Age | Commit message (Collapse) | Author |
|
Pull KVM updates from Paolo Bonzini:
"ARM:
- Page ownership tracking between host EL1 and EL2
- Rely on userspace page tables to create large stage-2 mappings
- Fix incompatibility between pKVM and kmemleak
- Fix the PMU reset state, and improve the performance of the virtual
PMU
- Move over to the generic KVM entry code
- Address PSCI reset issues w.r.t. save/restore
- Preliminary rework for the upcoming pKVM fixed feature
- A bunch of MM cleanups
- a vGIC fix for timer spurious interrupts
- Various cleanups
s390:
- enable interpretation of specification exceptions
- fix a vcpu_idx vs vcpu_id mixup
x86:
- fast (lockless) page fault support for the new MMU
- new MMU now the default
- increased maximum allowed VCPU count
- allow inhibit IRQs on KVM_RUN while debugging guests
- let Hyper-V-enabled guests run with virtualized LAPIC as long as
they do not enable the Hyper-V "AutoEOI" feature
- fixes and optimizations for the toggling of AMD AVIC (virtualized
LAPIC)
- tuning for the case when two-dimensional paging (EPT/NPT) is
disabled
- bugfixes and cleanups, especially with respect to vCPU reset and
choosing a paging mode based on CR0/CR4/EFER
- support for 5-level page table on AMD processors
Generic:
- MMU notifier invalidation callbacks do not take mmu_lock unless
necessary
- improved caching of LRU kvm_memory_slot
- support for histogram statistics
- add statistics for halt polling and remote TLB flush requests"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (210 commits)
KVM: Drop unused kvm_dirty_gfn_invalid()
KVM: x86: Update vCPU's hv_clock before back to guest when tsc_offset is adjusted
KVM: MMU: mark role_regs and role accessors as maybe unused
KVM: MIPS: Remove a "set but not used" variable
x86/kvm: Don't enable IRQ when IRQ enabled in kvm_wait
KVM: stats: Add VM stat for remote tlb flush requests
KVM: Remove unnecessary export of kvm_{inc,dec}_notifier_count()
KVM: x86/mmu: Move lpage_disallowed_link further "down" in kvm_mmu_page
KVM: x86/mmu: Relocate kvm_mmu_page.tdp_mmu_page for better cache locality
Revert "KVM: x86: mmu: Add guest physical address check in translate_gpa()"
KVM: x86/mmu: Remove unused field mmio_cached in struct kvm_mmu_page
kvm: x86: Increase KVM_SOFT_MAX_VCPUS to 710
kvm: x86: Increase MAX_VCPUS to 1024
kvm: x86: Set KVM_MAX_VCPU_ID to 4*KVM_MAX_VCPUS
KVM: VMX: avoid running vmx_handle_exit_irqoff in case of emulation
KVM: x86/mmu: Don't freak out if pml5_root is NULL on 4-level host
KVM: s390: index kvm->arch.idle_mask by vcpu_idx
KVM: s390: Enable specification exception interpretation
KVM: arm64: Trim guest debug exception handling
KVM: SVM: Add 5-level page table support for SVM
...
|
|
When the 5-level page table is enabled on host OS, the nested page table
for guest VMs must use 5-level as well. Update get_npt_level() function
to reflect this requirement. In the meanwhile, remove the code that
prevents kvm-amd driver from being loaded when 5-level page table is
detected.
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-4-wei.huang2@amd.com>
[Tweak condition as suggested by Sean. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
AMD future CPUs will require a 5-level NPT if host CR4.LA57 is set.
To prevent kvm_mmu_get_tdp_level() from incorrectly changing NPT level
on behalf of CPUs, add a new parameter in kvm_configure_mmu() to force
a fixed TDP level.
