summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/x86.c
AgeCommit message (Collapse)Author
2019-04-30KVM: lapic: Check for in-kernel LAPIC before deferencing apic pointerSean Christopherson
...to avoid dereferencing a null pointer when querying the per-vCPU timer advance. Fixes: 39497d7660d98 ("KVM: lapic: Track lapic timer advance per vCPU") Reported-by: syzbot+f7e65445a40d3e0e4ebf@syzkaller.appspotmail.com Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-30KVM: x86: Whitelist port 0x7e for pre-incrementing %ripSean Christopherson
KVM's recent bug fix to update %rip after emulating I/O broke userspace that relied on the previous behavior of incrementing %rip prior to exiting to userspace. When running a Windows XP guest on AMD hardware, Qemu may patch "OUT 0x7E" instructions in reaction to the OUT itself. Because KVM's old behavior was to increment %rip before exiting to userspace to handle the I/O, Qemu manually adjusted %rip to account for the OUT instruction. Arguably this is a userspace bug as KVM requires userspace to re-enter the kernel to complete instruction emulation before taking any other actions. That being said, this is a bit of a grey area and breaking userspace that has worked for many years is bad. Pre-increment %rip on OUT to port 0x7e before exiting to userspace to hack around the issue. Fixes: 45def77ebf79e ("KVM: x86: update %rip after emulating IO") Reported-by: Simon Becherer <simon@becherer.de> Reported-and-tested-by: Iakov Karpov <srid@rkmail.ru> Reported-by: Gabriele Balducci <balducci@units.it> Reported-by: Antti Antinoja <reader@fennosys.fi> Cc: stable@vger.kernel.org Cc: Takashi Iwai <tiwai@suse.com> Cc: Jiri Slaby <jslaby@suse.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-18KVM: lapic: Allow user to disable adaptive tuning of timer advancementSean Christopherson
The introduction of adaptive tuning of lapic timer advancement did not allow for the scenario where userspace would want to disable adaptive tuning but still employ timer advancement, e.g. for testing purposes or to handle a use case where adaptive tuning is unable to settle on a suitable time. This is epecially pertinent now that KVM places a hard threshold on the maximum advancment time. Rework the timer semantics to accept signed values, with a value of '-1' being interpreted as "use adaptive tuning with KVM's internal default", and any other value being used as an explicit advancement time, e.g. a time of '0' effectively disables advancement. Note, this does not completely restore the original behavior of lapic_timer_advance_ns. Prior to tracking the advancement per vCPU, which is necessary to support autotuning, userspace could adjust lapic_timer_advance_ns for *running* vCPU. With per-vCPU tracking, the module params are snapshotted at vCPU creation, i.e. applying a new advancement effectively requires restarting a VM. Dynamically updating a running vCPU is possible, e.g. a helper could be added to retrieve the desired delay, choosing between the global module param and the per-VCPU value depending on whether or not auto-tuning is (globally) enabled, but introduces a great deal of complexity. The wrapper itself is not complex, but understanding and documenting the effects of dynamically toggling auto-tuning and/or adjusting the timer advancement is nigh impossible since the behavior would be dependent on KVM's implementation as well as compiler optimizations. In other words, providing stable behavior would require extremely careful consideration now and in the future. Given that the expected use of a manually-tuned timer advancement is to "tune once, run many", use the vastly simpler approach of recognizing changes to the module params only when creating a new vCPU. Cc: Liran Alon <liran.alon@oracle.com> Cc: Wanpeng Li <wanpengli@tencent.com> Reviewed-by: Liran Alon <liran.alon@oracle.com> Cc: stable@vger.kernel.org Fixes: 3b8a5df6c4dc6 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-18KVM: lapic: Track lapic timer advance per vCPUSean Christopherson
Automatically adjusting the globally-shared timer advancement could corrupt the timer, e.g. if multiple vCPUs are concurrently adjusting the advancement value. That could be partially fixed by using a local variable for the arithmetic, but it would still be susceptible to a race when setting timer_advance_adjust_done. And because virtual_tsc_khz and tsc_scaling_ratio are per-vCPU, the correct calibration for a given vCPU may not apply to all vCPUs. Furthermore, lapic_timer_advance_ns is marked __read_mostly, which is effectively violated when finding a stable advancement takes an extended amount of timer. Opportunistically change the definition of lapic_timer_advance_ns to a u32 so that it matches the style of struct kvm_timer. Explicitly pass the param to kvm_create_lapic() so that it doesn't have to be exposed to lapic.c, thus reducing the probability of unintentionally using the global value instead of the per-vCPU value. Cc: Liran Alon <liran.alon@oracle.com> Cc: Wanpeng Li <wanpengli@tencent.com> Reviewed-by: Liran Alon <liran.alon@oracle.com> Cc: stable@vger.kernel.org Fixes: 3b8a5df6c4dc6 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: x86: fix warning Using plain integer as NULL pointerHariprasad Kelam
Changed passing argument as "0 to NULL" which resolves below sparse warning arch/x86/kvm/x86.c:3096:61: warning: Using plain integer as NULL pointer Signed-off-by: Hariprasad Kelam <hariprasad.kelam@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: x86: Always use 32-bit SMRAM save state for 32-bit kernelsSean Christopherson
