summaryrefslogtreecommitdiff
path: root/arch/x86/kvm
AgeCommit message (Collapse)Author
2024-03-12Merge tag 'hardening-v6.9-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull hardening updates from Kees Cook: "As is pretty normal for this tree, there are changes all over the place, especially for small fixes, selftest improvements, and improved macro usability. Some header changes ended up landing via this tree as they depended on the string header cleanups. Also, a notable set of changes is the work for the reintroduction of the UBSAN signed integer overflow sanitizer so that we can continue to make improvements on the compiler side to make this sanitizer a more viable future security hardening option. Summary: - string.h and related header cleanups (Tanzir Hasan, Andy Shevchenko) - VMCI memcpy() usage and struct_size() cleanups (Vasiliy Kovalev, Harshit Mogalapalli) - selftests/powerpc: Fix load_unaligned_zeropad build failure (Michael Ellerman) - hardened Kconfig fragment updates (Marco Elver, Lukas Bulwahn) - Handle tail call optimization better in LKDTM (Douglas Anderson) - Use long form types in overflow.h (Andy Shevchenko) - Add flags param to string_get_size() (Andy Shevchenko) - Add Coccinelle script for potential struct_size() use (Jacob Keller) - Fix objtool corner case under KCFI (Josh Poimboeuf) - Drop 13 year old backward compat CAP_SYS_ADMIN check (Jingzi Meng) - Add str_plural() helper (Michal Wajdeczko, Kees Cook) - Ignore relocations in .notes section - Add comments to explain how __is_constexpr() works - Fix m68k stack alignment expectations in stackinit Kunit test - Convert string selftests to KUnit - Add KUnit tests for fortified string functions - Improve reporting during fortified string warnings - Allow non-type arg to type_max() and type_min() - Allow strscpy() to be called with only 2 arguments - Add binary mode to leaking_addresses scanner - Various small cleanups to leaking_addresses scanner - Adding wrapping_*() arithmetic helper - Annotate initial signed integer wrap-around in refcount_t - Add explicit UBSAN section to MAINTAINERS - Fix UBSAN self-test warnings - Simplify UBSAN build via removal of CONFIG_UBSAN_SANITIZE_ALL - Reintroduce UBSAN's signed overflow sanitizer" * tag 'hardening-v6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (51 commits) selftests/powerpc: Fix load_unaligned_zeropad build failure string: Convert helpers selftest to KUnit string: Convert selftest to KUnit sh: Fix build with CONFIG_UBSAN=y compiler.h: Explain how __is_constexpr() works overflow: Allow non-type arg to type_max() and type_min() VMCI: Fix possible memcpy() run-time warning in vmci_datagram_invoke_guest_handler() lib/string_helpers: Add flags param to string_get_size() x86, relocs: Ignore relocations in .notes section objtool: Fix UNWIND_HINT_{SAVE,RESTORE} across basic blocks overflow: Use POD in check_shl_overflow() lib: stackinit: Adjust target string to 8 bytes for m68k sparc: vdso: Disable UBSAN instrumentation kernel.h: Move lib/cmdline.c prototypes to string.h leaking_addresses: Provide mechanism to scan binary files leaking_addresses: Ignore input device status lines leaking_addresses: Use File::Temp for /tmp files MAINTAINERS: Update LEAKING_ADDRESSES details fortify: Improve buffer overflow reporting fortify: Add KUnit tests for runtime overflows ...