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-2-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Split the check for having a vmexit handler to svm_check_exit_valid,
and make svm_handle_invalid_exit only handle a vmexit that is
already not valid.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210811122927.900604-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
APIC base relocation is not supported anyway and won't work
correctly so just drop the code that handles it and keep AVIC
MMIO bar at the default APIC base.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-17-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currently it is possible to have the following scenario:
1. AVIC is disabled by svm_refresh_apicv_exec_ctrl
2. svm_vcpu_blocking calls avic_vcpu_put which does nothing
3. svm_vcpu_unblocking enables the AVIC (due to KVM_REQ_APICV_UPDATE)
and then calls avic_vcpu_load
4. warning is triggered in avic_vcpu_load since
AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK was never cleared
While it is possible to just remove the warning, it seems to be more robust
to fully disable/enable AVIC in svm_refresh_apicv_exec_ctrl by calling the
avic_vcpu_load/avic_vcpu_put
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-16-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
No functional change intended.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-15-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Now that kvm_request_apicv_update doesn't need to drop the kvm->srcu lock,
we can call kvm_request_apicv_update directly.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210810205251.424103-13-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
It is never a good idea to enter a guest on a vCPU when the
AVIC inhibition state doesn't match the enablement of
the AVIC on the vCPU.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-11-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Thanks to the former patches, it is now possible to keep the APICv
memslot always enabled, and it will be invisible to the guest
when it is inhibited
This code is based on a suggestion from Sean Christopherson:
https://lkml.org/lkml/2021/7/19/2970
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210810205251.424103-9-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
If L1 disables VMLOAD/VMSAVE intercepts, and doesn't enable
Virtual VMLOAD/VMSAVE (currently not supported for the nested hypervisor),
then VMLOAD/VMSAVE must operate on the L1 physical memory, which is only
possible by making L0 intercept these instructions.
Failure to do so allowed the nested guest to run VMLOAD/VMSAVE unintercepted,
and thus read/write portions of the host physical memory.
Fixes: 89c8a4984fc9 ("KVM: SVM: Enable Virtual VMLOAD VMSAVE feature")
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
* Invert the mask of bits that we pick from L2 in
nested_vmcb02_prepare_control
* Invert and explicitly use VIRQ related bits bitmask in svm_clear_vintr
This fixes a security issue that allowed a malicious L1 to run L2 with
AVIC enabled, which allowed the L2 to exploit the uninitialized and enabled
AVIC to read/write the host physical memory at some offsets.
Fixes: 3d6368ef580a ("KVM: SVM: Add VMRUN handler")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the declaration of kvm_spurious_fault() to KVM's "private" x86.h,
it should never be called by anything other than low level KVM code.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
[sean: rebased to a series without __ex()/__kvm_handle_fault_on_reboot()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210809173955.1710866-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Remove the __kvm_handle_fault_on_reboot() and __ex() macros now that all
VMX and SVM instructions use asm goto to handle the fault (or in the
case of VMREAD, completely custom logic). Drop kvm_spurious_fault()'s
asmlinkage annotation as __kvm_handle_fault_on_reboot() was the only
flow that invoked it from assembly code.
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Like Xu <like.xu.linux@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210809173955.1710866-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Merge common topic branch for 5.14-rc6 and 5.15 merge window.
|
|
KVM SEV code uses bitmaps to manage ASID states. ASID 0 was always skipped
because it is never used by VM. Thus, in existing code, ASID value and its
bitmap postion always has an 'offset-by-1' relationship.
Both SEV and SEV-ES shares the ASID space, thus KVM uses a dynamic range
[min_asid, max_asid] to handle SEV and SEV-ES ASIDs separately.
Existing code mixes the usage of ASID value and its bitmap position by
using the same variable called 'min_asid'.
Fix the min_asid usage: ensure that its usage is consistent with its name;
allocate extra size for ASID 0 to ensure that each ASID has the same value
with its bitmap position. Add comments on ASID bitmap allocation to clarify
the size change.
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Marc Orr <marcorr@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Alper Gun <alpergun@google.com>
Cc: Dionna Glaze <dionnaglaze@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vipin Sharma <vipinsh@google.com>
Cc: Peter Gonda <pgonda@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Message-Id: <20210802180903.159381-1-mizhang@google.com>
[Fix up sev_asid_free to also index by ASID, as suggested by Sean
Christopherson, and use nr_asids in sev_cpu_init. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Use the raw ASID, not ASID-1, when nullifying the last used VMCB when
freeing an SEV ASID. The consumer, pre_sev_run(), indexes the array by
the raw ASID, thus KVM could get a false negative when checking for a
different VMCB if KVM manages to reallocate the same ASID+VMCB combo for
a new VM.