Invoking the 64-bit variation on a 32-bit kenrel will crash the guest, trigger a WARN, and/or lead to a buffer overrun in the host, e.g. rsm_load_state_64() writes r8-r15 unconditionally, but enum kvm_reg and thus x86_emulate_ctxt._regs only define r8-r15 for CONFIG_X86_64. KVM allows userspace to report long mode support via CPUID, even though the guest is all but guaranteed to crash if it actually tries to enable long mode. But, a pure 32-bit guest that is ignorant of long mode will happily plod along. SMM complicates things as 64-bit CPUs use a different SMRAM save state area. KVM handles this correctly for 64-bit kernels, e.g. uses the legacy save state map if userspace has hid long mode from the guest, but doesn't fare well when userspace reports long mode support on a 32-bit host kernel (32-bit KVM doesn't support 64-bit guests). Since the alternative is to crash the guest, e.g. by not loading state or explicitly requesting shutdown, unconditionally use the legacy SMRAM save state map for 32-bit KVM. If a guest has managed to get far enough to handle SMIs when running under a weird/buggy userspace hypervisor, then don't deliberately crash the guest since there are no downsides (from KVM's perspective) to allow it to continue running. Fixes: 660a5d517aaab ("KVM: x86: save/load state on SMM switch") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: x86: Open code kvm_set_hflagsSean Christopherson
Prepare for clearing HF_SMM_MASK prior to loading state from the SMRAM save state map, i.e. kvm_smm_changed() needs to be called after state has been loaded and so cannot be done automatically when setting hflags from RSM. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: x86: Load SMRAM in a single shot when leaving SMMSean Christopherson
RSM emulation is currently broken on VMX when the interrupted guest has CR4.VMXE=1. Rather than dance around the issue of HF_SMM_MASK being set when loading SMSTATE into architectural state, ideally RSM emulation itself would be reworked to clear HF_SMM_MASK prior to loading non-SMM architectural state. Ostensibly, the only motivation for having HF_SMM_MASK set throughout the loading of state from the SMRAM save state area is so that the memory accesses from GET_SMSTATE() are tagged with role.smm. Load all of the SMRAM save state area from guest memory at the beginning of RSM emulation, and load state from the buffer instead of reading guest memory one-by-one. This paves the way for clearing HF_SMM_MASK prior to loading state, and also aligns RSM with the enter_smm() behavior, which fills a buffer and writes SMRAM save state in a single go. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16x86/kvm: move kvm_load/put_guest_xcr0 into atomic contextWANG Chao
guest xcr0 could leak into host when MCE happens in guest mode. Because do_machine_check() could schedule out at a few places. For example: kvm_load_guest_xcr0 ... kvm_x86_ops->run(vcpu) { vmx_vcpu_run vmx_complete_atomic_exit kvm_machine_check do_machine_check do_memory_failure memory_failure lock_page In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule out, host cpu has guest xcr0 loaded (0xff). In __switch_to { switch_fpu_finish copy_kernel_to_fpregs XRSTORS If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in and tries to reinitialize fpu by restoring init fpu state. Same story as last #GP, except we get DOUBLE FAULT this time. Cc: stable@vger.kernel.org Signed-off-by: WANG Chao <chao.wang@ucloud.cn> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16kvm: mmu: Fix overflow on kvm mmu page limit calculationBen Gardon
KVM bases its memory usage limits on the total number of guest pages across all memslots. However, those limits, and the calculations to produce them, use 32 bit unsigned integers. This can result in overflow if a VM has more guest pages that can be represented by a u32. As a result of this overflow, KVM can use a low limit on the number of MMU pages it will allocate. This makes KVM unable to map all of guest memory at once, prompting spurious faults. Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch introduced no new failures. Signed-off-by: Ben Gardon <bgardon@google.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28KVM: x86: update %rip after emulating IOSean Christopherson
Most (all?) x86 platforms provide a port IO based reset mechanism, e.g. OUT 92h or CF9h. Userspace may emulate said mechanism, i.e. reset a vCPU in response to KVM_EXIT_IO, without explicitly announcing to KVM that it is doing a reset, e.g. Qemu jams vCPU state and resumes running. To avoid corruping %rip after such a reset, commit 0967b7bf1c22 ("KVM: Skip pio instruction when it is emulated, not executed") changed the behavior of PIO handlers, i.e. today's "fast" PIO handling to skip the instruction prior to exiting to userspace. Full emulation doesn't need such tricks becase re-emulating the instruction will naturally handle %rip being changed to point at the reset vector. Updating %rip prior to executing to userspace has several drawbacks: - Userspace sees the wrong %rip on the exit, e.g. if PIO emulation fails it will likely yell about the wrong address. - Single step exits to userspace for are effectively dropped as KVM_EXIT_DEBUG is overwritten with KVM_EXIT_IO. - Behavior of PIO emulation is different depending on whether it goes down the fast path or the slow path. Rather than skip the PIO instruction before exiting to userspace, snapshot the linear %rip and cancel PIO completion if the current value does not match the snapshot. For a 64-bit vCPU, i.e. the most common scenario, the snapshot and comparison has negligible overhead as VMCS.GUEST_RIP will be cached regardless, i.e. there is no extra VMREAD in this case. All other alternatives to snapshotting the linear %rip that don't rely on an explicit reset announcenment suffer from one corner case or another. For example, canceling PIO completion on any write to %rip fails if userspace does a save/restore of %rip, and attempting to avoid that issue by canceling PIO only if %rip changed then fails if PIO collides with the reset %rip. Attempting to zero in on the exact reset vector won't work for APs, which means adding more hooks such as the vCPU's MP_STATE, and so on and so forth. Checking for a linear %rip match technically suffers from corner cases, e.g. userspace could theoretically rewrite the underlying code page and expect a different instruction to execute, or the guest hardcodes a PIO reset at 0xfffffff0, but those are far, far outside of what can be considered normal operation. Fixes: 432baf60eee3 ("KVM: VMX: use kvm_fast_pio_in for handling IN I/O") Cc: <stable@vger.kernel.org> Reported-by: Jim Mattson <jmattson@google.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28kvm/x86: Move MSR_IA32_ARCH_CAPABILITIES to array emulated_msrsXiaoyao Li
