summaryrefslogtreecommitdiff
path: root/arch/x86/kvm
AgeCommit message (Collapse)Author
2022-11-09KVM: x86: Add a VALID_MASK for the flag in kvm_msr_filterAaron Lewis
Add the mask KVM_MSR_FILTER_VALID_MASK for the flag in the struct kvm_msr_filter. This makes it easier to introduce new flags in the future. No functional change intended. Signed-off-by: Aaron Lewis <aaronlewis@google.com> Message-Id: <20220921151525.904162-4-aaronlewis@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: Add a VALID_MASK for the MSR exit reason flagsAaron Lewis
Add the mask KVM_MSR_EXIT_REASON_VALID_MASK for the MSR exit reason flags. This simplifies checks that validate these flags, and makes it easier to introduce new flags in the future. No functional change intended. Signed-off-by: Aaron Lewis <aaronlewis@google.com> Message-Id: <20220921151525.904162-3-aaronlewis@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09kvm: x86: Allow to respond to generic signals during slow PFPeter Xu
Enable x86 slow page faults to be able to respond to non-fatal signals, returning -EINTR properly when it happens. Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Message-Id: <20221011195947.557281-1-peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09kvm: Add interruptible flag to __gfn_to_pfn_memslot()Peter Xu
Add a new "interruptible" flag showing that the caller is willing to be interrupted by signals during the __gfn_to_pfn_memslot() request. Wire it up with a FOLL_INTERRUPTIBLE flag that we've just introduced. This prepares KVM to be able to respond to SIGUSR1 (for QEMU that's the SIGIPI) even during e.g. handling an userfaultfd page fault. No functional change intended. Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Message-Id: <20221011195809.557016-4-peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: smm: preserve interrupt shadow in SMRAMMaxim Levitsky
When #SMI is asserted, the CPU can be in interrupt shadow due to sti or mov ss. It is not mandatory in Intel/AMD prm to have the #SMI blocked during the shadow, and on top of that, since neither SVM nor VMX has true support for SMI window, waiting for one instruction would mean single stepping the guest. Instead, allow #SMI in this case, but both reset the interrupt window and stash its value in SMRAM to restore it on exit from SMM. This fixes rare failures seen mostly on windows guests on VMX, when #SMI falls on the sti instruction which mainfest in VM entry failure due to EFLAGS.IF not being set, but STI interrupt window still being set in the VMCS. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20221025124741.228045-24-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: SVM: don't save SVM state to SMRAM when VM is not long mode capableMaxim Levitsky
When the guest CPUID doesn't have support for long mode, 32 bit SMRAM layout is used and it has no support for preserving EFER and/or SVM state. Note that this isn't relevant to running 32 bit guests on VM which is long mode capable - such VM can still run 32 bit guests in compatibility mode. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20221025124741.228045-23-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: SVM: use smram structsMaxim Levitsky
Use SMM structs in the SVM code as well, which removes the last user of put_smstate/GET_SMSTATE so remove these macros as well. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20221025124741.228045-22-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: svm: drop explicit return value of kvm_vcpu_mapMaxim Levitsky
if kvm_vcpu_map returns non zero value, error path should be triggered regardless of the exact returned error value. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20221025124741.228045-21-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: smm: use smram struct for 64 bit smram load/restoreMaxim Levitsky
Use kvm_smram_state_64 struct to save/restore the 64 bit SMM state (used when X86_FEATURE_LM is present in the guest CPUID, regardless of 32-bitness of the guest). Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20221025124741.228045-20-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: smm: use smram struct for 32 bit smram load/restoreMaxim Levitsky
Use kvm_smram_state_32 struct to save/restore 32 bit SMM state (used when X86_FEATURE_LM is not present in the guest CPUID). Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20221025124741.228045-19-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: smm: use smram structs in the common codeMaxim Levitsky