2024-03-12Merge tag 'rfds-for-linus-2024-03-11' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 RFDS mitigation from Dave Hansen: "RFDS is a CPU vulnerability that may allow a malicious userspace to infer stale register values from kernel space. Kernel registers can have all kinds of secrets in them so the mitigation is basically to wait until the kernel is about to return to userspace and has user values in the registers. At that point there is little chance of kernel secrets ending up in the registers and the microarchitectural state can be cleared. This leverages some recent robustness fixes for the existing MDS vulnerability. Both MDS and RFDS use the VERW instruction for mitigation" * tag 'rfds-for-linus-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: KVM/x86: Export RFDS_NO and RFDS_CLEAR to guests x86/rfds: Mitigate Register File Data Sampling (RFDS) Documentation/hw-vuln: Add documentation for RFDS x86/mmio: Disable KVM mitigation when X86_FEATURE_CLEAR_CPU_BUF is set
2024-03-11Merge tag 'x86-core-2024-03-11' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core x86 updates from Ingo Molnar: - The biggest change is the rework of the percpu code, to support the 'Named Address Spaces' GCC feature, by Uros Bizjak: - This allows C code to access GS and FS segment relative memory via variables declared with such attributes, which allows the compiler to better optimize those accesses than the previous inline assembly code. - The series also includes a number of micro-optimizations for various percpu access methods, plus a number of cleanups of %gs accesses in assembly code. - These changes have been exposed to linux-next testing for the last ~5 months, with no known regressions in this area. - Fix/clean up __switch_to()'s broken but accidentally working handling of FPU switching - which also generates better code - Propagate more RIP-relative addressing in assembly code, to generate slightly better code - Rework the CPU mitigations Kconfig space to be less idiosyncratic, to make it easier for distros to follow & maintain these options - Rework the x86 idle code to cure RCU violations and to clean up the logic - Clean up the vDSO Makefile logic - Misc cleanups and fixes * tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits) x86/idle: Select idle routine only once x86/idle: Let prefer_mwait_c1_over_halt() return bool x86/idle: Cleanup idle_setup() x86/idle: Clean up idle selection x86/idle: Sanitize X86_BUG_AMD_E400 handling sched/idle: Conditionally handle tick broadcast in default_idle_call() x86: Increase brk randomness entropy for 64-bit systems x86/vdso: Move vDSO to mmap region x86/vdso/kbuild: Group non-standard build attributes and primary object file rules together x86/vdso: Fix rethunk patching for vdso-image-{32,64}.o x86/retpoline: Ensure default return thunk isn't used at runtime x86/vdso: Use CONFIG_COMPAT_32 to specify vdso32 x86/vdso: Use $(addprefix ) instead of $(foreach ) x86/vdso: Simplify obj-y addition x86/vdso: Consolidate targets and clean-files x86/bugs: Rename CONFIG_RETHUNK => CONFIG_MITIGATION_RETHUNK x86/bugs: Rename CONFIG_CPU_SRSO => CONFIG_MITIGATION_SRSO x86/bugs: Rename CONFIG_CPU_IBRS_ENTRY => CONFIG_MITIGATION_IBRS_ENTRY x86/bugs: Rename CONFIG_CPU_UNRET_ENTRY => CONFIG_MITIGATION_UNRET_ENTRY x86/bugs: Rename CONFIG_SLS => CONFIG_MITIGATION_SLS ...
2024-03-11Merge tag 'x86-cleanups-2024-03-11' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cleanups from Ingo Molnar: "Misc cleanups, including a large series from Thomas Gleixner to cure sparse warnings" * tag 'x86-cleanups-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/nmi: Drop unused declaration of proc_nmi_enabled() x86/callthunks: Use EXPORT_PER_CPU_SYMBOL_GPL() for per CPU variables x86/cpu: Provide a declaration for itlb_multihit_kvm_mitigation x86/cpu: Use EXPORT_PER_CPU_SYMBOL_GPL() for x86_spec_ctrl_current x86/uaccess: Add missing __force to casts in __access_ok() and valid_user_address() x86/percpu: Cure per CPU madness on UP smp: Consolidate smp_prepare_boot_cpu() x86/msr: Add missing __percpu annotations x86/msr: Prepare for including <linux/percpu.h> into <asm/msr.h> perf/x86/amd/uncore: Fix __percpu annotation x86/nmi: Remove an unnecessary IS_ENABLED(CONFIG_SMP) x86/apm_32: Remove dead function apm_get_battery_status() x86/insn-eval: Fix function param name in get_eff_addr_sib()
2024-03-11Merge tag 'x86_sev_for_v6.9_rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 SEV updates from Borislav Petkov: - Add the x86 part of the SEV-SNP host support. This will allow the kernel to be used as a KVM hypervisor capable of running SNP (Secure Nested Paging) guests. Roughly speaking, SEV-SNP is the ultimate goal of the AMD confidential computing side, providing the most comprehensive confidential computing environment up to date. This is the x86 part and there is a KVM part which did not get ready in time for the merge window so latter will be forthcoming in the next cycle. - Rework the early code's position-dependent SEV variable references in order to allow building the kernel with clang and -fPIE/-fPIC and -mcmodel=kernel - The usual set of fixes, cleanups and improvements all over the place * tag 'x86_sev_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits) x86/sev: Disable KMSAN for memory encryption TUs x86/sev: Dump SEV_STATUS crypto: ccp - Have it depend on AMD_IOMMU iommu/amd: Fix failure return from snp_lookup_rmpentry() x86/sev: Fix position dependent variable references in startup code crypto: ccp: Make snp_range_list static x86/Kconfig: Remove CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT Documentation: virt: Fix up pre-formatted text block for SEV ioctls crypto: ccp: Add the SNP_SET_CONFIG command crypto: ccp: Add the SNP_COMMIT command crypto: ccp: Add the SNP_PLATFORM_STATUS command x86/cpufeatures: Enable/unmask SEV-SNP CPU feature KVM: SEV: Make AVIC backing, VMSA and VMCB memory allocation SNP safe crypto: ccp: Add panic notifier for SEV/SNP firmware shutdown on kdump iommu/amd: Clean up RMP entries for IOMMU pages during SNP shutdown crypto: ccp: Handle legacy SEV commands when SNP is enabled crypto: ccp: Handle non-volatile INIT_EX data when SNP is enabled crypto: ccp: Handle the legacy TMR allocation when SNP is enabled x86/sev: Introduce an SNP leaked pages list crypto: ccp: Provide an API to issue SEV and SNP commands ...