Since MSR_IA32_ARCH_CAPABILITIES is emualted unconditionally even if host doesn't suppot it. We should move it to array emulated_msrs from arry msrs_to_save, to report to userspace that guest support this msr. Signed-off-by: Xiaoyao Li <xiaoyao.li@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28KVM: x86: Emulate MSR_IA32_ARCH_CAPABILITIES on AMD hostsSean Christopherson
The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES regardless of hardware support under the pretense that KVM fully emulates MSR_IA32_ARCH_CAPABILITIES. Unfortunately, only VMX hosts handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts). Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so that it's emulated on AMD hosts. Fixes: 1eaafe91a0df4 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported") Cc: stable@vger.kernel.org Reported-by: Xiaoyao Li <xiaoyao.li@linux.intel.com> Cc: Jim Mattson <jmattson@google.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-03-28KVM: x86: remove check on nr_mmu_pages in kvm_arch_commit_memory_region()Wei Yang
* nr_mmu_pages would be non-zero only if kvm->arch.n_requested_mmu_pages is non-zero. * nr_mmu_pages is always non-zero, since kvm_mmu_calculate_mmu_pages() never return zero. Based on these two reasons, we can merge the two *if* clause and use the return value from kvm_mmu_calculate_mmu_pages() directly. This simplify the code and also eliminate the possibility for reader to believe nr_mmu_pages would be zero. Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20Revert "KVM: x86: use the fast way to invalidate all pages"Sean Christopherson
Revert to a slow kvm_mmu_zap_all() for kvm_arch_flush_shadow_all(). Flushing all shadow entries is only done during VM teardown, i.e. kvm_arch_flush_shadow_all() is only called when the associated MM struct is being released or when the VM instance is being freed. Although the performance of teardown itself isn't critical, KVM should still voluntarily schedule to play nice with the rest of the kernel; but that can be done without the fast invalidate mechanism in a future patch. This reverts commit 6ca18b6950f8dee29361722f28f69847724b276f. Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20Revert "KVM: MMU: reclaim the zapped-obsolete page first"Sean Christopherson
Unwinding optimizations related to obsolete pages is a step towards removing x86 KVM's fast invalidate mechanism, i.e. this is one part of a revert all patches from the series that introduced the mechanism[1]. This reverts commit 365c886860c4ba670d245e762b23987c912c129a. [1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com Cc: Xiao Guangrong <guangrong.xiao@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20KVM: Call kvm_arch_memslots_updated() before updating memslotsSean Christopherson
kvm_arch_memslots_updated() is at this point in time an x86-specific hook for handling MMIO generation wraparound. x86 stashes 19 bits of the memslots generation number in its MMIO sptes in order to avoid full page fault walks for repeat faults on emulated MMIO addresses. Because only 19 bits are used, wrapping the MMIO generation number is possible, if unlikely. kvm_arch_memslots_updated() alerts x86 that the generation has changed so that it can invalidate all MMIO sptes in case the effective MMIO generation has wrapped so as to avoid using a stale spte, e.g. a (very) old spte that was created with generation==0. Given that the purpose of kvm_arch_memslots_updated() is to prevent consuming stale entries, it needs to be called before the new generation is propagated to memslots. Invalidating the MMIO sptes after updating memslots means that there is a window where a vCPU could dereference the new memslots generation, e.g. 0, and incorrectly reuse an old MMIO spte that was created with (pre-wrap) generation==0. Fixes: e59dbe09f8e6 ("KVM: Introduce kvm_arch_memslots_updated()") Cc: <stable@vger.kernel.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20kvm: x86: Add memcg accounting to KVM allocationsBen Gardon
There are many KVM kernel memory allocations which are tied to the life of the VM process and should be charged to the VM process's cgroup. If the allocations aren't tied to the process, the OOM killer will not know that killing the process will free the associated kernel memory. Add __GFP_ACCOUNT flags to many of the allocations which are not yet being charged to the VM process's cgroup. Tested: Ran all kvm-unit-tests on a 64 bit Haswell machine, the patch introduced no new failures. Ran a kernel memory accounting test which creates a VM to touch memory and then checks that the kernel memory allocated for the process is within certain bounds. With this patch we account for much more of the vmalloc and slab memory allocated for the VM. There remain a few allocations which should be charged to the VM's cgroup but are not. In x86, they include: vcpu->arch.pio_data There allocations are unaccounted in this patch because they are mapped to userspace, and accounting them to a cgroup causes problems. This should be addressed in a future patch. Signed-off-by: Ben Gardon <bgardon@google.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20KVM: x86: Sync the pending Posted-InterruptsLuwei Kang