Use kvm_smram union instad of raw arrays in the common smm code. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20221025124741.228045-18-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: smm: add structs for KVM's smram layoutMaxim Levitsky
Add structs that will be used to define and read/write the KVM's SMRAM layout, instead of reading/writing to raw offsets. Also document the differences between KVM's SMRAM layout and SMRAM layout that is used by real Intel/AMD cpus. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20221025124741.228045-17-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: smm: check for failures on smm entryMaxim Levitsky
In the rare case of the failure on SMM entry, the KVM should at least terminate the VM instead of going south. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20221025124741.228045-16-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: do not define SMM-related constants if SMM disabledPaolo Bonzini
The hidden processor flags HF_SMM_MASK and HF_SMM_INSIDE_NMI_MASK are not needed if CONFIG_KVM_SMM is turned off. Remove the definitions altogether and the code that uses them. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: zero output of KVM_GET_VCPU_EVENTS before filling in the structPaolo Bonzini
This allows making some fields optional, as will be the case soon for SMM-related data. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: do not define KVM_REQ_SMI if SMM disabledPaolo Bonzini
This ensures that all the relevant code is compiled out, in fact the process_smi stub can be removed too. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20220929172016.319443-9-pbonzini@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: compile out vendor-specific code if SMM is disabledPaolo Bonzini
Vendor-specific code that deals with SMI injection and saving/restoring SMM state is not needed if CONFIG_KVM_SMM is disabled, so remove the four callbacks smi_allowed, enter_smm, leave_smm and enable_smi_window. The users in svm/nested.c and x86.c also have to be compiled out; the amount of #ifdef'ed code is small and it's not worth moving it to smm.c. enter_smm is now used only within #ifdef CONFIG_KVM_SMM, and the stub can therefore be removed. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20220929172016.319443-7-pbonzini@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: allow compiling out SMM supportPaolo Bonzini
Some users of KVM implement the UEFI variable store through a paravirtual device that does not require the "SMM lockbox" component of edk2; allow them to compile out system management mode, which is not a full implementation especially in how it interacts with nested virtualization. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20220929172016.319443-6-pbonzini@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: do not go through ctxt->ops when emulating rsmPaolo Bonzini
Now that RSM is implemented in a single emulator callback, there is no point in going through other callbacks for the sake of modifying processor state. Just invoke KVM's own internal functions directly, and remove the callbacks that were only used by em_rsm; the only substantial difference is in the handling of the segment registers and descriptor cache, which have to be parsed into a struct kvm_segment instead of a struct desc_struct. This also fixes a bug where emulator_set_segment was shifting the limit left by 12 if the G bit is set, but the limit had not been shifted right upon entry to SMM. The emulator context is still used to restore EIP and the general purpose registers. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20220929172016.319443-5-pbonzini@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: move SMM exit to a new filePaolo Bonzini
Some users of KVM implement the UEFI variable store through a paravirtual device that does not require the "SMM lockbox" component of edk2, and would like to compile out system management mode. In preparation for that, move the SMM exit code out of emulate.c and into a new file. The code is still written as a series of invocations of the emulator callbacks, but the two exiting_smm and leave_smm callbacks are merged into one, and all the code from em_rsm is now part of the callback. This removes all knowledge of the format of the SMM save state area from the emulator. Further patches will clean up the code and invoke KVM's own functions to access control registers, descriptor caches, etc. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20220929172016.319443-4-pbonzini@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: move SMM entry to a new filePaolo Bonzini