2024-03-11Merge tag 'x86-fred-2024-03-10' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 FRED support from Thomas Gleixner: "Support for x86 Fast Return and Event Delivery (FRED). FRED is a replacement for IDT event delivery on x86 and addresses most of the technical nightmares which IDT exposes: 1) Exception cause registers like CR2 need to be manually preserved in nested exception scenarios. 2) Hardware interrupt stack switching is suboptimal for nested exceptions as the interrupt stack mechanism rewinds the stack on each entry which requires a massive effort in the low level entry of #NMI code to handle this. 3) No hardware distinction between entry from kernel or from user which makes establishing kernel context more complex than it needs to be especially for unconditionally nestable exceptions like NMI. 4) NMI nesting caused by IRET unconditionally reenabling NMIs, which is a problem when the perf NMI takes a fault when collecting a stack trace. 5) Partial restore of ESP when returning to a 16-bit segment 6) Limitation of the vector space which can cause vector exhaustion on large systems. 7) Inability to differentiate NMI sources FRED addresses these shortcomings by: 1) An extended exception stack frame which the CPU uses to save exception cause registers. This ensures that the meta information for each exception is preserved on stack and avoids the extra complexity of preserving it in software. 2) Hardware interrupt stack switching is non-rewinding if a nested exception uses the currently interrupt stack. 3) The entry points for kernel and user context are separate and GS BASE handling which is required to establish kernel context for per CPU variable access is done in hardware. 4) NMIs are now nesting protected. They are only reenabled on the return from NMI. 5) FRED guarantees full restore of ESP 6) FRED does not put a limitation on the vector space by design because it uses a central entry points for kernel and user space and the CPUstores the entry type (exception, trap, interrupt, syscall) on the entry stack along with the vector number. The entry code has to demultiplex this information, but this removes the vector space restriction. The first hardware implementations will still have the current restricted vector space because lifting this limitation requires further changes to the local APIC. 7) FRED stores the vector number and meta information on stack which allows having more than one NMI vector in future hardware when the required local APIC changes are in place. The series implements the initial FRED support by: - Reworking the existing entry and IDT handling infrastructure to accomodate for the alternative entry mechanism. - Expanding the stack frame to accomodate for the extra 16 bytes FRED requires to store context and meta information - Providing FRED specific C entry points for events which have information pushed to the extended stack frame, e.g. #PF and #DB. - Providing FRED specific C entry points for #NMI and #MCE - Implementing the FRED specific ASM entry points and the C code to demultiplex the events - Providing detection and initialization mechanisms and the necessary tweaks in context switching, GS BASE handling etc. The FRED integration aims for maximum code reuse vs the existing IDT implementation to the extent possible and the deviation in hot paths like context switching are handled with alternatives to minimalize the impact. The low level entry and exit paths are seperate due to the extended stack frame and the hardware based GS BASE swichting and therefore have no impact on IDT based systems. It has been extensively tested on existing systems and on the FRED simulation and as of now there are no outstanding problems" * tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits) x86/fred: Fix init_task thread stack pointer initialization MAINTAINERS: Add a maintainer entry for FRED x86/fred: Fix a build warning with allmodconfig due to 'inline' failing to inline properly x86/fred: Invoke FRED initialization code to enable FRED x86/fred: Add FRED initialization functions x86/syscall: Split IDT syscall setup code into idt_syscall_init() KVM: VMX: Call fred_entry_from_kvm() for IRQ/NMI handling x86/entry: Add fred_entry_from_kvm() for VMX to handle IRQ/NMI x86/entry/calling: Allow PUSH_AND_CLEAR_REGS being used beyond actual entry code x86/fred: Fixup fault on ERETU by jumping to fred_entrypoint_user x86/fred: Let ret_from_fork_asm() jmp to asm_fred_exit_user when FRED is enabled x86/traps: Add sysvec_install() to install a system interrupt handler x86/fred: FRED entry/exit and dispatch code x86/fred: Add a machine check entry stub for FRED x86/fred: Add a NMI entry stub for FRED x86/fred: Add a debug fault entry stub for FRED x86/idtentry: Incorporate definitions/declarations of the FRED entries x86/fred: Make exc_page_fault() work for FRED x86/fred: Allow single-step trap and NMI when starting a new task x86/fred: No ESPFIX needed when FRED is enabled ...