Some Posted-Interrupts from passthrough devices may be lost or overwritten when the vCPU is in runnable state. The SN (Suppress Notification) of PID (Posted Interrupt Descriptor) will be set when the vCPU is preempted (vCPU in KVM_MP_STATE_RUNNABLE state but not running on physical CPU). If a posted interrupt coming at this time, the irq remmaping facility will set the bit of PIR (Posted Interrupt Requests) without ON (Outstanding Notification). So this interrupt can't be sync to APIC virtualization register and will not be handled by Guest because ON is zero. Signed-off-by: Luwei Kang <luwei.kang@intel.com> [Eliminate the pi_clear_sn fast path. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20KVM: x86: cull apicv code when userspace irqchip is requestedPaolo Bonzini
Currently apicv_active can be true even if in-kernel LAPIC emulation is disabled. Avoid this by properly initializing it in kvm_arch_vcpu_init, and then do not do anything to deactivate APICv when it is actually not used (Currently APICv is only deactivated by SynIC code that in turn is only reachable when in-kernel LAPIC is in use. However, it is cleaner if kvm_vcpu_deactivate_apicv avoids relying on this. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-07KVM: x86: work around leak of uninitialized stack contents (CVE-2019-7222)Paolo Bonzini
Bugzilla: 1671930 Emulation of certain instructions (VMXON, VMCLEAR, VMPTRLD, VMWRITE with memory operand, INVEPT, INVVPID) can incorrectly inject a page fault when passed an operand that points to an MMIO address. The page fault will use uninitialized kernel stack memory as the CR2 and error code. The right behavior would be to abort the VM with a KVM_EXIT_INTERNAL_ERROR exit to userspace; however, it is not an easy fix, so for now just ensure that the error code and CR2 are zero. Embargoed until Feb 7th 2019. Reported-by: Felix Wilhelm <fwilhelm@google.com> Cc: stable@kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25KVM: x86: Mark expected switch fall-throughsGustavo A. R. Silva
In preparation to enabling -Wimplicit-fallthrough, mark switch cases where we are expecting to fall through. This patch fixes the following warnings: arch/x86/kvm/lapic.c:1037:27: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/lapic.c:1876:3: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/hyperv.c:1637:6: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/svm.c:4396:6: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/mmu.c:4372:36: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/x86.c:3835:6: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/x86.c:7938:23: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/vmx/vmx.c:2015:6: warning: this statement may fall through [-Wimplicit-fallthrough=] arch/x86/kvm/vmx/vmx.c:1773:6: warning: this statement may fall through [-Wimplicit-fallthrough=] Warning level 3 was used: -Wimplicit-fallthrough=3 This patch is part of the ongoing efforts to enabling -Wimplicit-fallthrough. Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25KVM: x86: Fix PV IPIs for 32-bit KVM hostSean Christopherson
The recognition of the KVM_HC_SEND_IPI hypercall was unintentionally wrapped in "#ifdef CONFIG_X86_64", causing 32-bit KVM hosts to reject any and all PV IPI requests despite advertising the feature. This results in all KVM paravirtualized guests hanging during SMP boot due to IPIs never being delivered. Fixes: 4180bf1b655a ("KVM: X86: Implement "send IPI" hypercall") Cc: stable@vger.kernel.org Cc: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-01-25KVM: x86: Fix single-step debuggingAlexander Popov
The single-step debugging of KVM guests on x86 is broken: if we run gdb 'stepi' command at the breakpoint when the guest interrupts are enabled, RIP always jumps to native_apic_mem_write(). Then other nasty effects follow. Long investigation showed that on Jun 7, 2017 the commit c8401dda2f0a00cd25c0 ("KVM: x86: fix singlestepping over syscall") introduced the kvm_run.debug corruption: kvm_vcpu_do_singlestep() can be called without X86_EFLAGS_TF set. Let's fix it. Please consider that for -stable. Signed-off-by: Alexander Popov <alex.popov@linux.com> Cc: stable@vger.kernel.org Fixes: c8401dda2f0a00cd25c0 ("KVM: x86: fix singlestepping over syscall") Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-26Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull KVM updates from Paolo Bonzini: "ARM: - selftests improvements - large PUD support for HugeTLB - single-stepping fixes - improved tracing - various timer and vGIC fixes x86: - Processor Tracing virtualization - STIBP support - some correctness fixes - refactorings and splitting of vmx.c - use the Hyper-V range TLB flush hypercall - reduce order of vcpu struct - WBNOINVD support - do not use -ftrace for __noclone functions - nested guest support for PAUSE filtering on AMD - more Hyper-V enlightenments (direct mode for synthetic timers) PPC: - nested VFIO s390: - bugfixes only this time" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits) KVM: x86: Add CPUID support for new instruction WBNOINVD kvm: selftests: ucall: fix exit mmio address guessing Revert "compiler-gcc: disable -ftracer for __noclone functions" KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines KVM: VMX: Explicitly reference RCX as the vmx_vcpu pointer in asm blobs KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixup MAINTAINERS: Add arch/x86/kvm sub-directories to existing KVM/x86 entry KVM/x86: Use SVM assembly instruction mnemonics instead of .byte streams KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range() KVM/MMU: Flush tlb directly in kvm_set_pte_rmapp() KVM/MMU: Move tlb flush in kvm_set_pte_rmapp() to kvm_mmu_notifier_change_pte() KVM: Make kvm_set_spte_hva() return int KVM: Replace old tlb flush function with new one to flush a specified range. KVM/MMU: Add tlb flush with range helper function KVM/VMX: Add hv tlb range flush support x86/hyper-v: Add HvFlushGuestAddressList hypercall support KVM: Add tlb_remote_flush_with_range callback in kvm_x86_ops KVM: x86: Disable Intel PT when VMXON in L1 guest KVM: x86: Set intercept for Intel PT MSRs read/write KVM: x86: Implement Intel PT MSRs read/write emulation ...