Note, this cannot cause a functional issue _in the current code_, as
pre_sev_run() also checks which pCPU last did VMRUN for the vCPU, and
last_vmentry_cpu is initialized to -1 during vCPU creation, i.e. is
guaranteed to mismatch on the first VMRUN. However, prior to commit
8a14fe4f0c54 ("kvm: x86: Move last_cpu into kvm_vcpu_arch as
last_vmentry_cpu"), SVM tracked pCPU on its own and zero-initialized the
last_cpu variable. Thus it's theoretically possible that older versions
of KVM could miss a TLB flush if the first VMRUN is on pCPU0 and the ASID
and VMCB exactly match those of a prior VM.
Fixes: 70cd94e60c73 ("KVM: SVM: VMRUN should use associated ASID when SEV is enabled")
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
For an event to be in injected state when nested_svm_vmrun executes,
it must have come from exitintinfo when svm_complete_interrupts ran:
vcpu_enter_guest
static_call(kvm_x86_run) -> svm_vcpu_run
svm_complete_interrupts
// now the event went from "exitintinfo" to "injected"
static_call(kvm_x86_handle_exit) -> handle_exit
svm_invoke_exit_handler
vmrun_interception
nested_svm_vmrun
However, no event could have been in exitintinfo before a VMRUN
vmexit. The code in svm.c is a bit more permissive than the one
in vmx.c:
if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
but in any case, a VMRUN instruction would not even start to execute
during an attempted event delivery.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Drop redundant clears of vcpu->arch.hflags in init_vmcb() since
kvm_vcpu_reset() always clears hflags, and it is also always
zero at vCPU creation time. And of course, the second clearing
in init_vmcb() was always redundant.
Suggested-by: Reiji Watanabe <reijiw@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-46-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Emulate a full #INIT instead of simply initializing the VMCB if the
guest hits a shutdown. Initializing the VMCB but not other vCPU state,
much of which is mirrored by the VMCB, results in incoherent and broken
vCPU state.
Ideally, KVM would not automatically init anything on shutdown, and
instead put the vCPU into e.g. KVM_MP_STATE_UNINITIALIZED and force
userspace to explicitly INIT or RESET the vCPU. Even better would be to
add KVM_MP_STATE_SHUTDOWN, since technically NMI can break shutdown
(and SMI on Intel CPUs).
But, that ship has sailed, and emulating #INIT is the next best thing as
that has at least some connection with reality since there exist bare
metal platforms that automatically INIT the CPU if it hits shutdown.
Fixes: 46fe4ddd9dbb ("[PATCH] KVM: SVM: Propagate cpu shutdown events to userspace")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-45-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the setting of CR0, CR4, EFER, RFLAGS, and RIP from vendor code to
common x86. VMX and SVM now have near-identical sequences, the only
difference being that VMX updates the exception bitmap. Updating the
bitmap on SVM is unnecessary, but benign. Unfortunately it can't be left
behind in VMX due to the need to update exception intercepts after the
control registers are set.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-37-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move code to stuff vmcb->save.dr6 to its architectural init value from
svm_vcpu_reset() into sev_es_sync_vmsa(). Except for protected guests,
a.k.a. SEV-ES guests, vmcb->save.dr6 is set during VM-Enter, i.e. the
extra write is unnecessary. For SEV-ES, stuffing save->dr6 handles a
theoretical case where the VMSA could be encrypted before the first
KVM_RUN.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-33-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Drop direct writes to vmcb->save.cr4 during vCPU RESET/INIT, as the
values being written are fully redundant with respect to
svm_set_cr4(vcpu, 0) a few lines earlier. Note, svm_set_cr4() also
correctly forces X86_CR4_PAE when NPT is disabled.
No functional change intended.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-32-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Hoist svm_set_cr0() up in the sequence of register initialization during
vCPU RESET/INIT, purely to match VMX so that a future patch can move the
sequences to common x86.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-31-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Drop unnecessary initialization of vmcb->save.rip during vCPU RESET/INIT,
as svm_vcpu_run() unconditionally propagates VCPU_REGS_RIP to save.rip.
No true functional change intended.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move the EDX initialization at vCPU RESET, which is now identical between
VMX and SVM, into common code.
