "guest_memfd", a new userspace API that creates an anonymous file and returns a file descriptor that refers to it. guest_memfd files are bound to their owning virtual machine, cannot be mapped, read, or written by userspace, and cannot be resized. guest_memfd files do however support PUNCH_HOLE, which can be used to switch a memory area between guest_memfd and regular anonymous memory. - New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify per-page attributes for a given page of guest memory; right now the only attribute is whether the guest expects to access memory via guest_memfd or not, which in Confidential SVMs backed by SEV-SNP, TDX or ARM64 pKVM is checked by firmware or hypervisor that guarantees confidentiality (AMD PSP, Intel TDX module, or EL2 in the case of pKVM). x86: - Support for "software-protected VMs" that can use the new guest_memfd and page attributes infrastructure. This is mostly useful for testing, since there is no pKVM-like infrastructure to provide a meaningfully reduced TCB. - Fix a relatively benign off-by-one error when splitting huge pages during CLEAR_DIRTY_LOG. - Fix a bug where KVM could incorrectly test-and-clear dirty bits in non-leaf TDP MMU SPTEs if a racing thread replaces a huge SPTE with a non-huge SPTE. - Use more generic lockdep assertions in paths that don't actually care about whether the caller is a reader or a writer. - let Xen guests opt out of having PV clock reported as "based on a stable TSC", because some of them don't expect the "TSC stable" bit (added to the pvclock ABI by KVM, but never set by Xen) to be set. - Revert a bogus, made-up nested SVM consistency check for TLB_CONTROL. - Advertise flush-by-ASID support for nSVM unconditionally, as KVM always flushes on nested transitions, i.e. always satisfies flush requests. This allows running bleeding edge versions of VMware Workstation on top of KVM. - Sanity check that the CPU supports flush-by-ASID when enabling SEV support. - On AMD machines with vNMI, always rely on hardware instead of intercepting IRET in some cases to detect unmasking of NMIs - Support for virtualizing Linear Address Masking (LAM) - Fix a variety of vPMU bugs where KVM fail to stop/reset counters and other state prior to refreshing the vPMU model. - Fix a double-overflow PMU bug by tracking emulated counter events using a dedicated field instead of snapshotting the "previous" counter. If the hardware PMC count triggers overflow that is recognized in the same VM-Exit that KVM manually bumps an event count, KVM would pend PMIs for both the hardware-triggered overflow and for KVM-triggered overflow. - Turn off KVM_WERROR by default for all configs so that it's not inadvertantly enabled by non-KVM developers, which can be problematic for subsystems that require no regressions for W=1 builds. - Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL "features". - Don't force a masterclock update when a vCPU synchronizes to the current TSC generation, as updating the masterclock can cause kvmclock's time to "jump" unexpectedly, e.g. when userspace hotplugs a pre-created vCPU. - Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths, partly as a super minor optimization, but mostly to make KVM play nice with position independent executable builds. - Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on CONFIG_HYPERV as a minor optimization, and to self-document the code. - Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation" at build time. ARM64: - LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB base granule sizes. Branch shared with the arm64 tree. - Large Fine-Grained Trap rework, bringing some sanity to the feature, although there is more to come. This comes with a prefix branch shared with the arm64 tree. - Some additional Nested Virtualization groundwork, mostly introducing the NV2 VNCR support and retargetting the NV support to that version of the architecture. - A small set of vgic fixes and associated cleanups. Loongarch: - Optimization for memslot hugepage checking - Cleanup and fix some HW/SW timer issues - Add LSX/LASX (128bit/256bit SIMD) support RISC-V: - KVM_GET_REG_LIST improvement for vector registers - Generate ISA extension reg_list using macros in get-reg-list selftest - Support for reporting steal time along with selftest s390: - Bugfixes Selftests: - Fix an annoying goof where the NX hugepage test prints out garbage instead of the magic token needed to run the test. - Fix build errors when a header is delete/moved due to a missing flag in the Makefile. - Detect if KVM bugged/killed a selftest's VM and print out a helpful message instead of complaining that a random ioctl() failed. - Annotate the guest printf/assert helpers with __printf(), and fix the various bugs that were lurking due to lack of said annotation" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (185 commits) x86/kvm: Do not try to disable kvmclock if it was not enabled KVM: x86: add missing "depends on KVM" KVM: fix direction of dependency on MMU notifiers KVM: introduce CONFIG_KVM_COMMON KVM: arm64: Add missing memory barriers when switching to pKVM's hyp pgd KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache RISC-V: KVM: selftests: Add get-reg-list test for STA registers RISC-V: KVM: selftests: Add steal_time test support RISC-V: KVM: selftests: Add guest_sbi_probe_extension RISC-V: KVM: selftests: Move sbi_ecall to processor.c RISC-V: KVM: Implement SBI STA extension RISC-V: KVM: Add support for SBI STA registers RISC-V: KVM: Add support for SBI extension registers RISC-V: KVM: Add SBI STA info to vcpu_arch RISC-V: KVM: Add steal-update vcpu request RISC-V: KVM: Add SBI STA extension skeleton RISC-V: paravirt: Implement steal-time support RISC-V: Add SBI STA extension definitions RISC-V: paravirt: Add skeleton for pv-time support RISC-V: KVM: Fix indentation in kvm_riscv_vcpu_set_reg_csr() ...