Some users of KVM implement the UEFI variable store through a paravirtual device that does not require the "SMM lockbox" component of edk2, and would like to compile out system management mode. In preparation for that, move the SMM entry code out of x86.c and into a new file. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20220929172016.319443-3-pbonzini@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: start moving SMM-related functions to new filesPaolo Bonzini
Create a new header and source with code related to system management mode emulation. Entry and exit will move there too; for now, opportunistically rename put_smstate to PUT_SMSTATE while moving it to smm.h, and adjust the SMM state saving code. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20220929172016.319443-2-pbonzini@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: SVM: Name and check reserved fields with structs offsetCarlos Bilbao
Rename reserved fields on all structs in arch/x86/include/asm/svm.h following their offset within the structs. Include compile time checks for this in the same place where other BUILD_BUG_ON for the structs are. This also solves that fields of struct sev_es_save_area are named by their order of appearance, but right now they jump from reserved_5 to reserved_7. Link: https://lkml.org/lkml/2022/10/22/376 Signed-off-by: Carlos Bilbao <carlos.bilbao@amd.com> Message-Id: <20221024164448.203351-1-carlos.bilbao@amd.com> [Use ASSERT_STRUCT_OFFSET + fix a couple wrong offsets. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09bug: introduce ASSERT_STRUCT_OFFSETMaxim Levitsky
ASSERT_STRUCT_OFFSET allows to assert during the build of the kernel that a field in a struct have an expected offset. KVM used to have such macro, but there is almost nothing KVM specific in it so move it to build_bug.h, so that it can be used in other places in KVM. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20221025124741.228045-10-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: Insert "AMD" in KVM_X86_FEATURE_PSFDJim Mattson
Intel and AMD have separate CPUID bits for each SPEC_CTRL bit. In the case of every bit other than PFSD, the Intel CPUID bit has no vendor name qualifier, but the AMD CPUID bit does. For consistency, rename KVM_X86_FEATURE_PSFD to KVM_X86_FEATURE_AMD_PSFD. No functional change intended. Signed-off-by: Jim Mattson <jmattson@google.com> Cc: Babu Moger <Babu.Moger@amd.com> Message-Id: <20220830225210.2381310-1-jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86/mmu: use helper macro SPTE_ENT_PER_PAGEMiaohe Lin
Use helper macro SPTE_ENT_PER_PAGE to get the number of spte entries per page. Minor readability improvement. Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220913085452.25561-1-linmiaohe@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86/mmu: fix some comment typosMiaohe Lin
Fix some typos in comments. Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220913091725.35953-1-linmiaohe@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: remove obsolete kvm_mmu_gva_to_gpa_fetch()Miaohe Lin
There's no caller. Remove it. Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220913090537.25195-1-linmiaohe@huawei.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: Directly query supported PERF_CAPABILITIES for WRMSR checksSean Christopherson
Use kvm_caps.supported_perf_cap directly instead of bouncing through kvm_get_msr_feature() when checking the incoming value for writes to PERF_CAPABILITIES. Note, kvm_get_msr_feature() is guaranteed to succeed when getting PERF_CAPABILITIES, i.e. dropping that check is a nop. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20221006000314.73240-9-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: Handle PERF_CAPABILITIES in common x86's kvm_get_msr_feature()Sean Christopherson
Handle PERF_CAPABILITIES directly in kvm_get_msr_feature() now that the supported value is available in kvm_caps. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20221006000314.73240-8-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: Init vcpu->arch.perf_capabilities in common x86 codeSean Christopherson