No functional change intended.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Consolidate the APIC base RESET logic, which is currently spread out
across both x86 and vendor code. For an in-kernel APIC, the vendor code
is redundant. But for a userspace APIC, KVM relies on the vendor code
to initialize vcpu->arch.apic_base. Hoist the vcpu->arch.apic_base
initialization above the !apic check so that it applies to both flavors
of APIC emulation, and delete the vendor code.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Drop an explicit MMU reset in SVM's vCPU RESET/INIT flow now that the
common x86 path correctly handles conditional MMU resets, e.g. if INIT
arrives while the vCPU is in 64-bit mode.
This reverts commit ebae871a509d ("kvm: svm: reset mmu on VCPU reset").
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
At vCPU RESET/INIT (mostly RESET), stuff EDX with KVM's hardcoded,
default Family-Model-Stepping ID of 0x600 if CPUID.0x1 isn't defined.
At RESET, the CPUID lookup is guaranteed to "miss" because KVM emulates
RESET before exposing the vCPU to userspace, i.e. userspace can't
possibly have done set the vCPU's CPUID model, and thus KVM will always
write '0'. At INIT, using 0x600 is less bad than using '0'.
While initializing EDX to '0' is _extremely_ unlikely to be noticed by
the guest, let alone break the guest, and can be overridden by
userspace for the RESET case, using 0x600 is preferable as it will allow
consolidating the relevant VMX and SVM RESET/INIT logic in the future.
And, digging through old specs suggests that neither Intel nor AMD have
ever shipped a CPU that initialized EDX to '0' at RESET.
Regarding 0x600 as KVM's default Family, it is a sane default and in
many ways the most appropriate. Prior to the 386 implementations, DX
was undefined at RESET. With the 386, 486, 586/P5, and 686/P6/Athlon,
both Intel and AMD set EDX to 3, 4, 5, and 6 respectively. AMD switched
to using '15' as its primary Family with the introduction of AMD64, but
Intel has continued using '6' for the last few decades.
So, '6' is a valid Family for both Intel and AMD CPUs, is compatible
with both 32-bit and 64-bit CPUs (albeit not a perfect fit for 64-bit
AMD), and of the common Families (3 - 6), is the best fit with respect to
KVM's virtual CPU model. E.g. prior to the P6, Intel CPUs did not have a
STI window. Modern operating systems, Linux included, rely on the STI
window, e.g. for "safe halt", and KVM unconditionally assumes the virtual
CPU has an STI window. Thus enumerating a Family ID of 3, 4, or 5 would
be provably wrong.
Opportunistically remove a stale comment.
Fixes: 66f7b72e1171 ("KVM: x86: Make register state after reset conform to specification")
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Do not allow an inexact CPUID "match" when querying the guest's CPUID.0x1
to stuff EDX during INIT. In the common case, where the guest CPU model
is an AMD variant, allowing an inexact match is a nop since KVM doesn't
emulate Intel's goofy "out-of-range" logic for AMD and Hygon. If the
vCPU model happens to be an Intel variant, an inexact match is possible
if and only if the max CPUID leaf is precisely '0'. Aside from the fact
that there's probably no CPU in existence with a single CPUID leaf, if
the max CPUID leaf is '0', that means that CPUID.0.EAX is '0', and thus
an inexact match for CPUID.0x1.EAX will also yield '0'.
So, with lots of twisty logic, no functional change intended.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Explicitly set GDTR.base and IDTR.base to zero when intializing the VMCB.
Functionally this only affects INIT, as the bases are implicitly set to
zero on RESET by virtue of the VMCB being zero allocated.
Per AMD's APM, GDTR.base and IDTR.base are zeroed after RESET and INIT.
Fixes: 04d2cc7780d4 ("KVM: Move main vcpu loop into subarch independent code")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <0e8760a26151f47dc47052b25ca8b84fffe0641e.1625186503.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currently when SVM is enabled in guest CPUID, AVIC is inhibited as soon
as the guest CPUID is set.
AVIC happens to be fully disabled on all vCPUs by the time any guest
entry starts (if after migration the entry can be nested).
The reason is that currently we disable avic right away on vCPU from which
the kvm_request_apicv_update was called and for this case, it happens to be
called on all vCPUs (by svm_vcpu_after_set_cpuid).