2024-01-10x86/bugs: Rename CONFIG_RETPOLINE => CONFIG_MITIGATION_RETPOLINEBreno Leitao
Step 5/10 of the namespace unification of CPU mitigations related Kconfig options. [ mingo: Converted a few more uses in comments/messages as well. ] Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ariel Miculas <amiculas@cisco.com> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20231121160740.1249350-6-leitao@debian.org
2024-01-08Merge tag 'kvm-x86-mmu-6.8' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 MMU changes for 6.8: - Fix a relatively benign off-by-one error when splitting huge pages during CLEAR_DIRTY_LOG. - Fix a bug where KVM could incorrectly test-and-clear dirty bits in non-leaf TDP MMU SPTEs if a racing thread replaces a huge SPTE with a non-huge SPTE. - Relax the TDP MMU's lockdep assertions related to holding mmu_lock for read versus write so that KVM doesn't pass "bool shared" all over the place just to have precise assertions in paths that don't actually care about whether the caller is a reader or a writer.
2024-01-08Merge tag 'kvm-x86-lam-6.8' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 support for virtualizing Linear Address Masking (LAM) Add KVM support for Linear Address Masking (LAM). LAM tweaks the canonicality checks for most virtual address usage in 64-bit mode, such that only the most significant bit of the untranslated address bits must match the polarity of the last translated address bit. This allows software to use ignored, untranslated address bits for metadata, e.g. to efficiently tag pointers for address sanitization. LAM can be enabled separately for user pointers and supervisor pointers, and for userspace LAM can be select between 48-bit and 57-bit masking - 48-bit LAM: metadata bits 62:48, i.e. LAM width of 15. - 57-bit LAM: metadata bits 62:57, i.e. LAM width of 6. For user pointers, LAM enabling utilizes two previously-reserved high bits from CR3 (similar to how PCID_NOFLUSH uses bit 63): LAM_U48 and LAM_U57, bits 62 and 61 respectively. Note, if LAM_57 is set, LAM_U48 is ignored, i.e.: - CR3.LAM_U48=0 && CR3.LAM_U57=0 == LAM disabled for user pointers - CR3.LAM_U48=1 && CR3.LAM_U57=0 == LAM-48 enabled for user pointers - CR3.LAM_U48=x && CR3.LAM_U57=1 == LAM-57 enabled for user pointers For supervisor pointers, LAM is controlled by a single bit, CR4.LAM_SUP, with the 48-bit versus 57-bit LAM behavior following the current paging mode, i.e.: - CR4.LAM_SUP=0 && CR4.LA57=x == LAM disabled for supervisor pointers - CR4.LAM_SUP=1 && CR4.LA57=0 == LAM-48 enabled for supervisor pointers - CR4.LAM_SUP=1 && CR4.LA57=1 == LAM-57 enabled for supervisor pointers The modified LAM canonicality checks: - LAM_S48 : [ 1 ][ metadata ][ 1 ] 63 47 - LAM_U48 : [ 0 ][ metadata ][ 0 ] 63 47 - LAM_S57 : [ 1 ][ metadata ][ 1 ] 63 56 - LAM_U57 + 5-lvl paging : [ 0 ][ metadata ][ 0 ] 63 56 - LAM_U57 + 4-lvl paging : [ 0 ][ metadata ][ 0...0 ] 63 56..47 The bulk of KVM support for LAM is to emulate LAM's modified canonicality checks. The approach taken by KVM is to "fill" the metadata bits using the highest bit of the translated address, e.g. for LAM-48, bit 47 is sign-extended to bits 62:48. The most significant bit, 63, is *not* modified, i.e. its value from the raw, untagged virtual address is kept for the canonicality check. This untagging allows Aside from emulating LAM's canonical checks behavior, LAM has the usual KVM touchpoints for selectable features: enumeration (CPUID.7.1:EAX.LAM[bit 26], enabling via CR3 and CR4 bits, etc.