Initialize vcpu->arch.perf_capabilities in x86's kvm_arch_vcpu_create() instead of deferring initialization to vendor code. For better or worse, common x86 handles reads and writes to the MSR, and so common x86 should also handle initializing the MSR. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20221006000314.73240-7-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: Track supported PERF_CAPABILITIES in kvm_capsSean Christopherson
Track KVM's supported PERF_CAPABILITIES in kvm_caps instead of computing the supported capabilities on the fly every time. Using kvm_caps will also allow for future cleanups as the kvm_caps values can be used directly in common x86 code. Signed-off-by: Sean Christopherson <seanjc@google.com> Acked-by: Like Xu <likexu@tencent.com> Message-Id: <20221006000314.73240-6-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09perf/x86/core: Zero @lbr instead of returning -1 in x86_perf_get_lbr() stubSean Christopherson
Drop the return value from x86_perf_get_lbr() and have the stub zero out the @lbr structure instead of returning -1 to indicate "no LBR support". KVM doesn't actually check the return value, and instead subtly relies on zeroing the number of LBRs in intel_pmu_init(). Formalize "nr=0 means unsupported" so that KVM doesn't need to add a pointless check on the return value to fix KVM's benign bug. Note, the stub is necessary even though KVM x86 selects PERF_EVENTS and the caller exists only when CONFIG_KVM_INTEL=y. Despite the name, KVM_INTEL doesn't strictly require CPU_SUP_INTEL, it can be built with any of INTEL || CENTAUR || ZHAOXIN CPUs. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20221006000314.73240-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86/pmu: Limit the maximum number of supported AMD GP countersLike Xu
The AMD PerfMonV2 specification allows for a maximum of 16 GP counters, but currently only 6 pairs of MSRs are accepted by KVM. While AMD64_NUM_COUNTERS_CORE is already equal to 6, increasing without adjusting msrs_to_save_all[] could result in out-of-bounds accesses. Therefore introduce a macro (named KVM_AMD_PMC_MAX_GENERIC) to refer to the number of counters supported by KVM. Signed-off-by: Like Xu <likexu@tencent.com> Reviewed-by: Jim Mattson <jmattson@google.com> Message-Id: <20220919091008.60695-3-likexu@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86/pmu: Limit the maximum number of supported Intel GP countersLike Xu
The Intel Architectural IA32_PMCx MSRs addresses range allows for a maximum of 8 GP counters, and KVM cannot address any more. Introduce a local macro (named KVM_INTEL_PMC_MAX_GENERIC) and use it consistently to refer to the number of counters supported by KVM, thus avoiding possible out-of-bound accesses. Suggested-by: Jim Mattson <jmattson@google.com> Signed-off-by: Like Xu <likexu@tencent.com> Reviewed-by: Jim Mattson <jmattson@google.com> Message-Id: <20220919091008.60695-2-likexu@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86/pmu: Do not speculatively query Intel GP PMCs that don't exist yetLike Xu
The SDM lists an architectural MSR IA32_CORE_CAPABILITIES (0xCF) that limits the theoretical maximum value of the Intel GP PMC MSRs allocated at 0xC1 to 14; likewise the Intel April 2022 SDM adds IA32_OVERCLOCKING_STATUS at 0x195 which limits the number of event selection MSRs to 15 (0x186-0x194). Limiting the maximum number of counters to 14 or 18 based on the currently allocated MSRs is clearly fragile, and it seems likely that Intel will even place PMCs 8-15 at a completely different range of MSR indices. So stop at the maximum number of GP PMCs supported today on Intel processors. There are some machines, like Intel P4 with non Architectural PMU, that may indeed have 18 counters, but those counters are in a completely different MSR address range and are not supported by KVM. Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: stable@vger.kernel.org Fixes: cf05a67b68b8 ("KVM: x86: omit "impossible" pmu MSRs from MSR list") Suggested-by: Jim Mattson <jmattson@google.com> Signed-off-by: Like Xu <likexu@tencent.com> Reviewed-by: Jim Mattson <jmattson@google.com> Message-Id: <20220919091008.60695-1-likexu@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: SVM: Only dump VMSA to klog at KERN_DEBUG levelPeter Gonda