2018-12-21KVM: x86: Implement Intel PT MSRs read/write emulationChao Peng
This patch implement Intel Processor Trace MSRs read/write emulation. Intel PT MSRs read/write need to be emulated when Intel PT MSRs is intercepted in guest and during live migration. Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com> Signed-off-by: Luwei Kang <luwei.kang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21KVM: fix some typosWei Yang
Signed-off-by: Wei Yang <richard.weiyang@gmail.com> [Preserved the iff and a probably intentional weird bracket notation. Also dropped the style change to make a single-purpose patch. - Radim] Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-12-21KVM: x86: fix size of x86_fpu_cache objectsPaolo Bonzini
The memory allocation in b666a4b69739 ("kvm: x86: Dynamically allocate guest_fpu", 2018-11-06) is wrong, there are other members in struct fpu before the fpregs_state union and the patch should be doing something similar to the code in fpu__init_task_struct_size. It's enough to run a guest and then rmmod kvm to see slub errors which are actually caused by memory corruption. For now let's revert it to sizeof(struct fpu), which is conservative. I have plans to move fsave/fxsave/xsave directly in KVM, without using the kernel FPU helpers, and once it's done, the size of the object in the cache will be something like kvm_xstate_size. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-18kvm: x86: Add AMD's EX_CFG to the list of ignored MSRsEduardo Habkost
Some guests OSes (including Windows 10) write to MSR 0xc001102c on some cases (possibly while trying to apply a CPU errata). Make KVM ignore reads and writes to that MSR, so the guest won't crash. The MSR is documented as "Execution Unit Configuration (EX_CFG)", at AMD's "BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h Models 00h-0Fh Processors". Cc: stable@vger.kernel.org Signed-off-by: Eduardo Habkost <ehabkost@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-18KVM: X86: Fix NULL deref in vcpu_scan_ioapicWanpeng Li
Reported by syzkaller: CPU: 1 PID: 5962 Comm: syz-executor118 Not tainted 4.20.0-rc6+ #374 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:kvm_apic_hw_enabled arch/x86/kvm/lapic.h:169 [inline] RIP: 0010:vcpu_scan_ioapic arch/x86/kvm/x86.c:7449 [inline] RIP: 0010:vcpu_enter_guest arch/x86/kvm/x86.c:7602 [inline] RIP: 0010:vcpu_run arch/x86/kvm/x86.c:7874 [inline] RIP: 0010:kvm_arch_vcpu_ioctl_run+0x5296/0x7320 arch/x86/kvm/x86.c:8074 Call Trace: kvm_vcpu_ioctl+0x5c8/0x1150 arch/x86/kvm/../../../virt/kvm/kvm_main.c:2596 vfs_ioctl fs/ioctl.c:46 [inline] file_ioctl fs/ioctl.c:509 [inline] do_vfs_ioctl+0x1de/0x1790 fs/ioctl.c:696 ksys_ioctl+0xa9/0xd0 fs/ioctl.c:713 __do_sys_ioctl fs/ioctl.c:720 [inline] __se_sys_ioctl fs/ioctl.c:718 [inline] __x64_sys_ioctl+0x73/0xb0 fs/ioctl.c:718 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe The reason is that the testcase writes hyperv synic HV_X64_MSR_SINT14 msr and triggers scan ioapic logic to load synic vectors into EOI exit bitmap. However, irqchip is not initialized by this simple testcase, ioapic/apic objects should not be accessed. This patch fixes it by also considering whether or not apic is present. Reported-by: syzbot+39810e6c400efadfef71@syzkaller.appspotmail.com Cc: stable@vger.kernel.org Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14kvm: x86: Dynamically allocate guest_fpuMarc Orr
Previously, the guest_fpu field was embedded in the kvm_vcpu_arch struct. Unfortunately, the field is quite large, (e.g., 4352 bytes on my current setup). This bloats the kvm_vcpu_arch struct for x86 into an order 3 memory allocation, which can become a problem on overcommitted machines. Thus, this patch moves the fpu state outside of the kvm_vcpu_arch struct. With this patch applied, the kvm_vcpu_arch struct is reduced to 15168 bytes for vmx on my setup when building the kernel with kvmconfig. Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Marc Orr <marcorr@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14kvm: x86: Use task structs fpu field for userMarc Orr
Previously, x86's instantiation of 'struct kvm_vcpu_arch' added an fpu field to save/restore fpu-related architectural state, which will differ from kvm's fpu state. However, this is redundant to the 'struct fpu' field, called fpu, embedded in the task struct, via the thread field. Thus, this patch removes the user_fpu field from the kvm_vcpu_arch struct and replaces it with the task struct's fpu field. This change is significant because the fpu struct is actually quite large. For example, on the system used to develop this patch, this change reduces the size of the vcpu_vmx struct from 23680 bytes down to 19520 bytes, when building the kernel with kvmconfig. This reduction in the size of the vcpu_vmx struct moves us closer to being able to allocate the struct at order 2, rather than order 3. Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Marc Orr <marcorr@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14kvm: x86: Don't modify MSR_PLATFORM_INFO on vCPU resetJim Mattson