2024-01-03arch/x86: Fix typosBjorn Helgaas
Fix typos, most reported by "codespell arch/x86". Only touches comments, no code changes. Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Link: https://lore.kernel.org/r/20240103004011.1758650-1-helgaas@kernel.org
2023-12-01KVM: x86/mmu: fix comment about mmu_unsync_pages_lockPaolo Bonzini
Fix the comment about what can and cannot happen when mmu_unsync_pages_lock is not help. The comment correctly mentions "clearing sp->unsync", but then it talks about unsync going from 0 to 1. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Link: https://lore.kernel.org/r/20231125083400.1399197-5-pbonzini@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-12-01KVM: x86/mmu: remove unnecessary "bool shared" argument from functionsPaolo Bonzini
Neither tdp_mmu_next_root nor kvm_tdp_mmu_put_root need to know if the lock is taken for read or write. Either way, protection is achieved via RCU and tdp_mmu_pages_lock. Remove the argument and just assert that the lock is taken. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Link: https://lore.kernel.org/r/20231125083400.1399197-2-pbonzini@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-12-01KVM: x86/mmu: Fix off-by-1 when splitting huge pages during CLEARDavid Matlack
Fix an off-by-1 error when passing in the range of pages to kvm_mmu_try_split_huge_pages() during CLEAR_DIRTY_LOG. Specifically, end is the last page that needs to be split (inclusive) so pass in `end + 1` since kvm_mmu_try_split_huge_pages() expects the `end` to be non-inclusive. At worst this will cause a huge page to be write-protected instead of eagerly split, which is purely a performance issue, not a correctness issue. But even that is unlikely as it would require userspace pass in a bitmap where the last page is the only 4K page on a huge page that needs to be split. Reported-by: Vipin Sharma <vipinsh@google.com> Fixes: cb00a70bd4b7 ("KVM: x86/mmu: Split huge pages mapped by the TDP MMU during KVM_CLEAR_DIRTY_LOG") Signed-off-by: David Matlack <dmatlack@google.com> Link: https://lore.kernel.org/r/20231027172640.2335197-2-dmatlack@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-11-29KVM: x86/mmu: Declare flush_remote_tlbs{_range}() hooks iff HYPERV!=nSean Christopherson
Declare the kvm_x86_ops hooks used to wire up paravirt TLB flushes when running under Hyper-V if and only if CONFIG_HYPERV!=n. Wrapping yet more code with IS_ENABLED(CONFIG_HYPERV) eliminates a handful of conditional branches, and makes it super obvious why the hooks *might* be valid. Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20231018192325.1893896-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-11-28KVM: x86/mmu: Drop non-PA bits when getting GFN for guest's PGDBinbin Wu
Drop non-PA bits when getting GFN for guest's PGD with the maximum theoretical mask for guest MAXPHYADDR. Do it unconditionally because it's harmless for 32-bit guests, querying 64-bit mode would be more expensive, and for EPT the mask isn't tied to guest mode. Using PT_BASE_ADDR_MASK would be technically wrong (PAE paging has 64-bit elements _except_ for CR3, which has only 32 valid bits), it wouldn't matter in practice though. Opportunistically use GENMASK_ULL() to define __PT_BASE_ADDR_MASK. Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Tested-by: Xuelian Guo <xuelian.guo@intel.com> Link: https://lore.kernel.org/r/20230913124227.12574-6-binbin.wu@linux.intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-11-14Merge branch 'kvm-guestmemfd' into HEADPaolo Bonzini