After we stop doing this, AVIC will end up being disabled only when
KVM_REQ_APICV_UPDATE is processed which is after we done switching to the
nested guest.
Fix this by just using vmcb01 in svm_refresh_apicv_exec_ctrl for avic
(which is a right thing to do anyway).
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210713142023.106183-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
It is possible that AVIC was requested to be disabled but
not yet disabled, e.g if the nested entry is done right
after svm_vcpu_after_set_cpuid.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210713142023.106183-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
deactivated
It is possible for AVIC inhibit and AVIC active state to be mismatched.
Currently we disable AVIC right away on vCPU which started the AVIC inhibit
request thus this warning doesn't trigger but at least in theory,
if svm_set_vintr is called at the same time on multiple vCPUs,
the warning can happen.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210713142023.106183-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Right now, svm_hv_vmcb_dirty_nested_enlightenments has an incorrect
dereference of vmcb->control.reserved_sw before the vmcb is checked
for being non-NULL. The compiler is usually sinking the dereference
after the check; instead of doing this ourselves in the source,
ensure that svm_hv_vmcb_dirty_nested_enlightenments is only called
with a non-NULL VMCB.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Vineeth Pillai <viremana@linux.microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Untested for now due to issues with my AMD machine. - Paolo]
|
|
svm_copy_vmrun_state()/svm_copy_vmloadsave_state()
Make svm_copy_vmrun_state()/svm_copy_vmloadsave_state() interface match
'memcpy(dest, src)' to avoid any confusion.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210719090322.625277-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
To match svm_copy_vmrun_state(), rename nested_svm_vmloadsave() to
svm_copy_vmloadsave_state().
Opportunistically add missing braces to 'else' branch in
vmload_vmsave_interception().
No functional change intended.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210716144104.465269-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull kvm fixes from Paolo Bonzini:
- Allow again loading KVM on 32-bit non-PAE builds
- Fixes for host SMIs on AMD
- Fixes for guest SMIs on AMD
- Fixes for selftests on s390 and ARM
- Fix memory leak
- Enforce no-instrumentation area on vmentry when hardware breakpoints
are in use.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (25 commits)
KVM: selftests: smm_test: Test SMM enter from L2
KVM: nSVM: Restore nested control upon leaving SMM
KVM: nSVM: Fix L1 state corruption upon return from SMM
KVM: nSVM: Introduce svm_copy_vmrun_state()
KVM: nSVM: Check that VM_HSAVE_PA MSR was set before VMRUN
KVM: nSVM: Check the value written to MSR_VM_HSAVE_PA
KVM: SVM: Fix sev_pin_memory() error checks in SEV migration utilities
KVM: SVM: Return -EFAULT if copy_to_user() for SEV mig packet header fails
KVM: SVM: add module param to control the #SMI interception
KVM: SVM: remove INIT intercept handler
KVM: SVM: #SMI interception must not skip the instruction
KVM: VMX: Remove vmx_msr_index from vmx.h
KVM: X86: Disable hardware breakpoints unconditionally before kvm_x86->run()
KVM: selftests: Address extra memslot parameters in vm_vaddr_alloc
kvm: debugfs: fix memory leak in kvm_create_vm_debugfs
KVM: x86/pmu: Clear anythread deprecated bit when 0xa leaf is unsupported on the SVM
KVM: mmio: Fix use-after-free Read in kvm_vm_ioctl_unregister_coalesced_mmio
KVM: SVM: Revert clearing of C-bit on GPA in #NPF handler
KVM: x86/mmu: Do not apply HPA (memory encryption) mask to GPAs
KVM: x86: Use kernel's x86_phys_bits to handle reduced MAXPHYADDR
...