If userspace has provided a different value for this MSR (e.g with the turbo bits set), the userspace-provided value should survive a vCPU reset. For backwards compatibility, MSR_PLATFORM_INFO is initialized in kvm_arch_vcpu_setup. Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Drew Schmitt <dasch@google.com> Cc: Abhiroop Dabral <adabral@paloaltonetworks.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14x86/kvm/hyper-v: Introduce KVM_GET_SUPPORTED_HV_CPUIDVitaly Kuznetsov
With every new Hyper-V Enlightenment we implement we're forced to add a KVM_CAP_HYPERV_* capability. While this approach works it is fairly inconvenient: the majority of the enlightenments we do have corresponding CPUID feature bit(s) and userspace has to know this anyways to be able to expose the feature to the guest. Add KVM_GET_SUPPORTED_HV_CPUID ioctl (backed by KVM_CAP_HYPERV_CPUID, "one cap to rule them all!") returning all Hyper-V CPUID feature leaves. Using the existing KVM_GET_SUPPORTED_CPUID doesn't seem to be possible: Hyper-V CPUID feature leaves intersect with KVM's (e.g. 0x40000000, 0x40000001) and we would probably confuse userspace in case we decide to return these twice. KVM_CAP_HYPERV_CPUID's number is interim: we're intended to drop KVM_CAP_HYPERV_STIMER_DIRECT and use its number instead. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14KVM: x86: nVMX: Allow nested_enable_evmcs to be NULLSean Christopherson
...so that it can conditionally set by the VMX code, i.e. iff @nested is true. This will in turn allow it to be moved out of vmx.c and into a nested-specified file. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14kvm: introduce manual dirty log reprotectPaolo Bonzini
There are two problems with KVM_GET_DIRTY_LOG. First, and less important, it can take kvm->mmu_lock for an extended period of time. Second, its user can actually see many false positives in some cases. The latter is due to a benign race like this: 1. KVM_GET_DIRTY_LOG returns a set of dirty pages and write protects them. 2. The guest modifies the pages, causing them to be marked ditry. 3. Userspace actually copies the pages. 4. KVM_GET_DIRTY_LOG returns those pages as dirty again, even though they were not written to since (3). This is especially a problem for large guests, where the time between (1) and (3) can be substantial. This patch introduces a new capability which, when enabled, makes KVM_GET_DIRTY_LOG not write-protect the pages it returns. Instead, userspace has to explicitly clear the dirty log bits just before using the content of the page. The new KVM_CLEAR_DIRTY_LOG ioctl can also operate on a 64-page granularity rather than requiring to sync a full memslot; this way, the mmu_lock is taken for small amounts of time, and only a small amount of time will pass between write protection of pages and the sending of their content. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14kvm: rename last argument to kvm_get_dirty_log_protectPaolo Bonzini
When manual dirty log reprotect will be enabled, kvm_get_dirty_log_protect's pointer argument will always be false on exit, because no TLB flush is needed until the manual re-protection operation. Rename it from "is_dirty" to "flush", which more accurately tells the caller what they have to do with it. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-14kvm: make KVM_CAP_ENABLE_CAP_VM architecture agnosticPaolo Bonzini
The first such capability to be handled in virt/kvm/ will be manual dirty page reprotection. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-11-27KVM: nVMX/nSVM: Fix bug which sets vcpu->arch.tsc_offset to L1 tsc_offsetLeonid Shatz
Since commit e79f245ddec1 ("X86/KVM: Properly update 'tsc_offset' to represent the running guest"), vcpu->arch.tsc_offset meaning was changed to always reflect the tsc_offset value set on active VMCS. Regardless if vCPU is currently running L1 or L2. However, above mentioned commit failed to also change kvm_vcpu_write_tsc_offset() to set vcpu->arch.tsc_offset correctly. This is because vmx_write_tsc_offset() could set the tsc_offset value in active VMCS to given offset parameter *plus vmcs12->tsc_offset*. However, kvm_vcpu_write_tsc_offset() just sets vcpu->arch.tsc_offset to given offset parameter. Without taking into account the possible addition of vmcs12->tsc_offset. (Same is true for SVM case). Fix this issue by changing kvm_x86_ops->write_tsc_offset() to return actually set tsc_offset in active VMCS and modify kvm_vcpu_write_tsc_offset() to set returned value in vcpu->arch.tsc_offset. In addition, rename write_tsc_offset() callback to write_l1_tsc_offset() to make it clear that it is meant to set L1 TSC offset. Fixes: e79f245ddec1 ("X86/KVM: Properly update 'tsc_offset' to represent the running guest") Reviewed-by: Liran Alon <liran.alon@oracle.com> Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com> Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: Leonid Shatz <leonid.shatz@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-11-27KVM: x86: Fix kernel info-leak in KVM_HC_CLOCK_PAIRING hypercallLiran Alon