Introduce several new KVM uAPIs to ultimately create a guest-first memory subsystem within KVM, a.k.a. guest_memfd. Guest-first memory allows KVM to provide features, enhancements, and optimizations that are kludgly or outright impossible to implement in a generic memory subsystem. The core KVM ioctl() for guest_memfd is KVM_CREATE_GUEST_MEMFD, which similar to the generic memfd_create(), creates an anonymous file and returns a file descriptor that refers to it. Again like "regular" memfd files, guest_memfd files live in RAM, have volatile storage, and are automatically released when the last reference is dropped. The key differences between memfd files (and every other memory subystem) is that guest_memfd files are bound to their owning virtual machine, cannot be mapped, read, or written by userspace, and cannot be resized. guest_memfd files do however support PUNCH_HOLE, which can be used to convert a guest memory area between the shared and guest-private states. A second KVM ioctl(), KVM_SET_MEMORY_ATTRIBUTES, allows userspace to specify attributes for a given page of guest memory. In the long term, it will likely be extended to allow userspace to specify per-gfn RWX protections, including allowing memory to be writable in the guest without it also being writable in host userspace. The immediate and driving use case for guest_memfd are Confidential (CoCo) VMs, specifically AMD's SEV-SNP, Intel's TDX, and KVM's own pKVM. For such use cases, being able to map memory into KVM guests without requiring said memory to be mapped into the host is a hard requirement. While SEV+ and TDX prevent untrusted software from reading guest private data by encrypting guest memory, pKVM provides confidentiality and integrity *without* relying on memory encryption. In addition, with SEV-SNP and especially TDX, accessing guest private memory can be fatal to the host, i.e. KVM must be prevent host userspace from accessing guest memory irrespective of hardware behavior. Long term, guest_memfd may be useful for use cases beyond CoCo VMs, for example hardening userspace against unintentional accesses to guest memory. As mentioned earlier, KVM's ABI uses userspace VMA protections to define the allow guest protection (with an exception granted to mapping guest memory executable), and similarly KVM currently requires the guest mapping size to be a strict subset of the host userspace mapping size. Decoupling the mappings sizes would allow userspace to precisely map only what is needed and with the required permissions, without impacting guest performance. A guest-first memory subsystem also provides clearer line of sight to things like a dedicated memory pool (for slice-of-hardware VMs) and elimination of "struct page" (for offload setups where userspace _never_ needs to DMA from or into guest memory). guest_memfd is the result of 3+ years of development and exploration; taking on memory management responsibilities in KVM was not the first, second, or even third choice for supporting CoCo VMs. But after many failed attempts to avoid KVM-specific backing memory, and looking at where things ended up, it is quite clear that of all approaches tried, guest_memfd is the simplest, most robust, and most extensible, and the right thing to do for KVM and the kernel at-large. The "development cycle" for this version is going to be very short; ideally, next week I will merge it as is in kvm/next, taking this through the KVM tree for 6.8 immediately after the end of the merge window. The series is still based on 6.6 (plus KVM changes for 6.7) so it will require a small fixup for changes to get_file_rcu() introduced in 6.7 by commit 0ede61d8589c ("file: convert to SLAB_TYPESAFE_BY_RCU"). The fixup will be done as part of the merge commit, and most of the text above will become the commit message for the merge. Pending post-merge work includes: - hugepage support - looking into using the restrictedmem framework for guest memory - introducing a testing mechanism to poison memory, possibly using the same memory attributes introduced here - SNP and TDX support There are two non-KVM patches buried in the middle of this series: fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure() mm: Add AS_UNMOVABLE to mark mapping as completely unmovable The first is small and mostly suggested-by Christian Brauner; the second a bit less so but it was written by an mm person (Vlastimil Babka).