Explicitly print the VMSA dump at KERN_DEBUG log level, KERN_CONT uses KERNEL_DEFAULT if the previous log line has a newline, i.e. if there's nothing to continuing, and as a result the VMSA gets dumped when it shouldn't. The KERN_CONT documentation says it defaults back to KERNL_DEFAULT if the previous log line has a newline. So switch from KERN_CONT to print_hex_dump_debug(). Jarkko pointed this out in reference to the original patch. See: https://lore.kernel.org/all/YuPMeWX4uuR1Tz3M@kernel.org/ print_hex_dump(KERN_DEBUG, ...) was pointed out there, but print_hex_dump_debug() should similar. Fixes: 6fac42f127b8 ("KVM: SVM: Dump Virtual Machine Save Area (VMSA) to klog") Signed-off-by: Peter Gonda <pgonda@google.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Cc: Jarkko Sakkinen <jarkko@kernel.org> Cc: Harald Hoyer <harald@profian.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: x86@kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: kvm@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: stable@vger.kernel.org Message-Id: <20221104142220.469452-1-pgonda@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09x86, KVM: remove unnecessary argument to x86_virt_spec_ctrl and callersPaolo Bonzini
x86_virt_spec_ctrl only deals with the paravirtualized MSR_IA32_VIRT_SPEC_CTRL now and does not handle MSR_IA32_SPEC_CTRL anymore; remove the corresponding, unused argument. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: SVM: move MSR_IA32_SPEC_CTRL save/restore to assemblyPaolo Bonzini
Restoration of the host IA32_SPEC_CTRL value is probably too late with respect to the return thunk training sequence. With respect to the user/kernel boundary, AMD says, "If software chooses to toggle STIBP (e.g., set STIBP on kernel entry, and clear it on kernel exit), software should set STIBP to 1 before executing the return thunk training sequence." I assume the same requirements apply to the guest/host boundary. The return thunk training sequence is in vmenter.S, quite close to the VM-exit. On hosts without V_SPEC_CTRL, however, the host's IA32_SPEC_CTRL value is not restored until much later. To avoid this, move the restoration of host SPEC_CTRL to assembly and, for consistency, move the restoration of the guest SPEC_CTRL as well. This is not particularly difficult, apart from some care to cover both 32- and 64-bit, and to share code between SEV-ES and normal vmentry. Cc: stable@vger.kernel.org Fixes: a149180fbcf3 ("x86: Add magic AMD return-thunk") Suggested-by: Jim Mattson <jmattson@google.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: SVM: restore host save area from assemblyPaolo Bonzini
Allow access to the percpu area via the GS segment base, which is needed in order to access the saved host spec_ctrl value. In linux-next FILL_RETURN_BUFFER also needs to access percpu data. For simplicity, the physical address of the save area is added to struct svm_cpu_data. Cc: stable@vger.kernel.org Fixes: a149180fbcf3 ("x86: Add magic AMD return-thunk") Reported-by: Nathan Chancellor <nathan@kernel.org> Analyzed-by: Andrew Cooper <andrew.cooper3@citrix.com> Tested-by: Nathan Chancellor <nathan@kernel.org> Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: SVM: move guest vmsave/vmload back to assemblyPaolo Bonzini
It is error-prone that code after vmexit cannot access percpu data because GSBASE has not been restored yet. It forces MSR_IA32_SPEC_CTRL save/restore to happen very late, after the predictor untraining sequence, and it gets in the way of return stack depth tracking (a retbleed mitigation that is in linux-next as of 2022-11-09). As a first step towards fixing that, move the VMCB VMSAVE/VMLOAD to assembly, essentially undoing commit fb0c4a4fee5a ("KVM: SVM: move VMLOAD/VMSAVE to C code", 2021-03-15). The reason for that commit was that it made it simpler to use a different VMCB for VMLOAD/VMSAVE versus VMRUN; but that is not a big hassle anymore thanks to the kvm-asm-offsets machinery and other related cleanups. The idea on how to number the exception tables is stolen from a prototype patch by Peter Zijlstra. Cc: stable@vger.kernel.org Fixes: a149180fbcf3 ("x86: Add magic AMD return-thunk") Link: <https://lore.kernel.org/all/f571e404-e625-bae1-10e9-449b2eb4cbd8@citrix.com/> Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: SVM: do not allocate struct svm_cpu_data dynamicallyPaolo Bonzini
The svm_data percpu variable is a pointer, but it is allocated via svm_hardware_setup() when KVM is loaded. Unlike hardware_enable() this means that it is never NULL for the whole lifetime of KVM, and static allocation does not waste any memory compared to the status quo. It is also more efficient and more easily handled from assembly code, so do it and don't look back. Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: SVM: remove dead field from struct svm_cpu_dataPaolo Bonzini