kvm_pv_clock_pairing() allocates local var "struct kvm_clock_pairing clock_pairing" on stack and initializes all it's fields besides padding (clock_pairing.pad[]). Because clock_pairing var is written completely (including padding) to guest memory, failure to init struct padding results in kernel info-leak. Fix the issue by making sure to also init the padding with zeroes. Fixes: 55dd00a73a51 ("KVM: x86: add KVM_HC_CLOCK_PAIRING hypercall") Reported-by: syzbot+a8ef68d71211ba264f56@syzkaller.appspotmail.com Reviewed-by: Mark Kanda <mark.kanda@oracle.com> Signed-off-by: Liran Alon <liran.alon@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-11-27KVM: X86: Fix scan ioapic use-before-initializationWanpeng Li
Reported by syzkaller: BUG: unable to handle kernel NULL pointer dereference at 00000000000001c8 PGD 80000003ec4da067 P4D 80000003ec4da067 PUD 3f7bfa067 PMD 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 7 PID: 5059 Comm: debug Tainted: G OE 4.19.0-rc5 #16 RIP: 0010:__lock_acquire+0x1a6/0x1990 Call Trace: lock_acquire+0xdb/0x210 _raw_spin_lock+0x38/0x70 kvm_ioapic_scan_entry+0x3e/0x110 [kvm] vcpu_enter_guest+0x167e/0x1910 [kvm] kvm_arch_vcpu_ioctl_run+0x35c/0x610 [kvm] kvm_vcpu_ioctl+0x3e9/0x6d0 [kvm] do_vfs_ioctl+0xa5/0x690 ksys_ioctl+0x6d/0x80 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x83/0x6e0 entry_SYSCALL_64_after_hwframe+0x49/0xbe The reason is that the testcase writes hyperv synic HV_X64_MSR_SINT6 msr and triggers scan ioapic logic to load synic vectors into EOI exit bitmap. However, irqchip is not initialized by this simple testcase, ioapic/apic objects should not be accessed. This can be triggered by the following program: #define _GNU_SOURCE #include <endian.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> uint64_t r[3] = {0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff}; int main(void) { syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0); long res = 0; memcpy((void*)0x20000040, "/dev/kvm", 9); res = syscall(__NR_openat, 0xffffffffffffff9c, 0x20000040, 0, 0); if (res != -1) r[0] = res; res = syscall(__NR_ioctl, r[0], 0xae01, 0); if (res != -1) r[1] = res; res = syscall(__NR_ioctl, r[1], 0xae41, 0); if (res != -1) r[2] = res; memcpy( (void*)0x20000080, "\x01\x00\x00\x00\x00\x5b\x61\xbb\x96\x00\x00\x40\x00\x00\x00\x00\x01\x00" "\x08\x00\x00\x00\x00\x00\x0b\x77\xd1\x78\x4d\xd8\x3a\xed\xb1\x5c\x2e\x43" "\xaa\x43\x39\xd6\xff\xf5\xf0\xa8\x98\xf2\x3e\x37\x29\x89\xde\x88\xc6\x33" "\xfc\x2a\xdb\xb7\xe1\x4c\xac\x28\x61\x7b\x9c\xa9\xbc\x0d\xa0\x63\xfe\xfe" "\xe8\x75\xde\xdd\x19\x38\xdc\x34\xf5\xec\x05\xfd\xeb\x5d\xed\x2e\xaf\x22" "\xfa\xab\xb7\xe4\x42\x67\xd0\xaf\x06\x1c\x6a\x35\x67\x10\x55\xcb", 106); syscall(__NR_ioctl, r[2], 0x4008ae89, 0x20000080); syscall(__NR_ioctl, r[2], 0xae80, 0); return 0; } This patch fixes it by bailing out scan ioapic if ioapic is not initialized in kernel. Reported-by: Wei Wu <ww9210@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Wei Wu <ww9210@gmail.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-29x86: Clean up 'sizeof x' => 'sizeof(x)'Jordan Borgner
"sizeof(x)" is the canonical coding style used in arch/x86 most of the time. Fix the few places that didn't follow the convention. (Also do some whitespace cleanups in a few places while at it.) [ mingo: Rewrote the changelog. ] Signed-off-by: Jordan Borgner <mail@jordan-borgner.de> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20181028125828.7rgammkgzep2wpam@JordanDesktop Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-23Revert "kvm: x86: optimize dr6 restore"Radim Krčmář
This reverts commit 0e0a53c551317654e2d7885fdfd23299fee99b6b. As Christian Ehrhardt noted: The most common case is that vcpu->arch.dr6 and the host's %dr6 value are not related at all because ->switch_db_regs is zero. To do this all correctly, we must handle the case where the guest leaves an arbitrary unused value in vcpu->arch.dr6 before disabling breakpoints again. However, this means that vcpu->arch.dr6 is not suitable to detect the need for a %dr6 clear. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-10-17kvm: x86: Introduce KVM_CAP_EXCEPTION_PAYLOADJim Mattson