2023-11-14KVM: Allow arch code to track number of memslot address spaces per VMSean Christopherson
Let x86 track the number of address spaces on a per-VM basis so that KVM can disallow SMM memslots for confidential VMs. Confidentials VMs are fundamentally incompatible with emulating SMM, which as the name suggests requires being able to read and write guest memory and register state. Disallowing SMM will simplify support for guest private memory, as KVM will not need to worry about tracking memory attributes for multiple address spaces (SMM is the only "non-default" address space across all architectures). Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Fuad Tabba <tabba@google.com> Tested-by: Fuad Tabba <tabba@google.com> Message-Id: <20231027182217.3615211-23-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-11-14KVM: x86/mmu: Handle page fault for private memoryChao Peng
Add support for resolving page faults on guest private memory for VMs that differentiate between "shared" and "private" memory. For such VMs, KVM_MEM_GUEST_MEMFD memslots can include both fd-based private memory and hva-based shared memory, and KVM needs to map in the "correct" variant, i.e. KVM needs to map the gfn shared/private as appropriate based on the current state of the gfn's KVM_MEMORY_ATTRIBUTE_PRIVATE flag. For AMD's SEV-SNP and Intel's TDX, the guest effectively gets to request shared vs. private via a bit in the guest page tables, i.e. what the guest wants may conflict with the current memory attributes. To support such "implicit" conversion requests, exit to user with KVM_EXIT_MEMORY_FAULT to forward the request to userspace. Add a new flag for memory faults, KVM_MEMORY_EXIT_FLAG_PRIVATE, to communicate whether the guest wants to map memory as shared vs. private. Like KVM_MEMORY_ATTRIBUTE_PRIVATE, use bit 3 for flagging private memory so that KVM can use bits 0-2 for capturing RWX behavior if/when userspace needs such information, e.g. a likely user of KVM_EXIT_MEMORY_FAULT is to exit on missing mappings when handling guest page fault VM-Exits. In that case, userspace will want to know RWX information in order to correctly/precisely resolve the fault. Note, private memory *must* be backed by guest_memfd, i.e. shared mappings always come from the host userspace page tables, and private mappings always come from a guest_memfd instance. Co-developed-by: Yu Zhang <yu.c.zhang@linux.intel.com> Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com> Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com> Co-developed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Fuad Tabba <tabba@google.com> Tested-by: Fuad Tabba <tabba@google.com> Message-Id: <20231027182217.3615211-21-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-11-14KVM: x86: Disallow hugepages when memory attributes are mixedChao Peng
Disallow creating hugepages with mixed memory attributes, e.g. shared versus private, as mapping a hugepage in this case would allow the guest to access memory with the wrong attributes, e.g. overlaying private memory with a shared hugepage. Tracking whether or not attributes are mixed via the existing disallow_lpage field, but use the most significant bit in 'disallow_lpage' to indicate a hugepage has mixed attributes instead using the normal refcounting. Whether or not attributes are mixed is binary; either they are or they aren't. Attempting to squeeze that info into the refcount is unnecessarily complex as it would require knowing the previous state of the mixed count when updating attributes. Using a flag means KVM just needs to ensure the current status is reflected in the memslots. Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com> Co-developed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20231027182217.3615211-20-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-11-13KVM: Use gfn instead of hva for mmu_notifier_retryChao Peng
Currently in mmu_notifier invalidate path, hva range is recorded and then checked against by mmu_invalidate_retry_hva() in the page fault handling path. However, for the soon-to-be-introduced private memory, a page fault may not have a hva associated, checking gfn(gpa) makes more sense. For existing hva based shared memory, gfn is expected to also work. The only downside is when aliasing multiple gfns to a single hva, the current algorithm of checking multiple ranges could result in a much larger range being rejected. Such aliasing should be uncommon, so the impact is expected small. Suggested-by: Sean Christopherson <seanjc@google.com> Cc: Xu Yilun <yilun.xu@intel.com> Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com> Reviewed-by: Fuad Tabba <tabba@google.com> Tested-by: Fuad Tabba <tabba@google.com> [sean: convert vmx_set_apic_access_page_addr() to gfn-based API] Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Xu Yilun <yilun.xu@linux.intel.com> Message-Id: <20231027182217.3615211-4-seanjc@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-11-02Merge tag 'mm-stable-2023-11-01-14-33' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
2023-10-18KVM: x86/mmu: Remove unnecessary ‘NULL’ values from sptepLi zeming