2024-03-11KVM/x86: Export RFDS_NO and RFDS_CLEAR to guestsPawan Gupta
Mitigation for RFDS requires RFDS_CLEAR capability which is enumerated by MSR_IA32_ARCH_CAPABILITIES bit 27. If the host has it set, export it to guests so that they can deploy the mitigation. RFDS_NO indicates that the system is not vulnerable to RFDS, export it to guests so that they don't deploy the mitigation unnecessarily. When the host is not affected by X86_BUG_RFDS, but has RFDS_NO=0, synthesize RFDS_NO to the guest. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
2024-03-10Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull kvm fixes from Paolo Bonzini: "KVM GUEST_MEMFD fixes for 6.8: - Make KVM_MEM_GUEST_MEMFD mutually exclusive with KVM_MEM_READONLY to avoid creating an inconsistent ABI (KVM_MEM_GUEST_MEMFD is not writable from userspace, so there would be no way to write to a read-only guest_memfd). - Update documentation for KVM_SW_PROTECTED_VM to make it abundantly clear that such VMs are purely for development and testing. - Limit KVM_SW_PROTECTED_VM guests to the TDP MMU, as the long term plan is to support confidential VMs with deterministic private memory (SNP and TDX) only in the TDP MMU. - Fix a bug in a GUEST_MEMFD dirty logging test that caused false passes. x86 fixes: - Fix missing marking of a guest page as dirty when emulating an atomic access. - Check for mmu_notifier invalidation events before faulting in the pfn, and before acquiring mmu_lock, to avoid unnecessary work and lock contention with preemptible kernels (including CONFIG_PREEMPT_DYNAMIC in non-preemptible mode). - Disable AMD DebugSwap by default, it breaks VMSA signing and will be re-enabled with a better VM creation API in 6.10. - Do the cache flush of converted pages in svm_register_enc_region() before dropping kvm->lock, to avoid a race with unregistering of the same region and the consequent use-after-free issue" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: SEV: disable SEV-ES DebugSwap by default KVM: x86/mmu: Retry fault before acquiring mmu_lock if mapping is changing KVM: SVM: Flush pages under kvm->lock to fix UAF in svm_register_enc_region() KVM: selftests: Add a testcase to verify GUEST_MEMFD and READONLY are exclusive KVM: selftests: Create GUEST_MEMFD for relevant invalid flags testcases KVM: x86/mmu: Restrict KVM_SW_PROTECTED_VM to the TDP MMU KVM: x86: Update KVM_SW_PROTECTED_VM docs to make it clear they're a WIP KVM: Make KVM_MEM_GUEST_MEMFD mutually exclusive with KVM_MEM_READONLY KVM: x86: Mark target gfn of emulated atomic instruction as dirty
2024-03-09SEV: disable SEV-ES DebugSwap by defaultPaolo Bonzini
The DebugSwap feature of SEV-ES provides a way for confidential guests to use data breakpoints. However, because the status of the DebugSwap feature is recorded in the VMSA, enabling it by default invalidates the attestation signatures. In 6.10 we will introduce a new API to create SEV VMs that will allow enabling DebugSwap based on what the user tells KVM to do. Contextually, we will change the legacy KVM_SEV_ES_INIT API to never enable DebugSwap. For compatibility with kernels that pre-date the introduction of DebugSwap, as well as with those where KVM_SEV_ES_INIT will never enable it, do not enable the feature by default. If anybody wants to use it, for now they can enable the sev_es_debug_swap_enabled module parameter, but this will result in a warning. Fixes: d1f85fbe836e ("KVM: SEV: Enable data breakpoints in SEV-ES") Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-03-09Merge tag 'kvm-x86-guest_memfd_fixes-6.8' of ↵Paolo Bonzini
https://github.com/kvm-x86/linux into HEAD KVM GUEST_MEMFD fixes for 6.8: - Make KVM_MEM_GUEST_MEMFD mutually exclusive with KVM_MEM_READONLY to avoid creating ABI that KVM can't sanely support. - Update documentation for KVM_SW_PROTECTED_VM to make it abundantly clear that such VMs are purely a development and testing vehicle, and come with zero guarantees. - Limit KVM_SW_PROTECTED_VM guests to the TDP MMU, as the long term plan is to support confidential VMs with deterministic private memory (SNP and TDX) only in the TDP MMU. - Fix a bug in a GUEST_MEMFD negative test that resulted in false passes when verifying that KVM_MEM_GUEST_MEMFD memslots can't be dirty logged.