The "cpu" field of struct svm_cpu_data has been write-only since commit 4b656b120249 ("KVM: SVM: force new asid on vcpu migration", 2009-08-05). Remove it. Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: SVM: remove unused field from struct vcpu_svmPaolo Bonzini
The pointer to svm_cpu_data in struct vcpu_svm looks interesting from the point of view of accessing it after vmexit, when the GSBASE is still containing the guest value. However, despite existing since the very first commit of drivers/kvm/svm.c (commit 6aa8b732ca01, "[PATCH] kvm: userspace interface", 2006-12-10), it was never set to anything. Ignore the opportunity to fix a 16 year old "bug" and delete it; doing things the "harder" way makes it possible to remove more old cruft. Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: SVM: retrieve VMCB from assemblyPaolo Bonzini
Continue moving accesses to struct vcpu_svm to vmenter.S. Reducing the number of arguments limits the chance of mistakes due to different registers used for argument passing in 32- and 64-bit ABIs; pushing the VMCB argument and almost immediately popping it into a different register looks pretty weird. 32-bit ABI is not a concern for __svm_sev_es_vcpu_run() which is 64-bit only; however, it will soon need @svm to save/restore SPEC_CTRL so stay consistent with __svm_vcpu_run() and let them share the same prototype. No functional change intended. Cc: stable@vger.kernel.org Fixes: a149180fbcf3 ("x86: Add magic AMD return-thunk") Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: SVM: adjust register allocation for __svm_vcpu_run()Paolo Bonzini
32-bit ABI uses RAX/RCX/RDX as its argument registers, so they are in the way of instructions that hardcode their operands such as RDMSR/WRMSR or VMLOAD/VMRUN/VMSAVE. In preparation for moving vmload/vmsave to __svm_vcpu_run(), keep the pointer to the struct vcpu_svm in %rdi. In particular, it is now possible to load svm->vmcb01.pa in %rax without clobbering the struct vcpu_svm pointer. No functional change intended. Cc: stable@vger.kernel.org Fixes: a149180fbcf3 ("x86: Add magic AMD return-thunk") Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: SVM: replace regs argument of __svm_vcpu_run() with vcpu_svmPaolo Bonzini
Since registers are reachable through vcpu_svm, and we will need to access more fields of that struct, pass it instead of the regs[] array. No functional change intended. Cc: stable@vger.kernel.org Fixes: a149180fbcf3 ("x86: Add magic AMD return-thunk") Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: use a separate asm-offsets.c filePaolo Bonzini
This already removes an ugly #include "" from asm-offsets.c, but especially it avoids a future error when trying to define asm-offsets for KVM's svm/svm.h header. This would not work for kernel/asm-offsets.c, because svm/svm.h includes kvm_cache_regs.h which is not in the include path when compiling asm-offsets.c. The problem is not there if the .c file is in arch/x86/kvm. Suggested-by: Sean Christopherson <seanjc@google.com> Cc: stable@vger.kernel.org Fixes: a149180fbcf3 ("x86: Add magic AMD return-thunk") Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-04KVM/VMX: Allow exposing EDECCSSA user leaf function to KVM guestKai Huang
The new Asynchronous Exit (AEX) notification mechanism (AEX-notify) allows one enclave to receive a notification in the ERESUME after the enclave exit due to an AEX. EDECCSSA is a new SGX user leaf function (ENCLU[EDECCSSA]) to facilitate the AEX notification handling. The new EDECCSSA is enumerated via CPUID(EAX=0x12,ECX=0x0):EAX[11]. Besides Allowing reporting the new AEX-notify attribute to KVM guests, also allow reporting the new EDECCSSA user leaf function to KVM guests so the guest can fully utilize the AEX-notify mechanism. Similar to existing X86_FEATURE_SGX1 and X86_FEATURE_SGX2, introduce a new scattered X86_FEATURE_SGX_EDECCSSA bit for the new EDECCSSA, and report it in KVM's supported CPUIDs. Note, no additional KVM enabling is required to allow the guest to use EDECCSSA. It's impossible to trap ENCLU (without completely preventing the guest from using SGX). Advertise EDECCSSA as supported purely so that userspace doesn't need to special case EDECCSSA, i.e. doesn't need to manually check host CPUID. The inability to trap ENCLU also means that KVM can't prevent the guest from using EDECCSSA, but that virtualization hole is benign as far as KVM is concerned. EDECCSSA is simply