|
|
If the VM was migrated while in SMM, no nested state was saved/restored,
and therefore svm_leave_smm has to load both save and control area
of the vmcb12. Save area is already loaded from HSAVE area,
so now load the control area as well from the vmcb12.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
VMCB split commit 4995a3685f1b ("KVM: SVM: Use a separate vmcb for the
nested L2 guest") broke return from SMM when we entered there from guest
(L2) mode. Gen2 WS2016/Hyper-V is known to do this on boot. The problem
manifests itself like this:
kvm_exit: reason EXIT_RSM rip 0x7ffbb280 info 0 0
kvm_emulate_insn: 0:7ffbb280: 0f aa
kvm_smm_transition: vcpu 0: leaving SMM, smbase 0x7ffb3000
kvm_nested_vmrun: rip: 0x000000007ffbb280 vmcb: 0x0000000008224000
nrip: 0xffffffffffbbe119 int_ctl: 0x01020000 event_inj: 0x00000000
npt: on
kvm_nested_intercepts: cr_read: 0000 cr_write: 0010 excp: 40060002
intercepts: fd44bfeb 0000217f 00000000
kvm_entry: vcpu 0, rip 0xffffffffffbbe119
kvm_exit: reason EXIT_NPF rip 0xffffffffffbbe119 info
200000006 1ab000
kvm_nested_vmexit: vcpu 0 reason npf rip 0xffffffffffbbe119 info1
0x0000000200000006 info2 0x00000000001ab000 intr_info 0x00000000
error_code 0x00000000
kvm_page_fault: address 1ab000 error_code 6
kvm_nested_vmexit_inject: reason EXIT_NPF info1 200000006 info2 1ab000
int_info 0 int_info_err 0
kvm_entry: vcpu 0, rip 0x7ffbb280
kvm_exit: reason EXIT_EXCP_GP rip 0x7ffbb280 info 0 0
kvm_emulate_insn: 0:7ffbb280: 0f aa
kvm_inj_exception: #GP (0x0)
Note: return to L2 succeeded but upon first exit to L1 its RIP points to
'RSM' instruction but we're not in SMM.
The problem appears to be that VMCB01 gets irreversibly destroyed during
SMM execution. Previously, we used to have 'hsave' VMCB where regular
(pre-SMM) L1's state was saved upon nested_svm_vmexit() but now we just
switch to VMCB01 from VMCB02.
Pre-split (working) flow looked like:
- SMM is triggered during L2's execution
- L2's state is pushed to SMRAM
- nested_svm_vmexit() restores L1's state from 'hsave'
- SMM -> RSM
- enter_svm_guest_mode() switches to L2 but keeps 'hsave' intact so we have
pre-SMM (and pre L2 VMRUN) L1's state there
- L2's state is restored from SMRAM
- upon first exit L1's state is restored from L1.
This was always broken with regards to svm_get_nested_state()/
svm_set_nested_state(): 'hsave' was never a part of what's being
save and restored so migration happening during SMM triggered from L2 would
never restore L1's state correctly.
Post-split flow (broken) looks like:
- SMM is triggered during L2's execution
- L2's state is pushed to SMRAM
- nested_svm_vmexit() switches to VMCB01 from VMCB02
- SMM -> RSM
- enter_svm_guest_mode() switches from VMCB01 to VMCB02 but pre-SMM VMCB01
is already lost.
- L2's state is restored from SMRAM
- upon first exit L1's state is restored from VMCB01 but it is corrupted
(reflects the state during 'RSM' execution).
VMX doesn't have this problem because unlike VMCB, VMCS keeps both guest
and host state so when we switch back to VMCS02 L1's state is intact there.
To resolve the issue we need to save L1's state somewhere. We could've
created a third VMCB for SMM but that would require us to modify saved
state format. L1's architectural HSAVE area (pointed by MSR_VM_HSAVE_PA)
seems appropriate: L0 is free to save any (or none) of L1's state there.
Currently, KVM does 'none'.
Note, for nested state migration to succeed, both source and destination
hypervisors must have the fix. We, however, don't need to create a new
flag indicating the fact that HSAVE area is now populated as migration
during SMM triggered from L2 was always broken.
Fixes: 4995a3685f1b ("KVM: SVM: Use a separate vmcb for the nested L2 guest")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Separate the code setting non-VMLOAD-VMSAVE state from
svm_set_nested_state() into its own function. This is going to be
re-used from svm_enter_smm()/svm_leave_smm().
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
APM states that "The address written to the VM_HSAVE_PA MSR, which holds
the address of the page used to save the host state on a VMRUN, must point
to a hypervisor-owned page. If this check fails, the WRMSR will fail with
a #GP(0) exception. Note that a value of 0 is not considered valid for the
VM_HSAVE_PA MSR and a VMRUN that is attempted while the HSAVE_PA is 0 will
fail with a #GP(0) exception."
svm_set_msr() already checks that the supplied address is valid, so only
check for '0' is missing. Add it to nested_svm_vmrun().