2024-03-09Merge tag 'kvm-x86-fixes-6.8-2' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 fixes for 6.8, round 2: - When emulating an atomic access, mark the gfn as dirty in the memslot to fix a bug where KVM could fail to mark the slot as dirty during live migration, ultimately resulting in guest data corruption due to a dirty page not being re-copied from the source to the target. - Check for mmu_notifier invalidation events before faulting in the pfn, and before acquiring mmu_lock, to avoid unnecessary work and lock contention. Contending mmu_lock is especially problematic on preemptible kernels, as KVM may yield mmu_lock in response to the contention, which severely degrades overall performance due to vCPUs making it difficult for the task that triggered invalidation to make forward progress. Note, due to another kernel bug, this fix isn't limited to preemtible kernels, as any kernel built with CONFIG_PREEMPT_DYNAMIC=y will yield contended rwlocks and spinlocks. https://lore.kernel.org/all/20240110214723.695930-1-seanjc@google.com
2024-03-04x86/cpu: Provide a declaration for itlb_multihit_kvm_mitigationThomas Gleixner
Sparse complains rightfully about the missing declaration which has been placed sloppily into the usage site: bugs.c:2223:6: sparse: warning: symbol 'itlb_multihit_kvm_mitigation' was not declared. Should it be static? Add it to <asm/spec-ctrl.h> where it belongs and remove the one in the KVM code. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20240304005104.787173239@linutronix.de
2024-02-23KVM: x86/mmu: Retry fault before acquiring mmu_lock if mapping is changingSean Christopherson
Retry page faults without acquiring mmu_lock, and without even faulting the page into the primary MMU, if the resolved gfn is covered by an active invalidation. Contending for mmu_lock is especially problematic on preemptible kernels as the mmu_notifier invalidation task will yield mmu_lock (see rwlock_needbreak()), delay the in-progress invalidation, and ultimately increase the latency of resolving the page fault. And in the worst case scenario, yielding will be accompanied by a remote TLB flush, e.g. if the invalidation covers a large range of memory and vCPUs are accessing addresses that were already zapped. Faulting the page into the primary MMU is similarly problematic, as doing so may acquire locks that need to be taken for the invalidation to complete (the primary MMU has finer grained locks than KVM's MMU), and/or may cause unnecessary churn (getting/putting pages, marking them accessed, etc). Alternatively, the yielding issue could be mitigated by teaching KVM's MMU iterators to perform more work before yielding, but that wouldn't solve the lock contention and would negatively affect scenarios where a vCPU is trying to fault in an address that is NOT covered by the in-progress invalidation. Add a dedicated lockess version of the range-based retry check to avoid false positives on the sanity check on start+end WARN, and so that it's super obvious that checking for a racing invalidation without holding mmu_lock is unsafe (though obviously useful). Wrap mmu_invalidate_in_progress in READ_ONCE() to ensure that pre-checking invalidation in a loop won't put KVM into an infinite loop, e.g. due to caching the in-progress flag and never seeing it go to '0'. Force a load of mmu_invalidate_seq as well, even though it isn't strictly necessary to avoid an infinite loop, as doing so improves the probability that KVM will detect an invalidation that already completed before acquiring mmu_lock and bailing anyways. Do the pre-check even for non-preemptible kernels, as waiting to detect the invalidation until mmu_lock is held guarantees the vCPU will observe the worst case latency in terms of handling the fault, and can generate even more mmu_lock contention. E.g. the vCPU will acquire mmu_lock, detect retry, drop mmu_lock, re-enter the guest, retake the fault, and eventually re-acquire mmu_lock. This behavior is also why there are no new starvation issues due to losing the fairness guarantees provided by rwlocks: if the vCPU needs to retry, it _must_ drop mmu_lock, i.e. waiting on mmu_lock doesn't guarantee forward progress in the face of _another_ mmu_notifier invalidation event. Note, adding READ_ONCE() isn't entirely free, e.g. on x86, the READ_ONCE() may generate a load into