This is a per-VM capability which can be enabled by userspace so that the faulting linear address will be included with the information about a pending #PF in L2, and the "new DR6 bits" will be included with the information about a pending #DB in L2. With this capability enabled, the L1 hypervisor can now intercept #PF before CR2 is modified. Under VMX, the L1 hypervisor can now intercept #DB before DR6 and DR7 are modified. When userspace has enabled KVM_CAP_EXCEPTION_PAYLOAD, it should generally provide an appropriate payload when injecting a #PF or #DB exception via KVM_SET_VCPU_EVENTS. However, to support restoring old checkpoints, this payload is not required. Note that bit 16 of the "new DR6 bits" is set to indicate that a debug exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM transactional regions was enabled. This is the reverse of DR6.RTM, which is cleared in this scenario. This capability also enables exception.pending in struct kvm_vcpu_events, which allows userspace to distinguish between pending and injected exceptions. Reported-by: Jim Mattson <jmattson@google.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17kvm: vmx: Defer setting of DR6 until #DB deliveryJim Mattson
When exception payloads are enabled by userspace (which is not yet possible) and a #DB is raised in L2, defer the setting of DR6 until later. Under VMX, this allows the L1 hypervisor to intercept the fault before DR6 is modified. Under SVM, DR6 is modified before L1 can intercept the fault (as has always been the case with DR7). Note that the payload associated with a #DB exception includes only the "new DR6 bits." When the payload is delievered, DR6.B0-B3 will be cleared and DR6.RTM will be set prior to merging in the new DR6 bits. Also note that bit 16 in the "new DR6 bits" is set to indicate that a debug exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM transactional regions was enabled. Though the reverse of DR6.RTM, this makes the #DB payload field compatible with both the pending debug exceptions field under VMX and the exit qualification for #DB exceptions under VMX. Reported-by: Jim Mattson <jmattson@google.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17kvm: x86: Defer setting of CR2 until #PF deliveryJim Mattson
When exception payloads are enabled by userspace (which is not yet possible) and a #PF is raised in L2, defer the setting of CR2 until the #PF is delivered. This allows the L1 hypervisor to intercept the fault before CR2 is modified. For backwards compatibility, when exception payloads are not enabled by userspace, kvm_multiple_exception modifies CR2 when the #PF exception is raised. Reported-by: Jim Mattson <jmattson@google.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17kvm: x86: Add payload operands to kvm_multiple_exceptionJim Mattson
kvm_multiple_exception now takes two additional operands: has_payload and payload, so that updates to CR2 (and DR6 under VMX) can be delayed until the exception is delivered. This is necessary to properly emulate VMX or SVM hardware behavior for nested virtualization. The new behavior is triggered by vcpu->kvm->arch.exception_payload_enabled, which will (later) be set by a new per-VM capability, KVM_CAP_EXCEPTION_PAYLOAD. Reported-by: Jim Mattson <jmattson@google.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17kvm: x86: Add exception payload fields to kvm_vcpu_eventsJim Mattson
The per-VM capability KVM_CAP_EXCEPTION_PAYLOAD (to be introduced in a later commit) adds the following fields to struct kvm_vcpu_events: exception_has_payload, exception_payload, and exception.pending. With this capability set, all of the details of vcpu->arch.exception, including the payload for a pending exception, are reported to userspace in response to KVM_GET_VCPU_EVENTS. With this capability clear, the original ABI is preserved, and the exception.injected field is set for either pending or injected exceptions. When userspace calls KVM_SET_VCPU_EVENTS with KVM_CAP_EXCEPTION_PAYLOAD clear, exception.injected is no longer translated to exception.pending. KVM_SET_VCPU_EVENTS can now only establish a pending exception when KVM_CAP_EXCEPTION_PAYLOAD is set. Reported-by: Jim Mattson <jmattson@google.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17kvm: x86: Add has_payload and payload to kvm_queued_exceptionJim Mattson
The payload associated with a #PF exception is the linear address of the fault to be loaded into CR2 when the fault is delivered. The payload associated with a #DB exception is a mask of the DR6 bits to be set (or in the case of DR6.RTM, cleared) when the fault is delivered. Add fields has_payload and payload to kvm_queued_exception to track payloads for pending exceptions. The new fields are introduced here, but for now, they are just cleared. Reported-by: Jim Mattson <jmattson@google.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17x86/kvm/nVMX: nested state migration for Enlightened VMCSVitaly Kuznetsov
Add support for get/set of nested state when Enlightened VMCS is in use. A new KVM_STATE_NESTED_EVMCS flag to indicate eVMCS on the vCPU was enabled is added. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>