Don't initialize "spte" and "sptep" in fast_page_fault() as they are both guaranteed (for all intents and purposes) to be written at the start of every loop iteration. Add a sanity check that "sptep" is non-NULL after walking the shadow page tables, as encountering a NULL root would result in "spte" not being written, i.e. would lead to uninitialized data or the previous value being consumed. Signed-off-by: Li zeming <zeming@nfschina.com> Link: https://lore.kernel.org/r/20230905182006.2964-1-zeming@nfschina.com [sean: rewrite changelog with --verbose] Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-10-09KVM: x86/mmu: Add helpers to return if KVM honors guest MTRRsYan Zhao
Add helpers to check if KVM honors guest MTRRs instead of open coding the logic in kvm_tdp_page_fault(). Future fixes and cleanups will also need to determine if KVM should honor guest MTRRs, e.g. for CR0.CD toggling and and non-coherent DMA transitions. Provide an inner helper, __kvm_mmu_honors_guest_mtrrs(), so that KVM can check if guest MTRRs were honored when stopping non-coherent DMA. Note, there is no need to explicitly check that TDP is enabled, KVM clears shadow_memtype_mask when TDP is disabled, i.e. it's non-zero if and only if EPT is enabled. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Link: https://lore.kernel.org/r/20230714065006.20201-1-yan.y.zhao@intel.com Link: https://lore.kernel.org/r/20230714065043.20258-1-yan.y.zhao@intel.com [sean: squash into a one patch, drop explicit TDP check massage changelog] Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-10-04kvm: mmu: dynamically allocate the x86-mmu shrinkerQi Zheng
Use new APIs to dynamically allocate the x86-mmu shrinker. Link: https://lkml.kernel.org/r/20230911094444.68966-3-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Abhinav Kumar <quic_abhinavk@quicinc.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Anna Schumaker <anna@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Carlos Llamas <cmllamas@google.com> Cc: Chandan Babu R <chandan.babu@oracle.com> Cc: Chao Yu <chao@kernel.org> Cc: Chris Mason <clm@fb.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: Chuck Lever <cel@kernel.org> Cc: Coly Li <colyli@suse.de> Cc: Dai Ngo <Dai.Ngo@oracle.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: "Darrick J. Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: David Airlie <airlied@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Sterba <dsterba@suse.com> Cc: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Cc: Gao Xiang <hsiangkao@linux.alibaba.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Huang Rui <ray.huang@amd.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Wang <jasowang@redhat.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jeffle Xu <jefflexu@linux.alibaba.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Kirill Tkhai <tkhai@ya.ru> Cc: Marijn Suijten <marijn.suijten@somainline.org> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mike Snitzer <snitzer@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Nadav Amit <namit@vmware.com> Cc: Neil Brown <neilb@suse.de> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Olga Kornievskaia <kolga@netapp.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rob Clark <robdclark@gmail.com> Cc: Rob Herring <robh@kernel.org> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Sean Paul <sean@poorly.run> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Song Liu <song@kernel.org> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Tomeu Vizoso <tomeu.vizoso@collabora.com> Cc: Tom Talpey <tom@talpey.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Cc: Yue Hu <huyue2@coolpad.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-09-23KVM: x86/mmu: Stop zapping invalidated TDP MMU roots asynchronouslySean Christopherson
Stop zapping invalidate TDP MMU roots via work queue now that KVM preserves TDP MMU roots until they are explicitly invalidated. Zapping roots asynchronously was effectively a workaround to avoid stalling a vCPU for an extended during if a vCPU unloaded a root, which at the time happened whenever the guest toggled CR0.WP (a frequent operation for some guest kernels). While a clever hack, zapping roots via an unbound worker had subtle, unintended consequences on host scheduling, especially when zapping multiple roots, e.g. as part of a memslot. Because the work of zapping a root is no longer bound to the task that initiated the zap, things like the CPU affinity and priority of the original task get lost. Losing the affinity and priority can be especially problematic if unbound workqueues aren't affined to a small number of CPUs, as zapping multiple roots can cause KVM to heavily utilize the majority of CPUs in the system, *beyond* the CPUs KVM is already using to run vCPUs. When deleting a memslot via KVM_SET_USER_MEMORY_REGION, the async root zap can result in KVM occupying all logical CPUs for ~8ms, and result in high priority tasks not being scheduled in in a timely manner. In v5.15, which doesn't preserve unloaded roots, the issues were even more noticeable as KVM would zap roots more frequently and could occupy all CPUs for 50ms+. Consuming all CPUs for an extended duration can lead to significant jitter throughout the system, e.g. on ChromeOS with virtio-gpu, deleting memslots is a semi-frequent operation as memslots are deleted and recreated with