a register instead of doing a direct comparison (MOV+TEST+Jcc instead of CMP+Jcc), but practically speaking the added cost is a few bytes of code and maaaaybe a cycle or three. Reported-by: Yan Zhao <yan.y.zhao@intel.com> Closes: https://lore.kernel.org/all/ZNnPF4W26ZbAyGto@yzhao56-desk.sh.intel.com Reported-by: Friedrich Weber <f.weber@proxmox.com> Cc: Kai Huang <kai.huang@intel.com> Cc: Yan Zhao <yan.y.zhao@intel.com> Cc: Yuan Yao <yuan.yao@linux.intel.com> Cc: Xu Yilun <yilun.xu@linux.intel.com> Acked-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Yan Zhao <yan.y.zhao@intel.com> Link: https://lore.kernel.org/r/20240222012640.2820927-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-23KVM: SVM: Flush pages under kvm->lock to fix UAF in svm_register_enc_region()Sean Christopherson
Do the cache flush of converted pages in svm_register_enc_region() before dropping kvm->lock to fix use-after-free issues where region and/or its array of pages could be freed by a different task, e.g. if userspace has __unregister_enc_region_locked() already queued up for the region. Note, the "obvious" alternative of using local variables doesn't fully resolve the bug, as region->pages is also dynamically allocated. I.e. the region structure itself would be fine, but region->pages could be freed. Flushing multiple pages under kvm->lock is unfortunate, but the entire flow is a rare slow path, and the manual flush is only needed on CPUs that lack coherency for encrypted memory. Fixes: 19a23da53932 ("Fix unsynchronized access to sev members through svm_register_enc_region") Reported-by: Gabe Kirkpatrick <gkirkpatrick@google.com> Cc: Josh Eads <josheads@google.com> Cc: Peter Gonda <pgonda@google.com> Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20240217013430.2079561-1-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-02-22KVM: x86/mmu: Restrict KVM_SW_PROTECTED_VM to the TDP MMUSean Christopherson
Advertise and support software-protected VMs if and only if the TDP MMU is enabled, i.e. disallow KVM_SW_PROTECTED_VM if TDP is enabled for KVM's legacy/shadow MMU. TDP support for the shadow MMU is maintenance-only, e.g. support for TDX and SNP will also be restricted to the TDP MMU. Fixes: 89ea60c2c7b5 ("KVM: x86: Add support for "protected VMs" that can utilize private memory") Link: https://lore.kernel.org/r/20240222190612.2942589-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22KVM: x86: Update KVM_SW_PROTECTED_VM docs to make it clear they're a WIPSean Christopherson
Rewrite the help message for KVM_SW_PROTECTED_VM to make it clear that software-protected VMs are a development and testing vehicle for guest_memfd(), and that attempting to use KVM_SW_PROTECTED_VM for anything remotely resembling a "real" VM will fail. E.g. any memory accesses from KVM will incorrectly access shared memory, nested TDP is wildly broken, and so on and so forth. Update KVM's API documentation with similar warnings to discourage anyone from attempting to run anything but selftests with KVM_X86_SW_PROTECTED_VM. Fixes: 89ea60c2c7b5 ("KVM: x86: Add support for "protected VMs" that can utilize private memory") Link: https://lore.kernel.org/r/20240222190612.2942589-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-19KVM/VMX: Move VERW closer to VMentry for MDS mitigationPawan Gupta
During VMentry VERW is executed to mitigate MDS. After VERW, any memory access like register push onto stack may put host data in MDS affected CPU buffers. A guest can then use MDS to sample host data. Although likelihood of secrets surviving in registers at current VERW callsite is less, but it can't be ruled out. Harden the MDS mitigation by moving the VERW mitigation late in VMentry path. Note that VERW for MMIO Stale Data mitigation is unchanged because of the complexity of per-guest conditional VERW which is not easy to handle that late in asm with no GPRs available. If the CPU is also affected by MDS, VERW is unconditionally executed late in asm regardless of guest having MMIO access. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/all/20240213-delay-verw-v8-6-a6216d83edb7%40linux.intel.com
2024-02-19KVM/VMX: Use BT+JNC, i.e. EFLAGS.CF to select VMRESUME vs. VMLAUNCHSean Christopherson