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-3-vkuznets@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
APM states that #GP is raised upon write to MSR_VM_HSAVE_PA when
the supplied address is not page-aligned or is outside of "maximum
supported physical address for this implementation".
page_address_valid() check seems suitable. Also, forcefully page-align
the address when it's written from VMM.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210628104425.391276-2-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
[Add comment about behavior for host-provided values. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Use IS_ERR() instead of checking for a NULL pointer when querying for
sev_pin_memory() failures. sev_pin_memory() always returns an error code
cast to a pointer, or a valid pointer; it never returns NULL.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Steve Rutherford <srutherford@google.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Fixes: d3d1af85e2c7 ("KVM: SVM: Add KVM_SEND_UPDATE_DATA command")
Fixes: 15fb7de1a7f5 ("KVM: SVM: Add KVM_SEV_RECEIVE_UPDATE_DATA command")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210506175826.2166383-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Return -EFAULT if copy_to_user() fails; if accessing user memory faults,
copy_to_user() returns the number of bytes remaining, not an error code.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Steve Rutherford <srutherford@google.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Fixes: d3d1af85e2c7 ("KVM: SVM: Add KVM_SEND_UPDATE_DATA command")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210506175826.2166383-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In theory there are no side effects of not intercepting #SMI,
because then #SMI becomes transparent to the OS and the KVM.
Plus an observation on recent Zen2 CPUs reveals that these
CPUs ignore #SMI interception and never deliver #SMI VMexits.
This is also useful to test nested KVM to see that L1
handles #SMIs correctly in case when L1 doesn't intercept #SMI.
Finally the default remains the same, the SMI are intercepted
by default thus this patch doesn't have any effect unless
non default module param value is used.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210707125100.677203-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Kernel never sends real INIT even to CPUs, other than on boot.
Thus INIT interception is an error which should be caught
by a check for an unknown VMexit reason.
On top of that, the current INIT VM exit handler skips
the current instruction which is wrong.
That was added in commit 5ff3a351f687 ("KVM: x86: Move trivial
instruction-based exit handlers to common code").
Fixes: 5ff3a351f687 ("KVM: x86: Move trivial instruction-based exit handlers to common code")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210707125100.677203-3-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Commit 5ff3a351f687 ("KVM: x86: Move trivial instruction-based
exit handlers to common code"), unfortunately made a mistake of
treating nop_on_interception and nop_interception in the same way.
Former does truly nothing while the latter skips the instruction.
SMI VM exit handler should do nothing.
(SMI itself is handled by the host when we do STGI)
Fixes: 5ff3a351f687 ("KVM: x86: Move trivial instruction-based exit handlers to common code")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210707125100.677203-2-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Don't clear the C-bit in the #NPF handler, as it is a legal GPA bit for
non-SEV guests, and for SEV guests the C-bit is dropped before the GPA
hits the NPT in hardware. Clearing the bit for non-SEV guests causes KVM
to mishandle #NPFs with that collide with the host's C-bit.
Although the APM doesn't explicitly state that the C-bit is not reserved
for non-SEV, Tom Lendacky confirmed that the following snippet about the
effective reduction due to the C-bit does indeed apply only to SEV guests.
Note that because guest physical addresses are always translated
through the nested page tables, the size of the guest physical address
space is not impacted by any physical address space reduction indicated
in CPUID 8000_001F[EBX]. If the C-bit is a physical address bit however,
the guest physical address space is effectively reduced by 1 bit.
And for SEV guests, the APM clearly states that the bit is dropped before
walking the nested page tables.
If the C-bit is an address bit, this bit is masked from the guest
physical address when it is translated through the nested page tables.
Consequently, the hypervisor does not need to be aware of which pages
the guest has chosen to mark private.
Note, the bogus C-bit clearing was removed from legacy #PF handler in
commit 6d1b867d0456 ("KVM: SVM: Don't strip the C-bit from CR2 on #PF
interception").
Fixes: 0ede79e13224 ("KVM: SVM: Clear C-bit from the page fault address")
Cc: Peter Gonda <pgonda@google.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210625020354.431829-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|