different host virtual addresses to react to host GPU drivers allocating and freeing GPU blobs. On ChromeOS, the jitter manifests as audio blips during games due to the audio server's tasks not getting scheduled in promptly, despite the tasks having a high realtime priority. Deleting memslots isn't exactly a fast path and should be avoided when possible, and ChromeOS is working towards utilizing MAP_FIXED to avoid the memslot shenanigans, but KVM is squarely in the wrong. Not to mention that removing the async zapping eliminates a non-trivial amount of complexity. Note, one of the subtle behaviors hidden behind the async zapping is that KVM would zap invalidated roots only once (ignoring partial zaps from things like mmu_notifier events). Preserve this behavior by adding a flag to identify roots that are scheduled to be zapped versus roots that have already been zapped but not yet freed. Add a comment calling out why kvm_tdp_mmu_invalidate_all_roots() can encounter invalid roots, as it's not at all obvious why zapping invalidated roots shouldn't simply zap all invalid roots. Reported-by: Pattara Teerapong <pteerapong@google.com> Cc: David Stevens <stevensd@google.com> Cc: Yiwei Zhang<zzyiwei@google.com> Cc: Paul Hsia <paulhsia@google.com> Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230916003916.2545000-4-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-09-23KVM: x86/mmu: Do not filter address spaces in for_each_tdp_mmu_root_yield_safe()Paolo Bonzini
All callers except the MMU notifier want to process all address spaces. Remove the address space ID argument of for_each_tdp_mmu_root_yield_safe() and switch the MMU notifier to use __for_each_tdp_mmu_root_yield_safe(). Extracted out of a patch by Sean Christopherson <seanjc@google.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-09-21KVM: x86/mmu: Open code leaf invalidation from mmu_notifierSean Christopherson
The mmu_notifier path is a bit of a special snowflake, e.g. it zaps only a single address space (because it's per-slot), and can't always yield. Because of this, it calls kvm_tdp_mmu_zap_leafs() in ways that no one else does. Iterate manually over the leafs in response to an mmu_notifier invalidation, instead of invoking kvm_tdp_mmu_zap_leafs(). Drop the @can_yield param from kvm_tdp_mmu_zap_leafs() as its sole remaining caller unconditionally passes "true". Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230916003916.2545000-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-08-31KVM: x86/mmu: Use dummy root, backed by zero page, for !visible guest rootsSean Christopherson
When attempting to allocate a shadow root for a !visible guest root gfn, e.g. that resides in MMIO space, load a dummy root that is backed by the zero page instead of immediately synthesizing a triple fault shutdown (using the zero page ensures any attempt to translate memory will generate a !PRESENT fault and thus VM-Exit). Unless the vCPU is racing with memslot activity, KVM will inject a page fault due to not finding a visible slot in FNAME(walk_addr_generic), i.e. the end result is mostly same, but critically KVM will inject a fault only *after* KVM runs the vCPU with the bogus root. Waiting to inject a fault until after running the vCPU fixes a bug where KVM would bail from nested VM-Enter if L1 tried to run L2 with TDP enabled and a !visible root. Even though a bad root will *probably* lead to shutdown, (a) it's not guaranteed and (b) the CPU won't read the underlying memory until after VM-Enter succeeds. E.g. if L1 runs L2 with a VMX preemption timer value of '0', then architecturally the preemption timer VM-Exit is guaranteed to occur before the CPU executes any instruction, i.e. before the CPU needs to translate a GPA to a HPA (so long as there are no injected events with higher priority than the preemption timer). If KVM manages to get to FNAME(fetch) with a dummy root, e.g. because userspace created a memslot between installing the dummy root and handling the page fault, simply unload the MMU to allocate a new root and retry the instruction. Use KVM_REQ_MMU_FREE_OBSOLETE_ROOTS to drop the root, as invoking kvm_mmu_free_roots() while holding mmu_lock would deadlock, and conceptually the dummy root has indeeed become obsolete. The only difference versus existing usage of KVM_REQ_MMU_FREE_OBSOLETE_ROOTS is that the root has become obsolete due to memslot *creation*, not memslot deletion or movement. Reported-by: Reima Ishii <ishiir@g.ecc.u-tokyo.ac.jp> Cc: Yu Zhang <yu.c.zhang@linux.intel.com> Link: https://lore.kernel.org/r/20230729005200.1057358-6-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-08-31KVM: x86/mmu: Harden new PGD against roots without shadow pagesSean Christopherson
Harden kvm_mmu_new_pgd() against NULL pointer dereference bugs by sanity checking that the target root has an associated shadow page prior to dereferencing said shadow page. The code in question is guaranteed to only see roots with shadow pages as fast_pgd_switch() explicitly frees the current root if it doesn't have a shadow page, i.e. is a PAE root, and that in turn prevents valid roots from being cached, but that's all very subtle. Link: https://lore.kernel.org/r/20230729005200.1057358-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-08-31KVM: x86/mmu: Add helper to convert root hpa to shadow pageSean Christopherson