Use EFLAGS.CF instead of EFLAGS.ZF to track whether to use VMRESUME versus VMLAUNCH. Freeing up EFLAGS.ZF will allow doing VERW, which clobbers ZF, for MDS mitigations as late as possible without needing to duplicate VERW for both paths. Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Link: https://lore.kernel.org/all/20240213-delay-verw-v8-5-a6216d83edb7%40linux.intel.com
2024-02-19x86/bugs: Use ALTERNATIVE() instead of mds_user_clear static keyPawan Gupta
The VERW mitigation at exit-to-user is enabled via a static branch mds_user_clear. This static branch is never toggled after boot, and can be safely replaced with an ALTERNATIVE() which is convenient to use in asm. Switch to ALTERNATIVE() to use the VERW mitigation late in exit-to-user path. Also remove the now redundant VERW in exc_nmi() and arch_exit_to_user_mode(). Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20240213-delay-verw-v8-4-a6216d83edb7%40linux.intel.com
2024-02-16KVM: x86: Mark target gfn of emulated atomic instruction as dirtySean Christopherson
When emulating an atomic access on behalf of the guest, mark the target gfn dirty if the CMPXCHG by KVM is attempted and doesn't fault. This fixes a bug where KVM effectively corrupts guest memory during live migration by writing to guest memory without informing userspace that the page is dirty. Marking the page dirty got unintentionally dropped when KVM's emulated CMPXCHG was converted to do a user access. Before that, KVM explicitly mapped the guest page into kernel memory, and marked the page dirty during the unmap phase. Mark the page dirty even if the CMPXCHG fails, as the old data is written back on failure, i.e. the page is still written. The value written is guaranteed to be the same because the operation is atomic, but KVM's ABI is that all writes are dirty logged regardless of the value written. And more importantly, that's what KVM did before the buggy commit. Huge kudos to the folks on the Cc list (and many others), who did all the actual work of triaging and debugging. Fixes: 1c2361f667f3 ("KVM: x86: Use __try_cmpxchg_user() to emulate atomic accesses") Cc: stable@vger.kernel.org Cc: David Matlack <dmatlack@google.com> Cc: Pasha Tatashin <tatashin@google.com> Cc: Michael Krebs <mkrebs@google.com> base-commit: 6769ea8da8a93ed4630f1ce64df6aafcaabfce64 Reviewed-by: Jim Mattson <jmattson@google.com> Link: https://lore.kernel.org/r/20240215010004.1456078-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-14Merge tag 'kvm-x86-selftests-6.8-rcN' of https://github.com/kvm-x86/linux ↵Paolo Bonzini
into HEAD KVM selftests fixes/cleanups (and one KVM x86 cleanup) for 6.8: - Remove redundant newlines from error messages. - Delete an unused variable in the AMX test (which causes build failures when compiling with -Werror). - Fail instead of skipping tests if open(), e.g. of /dev/kvm, fails with an error code other than ENOENT (a Hyper-V selftest bug resulted in an EMFILE, and the test eventually got skipped). - Fix TSC related bugs in several Hyper-V selftests. - Fix a bug in the dirty ring logging test where a sem_post() could be left pending across multiple runs, resulting in incorrect synchronization between the main thread and the vCPU worker thread. - Relax the dirty log split test's assertions on 4KiB mappings to fix false positives due to the number of mappings for memslot 0 (used for code and data that is NOT being dirty logged) changing, e.g. due to NUMA balancing. - Have KVM's gtod_is_based_on_tsc() return "bool" instead of an "int" (the function generates boolean values, and all callers treat the return value as a bool).
2024-02-14Merge tag 'kvm-x86-fixes-6.8-rcN' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 fixes for 6.8: - Make a KVM_REQ_NMI request while handling KVM_SET_VCPU_EVENTS if and only if the incoming events->nmi.pending is non-zero. If the target vCPU is in the UNITIALIZED state, the spurious request will result in KVM exiting to userspace, which in turn causes QEMU to constantly acquire and release QEMU's global mutex, to the point where the BSP is unable to make forward progress. - Fix a type (u8 versus u64) goof that results in pmu->fixed_ctr_ctrl being incorrectly truncated, and ultimately causes KVM to think a fixed counter has already been disabled (KVM thinks the old value is '0'). - Fix a stack leak in KVM_GET_MSRS where a failed MSR read from userspace that is ultimately ignored due to ignore_msrs=true doesn't zero the output as intended.