a fancy way to modify internal enclave state. More background about how do AEX-notify and EDECCSSA work: SGX maintains a Current State Save Area Frame (CSSA) for each enclave thread. When AEX happens, the enclave thread context is saved to the CSSA and the CSSA is increased by 1. For a normal ERESUME which doesn't deliver AEX notification, it restores the saved thread context from the previously saved SSA and decreases the CSSA. If AEX-notify is enabled for one enclave, the ERESUME acts differently. Instead of restoring the saved thread context and decreasing the CSSA, it acts like EENTER which doesn't decrease the CSSA but establishes a clean slate thread context using the CSSA for the enclave to handle the notification. After some handling, the enclave must discard the "new-established" SSA and switch back to the previously saved SSA (upon AEX). Otherwise, the enclave will run out of SSA space upon further AEXs and eventually fail to run. To solve this problem, the new EDECCSSA essentially decreases the CSSA. It can be used by the enclave notification handler to switch back to the previous saved SSA when needed, i.e. after it handles the notification. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Sean Christopherson <seanjc@google.com> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Link: https://lore.kernel.org/all/20221101022422.858944-1-kai.huang%40intel.com
2022-11-04x86/sgx: Allow enclaves to use Asynchrounous Exit NotificationDave Hansen
Short Version: Allow enclaves to use the new Asynchronous EXit (AEX) notification mechanism. This mechanism lets enclaves run a handler after an AEX event. These handlers can run mitigations for things like SGX-Step[1]. AEX Notify will be made available both on upcoming processors and on some older processors through microcode updates. Long Version: == SGX Attribute Background == The SGX architecture includes a list of SGX "attributes". These attributes ensure consistency and transparency around specific enclave features. As a simple example, the "DEBUG" attribute allows an enclave to be debugged, but also destroys virtually all of SGX security. Using attributes, enclaves can know that they are being debugged. Attributes also affect enclave attestation so an enclave can, for instance, be denied access to secrets while it is being debugged. The kernel keeps a list of known attributes and will only initialize enclaves that use a known set of attributes. This kernel policy eliminates the chance that a new SGX attribute could cause undesired effects. For example, imagine a new attribute was added called "PROVISIONKEY2" that provided similar functionality to "PROVISIIONKEY". A kernel policy that allowed indiscriminate use of unknown attributes and thus PROVISIONKEY2 would undermine the existing kernel policy which limits use of PROVISIONKEY enclaves. == AEX Notify Background == "Intel Architecture Instruction Set Extensions and Future Features - Version 45" is out[2]. There is a new chapter: Asynchronous Enclave Exit Notify and the EDECCSSA User Leaf Function. Enclaves exit can be either synchronous and consensual (EEXIT for instance) or asynchronous (on an interrupt or fault). The asynchronous ones can evidently be exploited to single step enclaves[1], on top of which other naughty things can be built. AEX Notify will be made available both on upcoming processors and on some older processors through microcode updates. == The Problem == These attacks are currently entirely opaque to the enclave since the hardware does the save/restore under the covers. The Asynchronous Enclave Exit Notify (AEX Notify) mechanism provides enclaves an ability to detect and mitigate potential exposure to these kinds of attacks. == The Solution == Define the new attribute value for AEX Notification. Ensure the attribute is cleared from the list reserved attributes. Instead of adding to the open-coded lists of individual attributes, add named lists of privileged (disallowed by default) and unprivileged (allowed by default) attributes. Add the AEX notify attribute as an unprivileged attribute, which will keep the kernel from rejecting enclaves with it set. 1. https://github.com/jovanbulck/sgx-step 2. https://cdrdv2.intel.com/v1/dl/getContent/671368?explicitVersion=true Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Tested-by: Haitao Huang <haitao.huang@intel.com> Tested-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/all/20220720191347.1343986-1-dave.hansen%40linux.intel.com