Add a dedicated helper for converting a root hpa to a shadow page in anticipation of using a "dummy" root to handle the scenario where KVM needs to load a valid shadow root (from hardware's perspective), but the guest doesn't have a visible root to shadow. Similar to PAE roots, the dummy root won't have an associated kvm_mmu_page and will need special handling when finding a shadow page given a root. Opportunistically retrieve the root shadow page in kvm_mmu_sync_roots() *after* verifying the root is unsync (the dummy root can never be unsync). Link: https://lore.kernel.org/r/20230729005200.1057358-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-08-31KVM: x86/mmu: Drop @slot param from exported/external page-track APIsSean Christopherson
Refactor KVM's exported/external page-track, a.k.a. write-track, APIs to take only the gfn and do the required memslot lookup in KVM proper. Forcing users of the APIs to get the memslot unnecessarily bleeds KVM internals into KVMGT and complicates usage of the APIs. No functional change intended. Reviewed-by: Yan Zhao <yan.y.zhao@intel.com> Tested-by: Yongwei Ma <yongwei.ma@intel.com> Link: https://lore.kernel.org/r/20230729013535.1070024-28-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-08-31KVM: x86/mmu: Rename page-track APIs to reflect the new realitySean Christopherson
Rename the page-track APIs to capture that they're all about tracking writes, now that the facade of supporting multiple modes is gone. Opportunstically replace "slot" with "gfn" in anticipation of removing the @slot param from the external APIs. No functional change intended. Tested-by: Yongwei Ma <yongwei.ma@intel.com> Link: https://lore.kernel.org/r/20230729013535.1070024-25-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-08-31KVM: x86/mmu: Drop infrastructure for multiple page-track modesSean Christopherson
Drop "support" for multiple page-track modes, as there is no evidence that array-based and refcounted metadata is the optimal solution for other modes, nor is there any evidence that other use cases, e.g. for access-tracking, will be a good fit for the page-track machinery in general. E.g. one potential use case of access-tracking would be to prevent guest access to poisoned memory (from the guest's perspective). In that case, the number of poisoned pages is likely to be a very small percentage of the guest memory, and there is no need to reference count the number of access-tracking users, i.e. expanding gfn_track[] for a new mode would be grossly inefficient. And for poisoned memory, host userspace would also likely want to trap accesses, e.g. to inject #MC into the guest, and that isn't currently supported by the page-track framework. A better alternative for that poisoned page use case is likely a variation of the proposed per-gfn attributes overlay (linked), which would allow efficiently tracking the sparse set of poisoned pages, and by default would exit to userspace on access. Link: https://lore.kernel.org/all/Y2WB48kD0J4VGynX@google.com Cc: Ben Gardon <bgardon@google.com> Tested-by: Yongwei Ma <yongwei.ma@intel.com> Link: https://lore.kernel.org/r/20230729013535.1070024-24-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-08-31KVM: x86/mmu: Move KVM-only page-track declarations to internal headerSean Christopherson
Bury the declaration of the page-track helpers that are intended only for internal KVM use in a "private" header. In addition to guarding against unwanted usage of the internal-only helpers, dropping their definitions avoids exposing other structures that should be KVM-internal, e.g. for memslots. This is a baby step toward making kvm_host.h a KVM-internal header in the very distant future. Tested-by: Yongwei Ma <yongwei.ma@intel.com> Link: https://lore.kernel.org/r/20230729013535.1070024-22-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-08-31KVM: x86: Remove the unused page-track hook track_flush_slot()Yan Zhao
Remove ->track_remove_slot(), there are no longer any users and it's unlikely a "flush" hook will ever be the correct API to provide to an external page-track user. Cc: Zhenyu Wang <zhenyuw@linux.intel.com> Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Tested-by: Yongwei Ma <yongwei.ma@intel.com> Link: https://lore.kernel.org/r/20230729013535.1070024-21-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-08-31KVM: x86/mmu: Don't bounce through page-track mechanism for guest PTEsSean Christopherson
Don't use the generic page-track mechanism to handle writes to guest PTEs in KVM's MMU. KVM's MMU needs access to information that should not be exposed to external page-track users, e.g. KVM needs (for some definitions of "need") the vCPU to query the current paging mode, whereas external users, i.e. KVMGT, have no ties to the current vCPU and so should never need the vCPU. Moving away from the page-track mechanism will allow dropping use of the page-track mechanism for KVM's own MMU, and will also allow simplifying and cleaning up the page-track APIs. Reviewed-by: Yan Zhao <yan.y.zhao@intel.com> Tested-by: Yongwei Ma <yongwei.ma@intel.com> Link: https://lore.kernel.org/r/20230729013535.1070024-15-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>