2024-02-14Merge branch 'x86/bugs' into x86/core, to pick up pending changes before ↵Ingo Molnar
dependent patches Merge in pending alternatives patching infrastructure changes, before applying more patches. Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-02-09work around gcc bugs with 'asm goto' with outputsLinus Torvalds
We've had issues with gcc and 'asm goto' before, and we created a 'asm_volatile_goto()' macro for that in the past: see commits 3f0116c3238a ("compiler/gcc4: Add quirk for 'asm goto' miscompilation bug") and a9f180345f53 ("compiler/gcc4: Make quirk for asm_volatile_goto() unconditional"). Then, much later, we ended up removing the workaround in commit 43c249ea0b1e ("compiler-gcc.h: remove ancient workaround for gcc PR 58670") because we no longer supported building the kernel with the affected gcc versions, but we left the macro uses around. Now, Sean Christopherson reports a new version of a very similar problem, which is fixed by re-applying that ancient workaround. But the problem in question is limited to only the 'asm goto with outputs' cases, so instead of re-introducing the old workaround as-is, let's rename and limit the workaround to just that much less common case. It looks like there are at least two separate issues that all hit in this area: (a) some versions of gcc don't mark the asm goto as 'volatile' when it has outputs: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98619 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110420 which is easy to work around by just adding the 'volatile' by hand. (b) Internal compiler errors: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110422 which are worked around by adding the extra empty 'asm' as a barrier, as in the original workaround. but the problem Sean sees may be a third thing since it involves bad code generation (not an ICE) even with the manually added 'volatile'. but the same old workaround works for this case, even if this feels a bit like voodoo programming and may only be hiding the issue. Reported-and-tested-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/all/20240208220604.140859-1-seanjc@google.com/ Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Uros Bizjak <ubizjak@gmail.com> Cc: Jakub Jelinek <jakub@redhat.com> Cc: Andrew Pinski <quic_apinski@quicinc.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-02-05KVM: x86: Fix KVM_GET_MSRS stack info leakMathias Krause
Commit 6abe9c1386e5 ("KVM: X86: Move ignore_msrs handling upper the stack") changed the 'ignore_msrs' handling, including sanitizing return values to the caller. This was fine until commit 12bc2132b15e ("KVM: X86: Do the same ignore_msrs check for feature msrs") which allowed non-existing feature MSRs to be ignored, i.e. to not generate an error on the ioctl() level. It even tried to preserve the sanitization of the return value. However, the logic is flawed, as '*data' will be overwritten again with the uninitialized stack value of msr.data. Fix this by simplifying the logic and always initializing msr.data, vanishing the need for an additional error exit path. Fixes: 12bc2132b15e ("KVM: X86: Do the same ignore_msrs check for feature msrs") Signed-off-by: Mathias Krause <minipli@grsecurity.net> Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Link: https://lore.kernel.org/r/20240203124522.592778-2-minipli@grsecurity.net Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-02KVM: x86/pmu: Fix type length error when reading pmu->fixed_ctr_ctrlMingwei Zhang
Use a u64 instead of a u8 when taking a snapshot of pmu->fixed_ctr_ctrl when reprogramming fixed counters, as truncating the value results in KVM thinking fixed counter 2 is already disabled (the bug also affects fixed counters 3+, but KVM doesn't yet support those). As a result, if the guest disables fixed counter 2, KVM will get a false negative and fail to reprogram/disable emulation of the counter, which can leads to incorrect counts and spurious PMIs in the guest. Fixes: 76d287b2342e ("KVM: x86/pmu: Drop "u8 ctrl, int idx" for reprogram_fixed_counter()") Cc: stable@vger.kernel.org Signed-off-by: Mingwei Zhang <mizhang@google.com> Link: https://lore.kernel.org/r/20240123221220.3911317-1-mizhang@google.com [sean: rewrite changelog to call out the effects of the bug] Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-01kernel.h: removed REPEAT_BYTE from kernel.hTanzir Hasan
This patch creates wordpart.h and includes it in asm/word-at-a-time.h for all architectures. WORD_AT_A_TIME_CONSTANTS depends on kernel.h because of REPEAT_BYTE. Moving this to another header and including it where necessary allows us to not include the bloated kernel.h. Making this implicit dependency on REPEAT_BYTE explicit allows for later improvements in the lib/string.c inclusion list. Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Suggested-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Tanzir Hasan <tanzirh@google.com> Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Link: https://lore.kernel.org/r/20231226-libstringheader-v6-1-80aa08c7652c@google.com Signed-off-by: Kees Cook <keescook@chromium.org>
2024-02-01KVM: x86: Make gtod_is_based_on_tsc() return 'bool'Vitaly Kuznetsov
gtod_is_based_on_tsc() is boolean in nature, i.e. it returns '1' for good clocksources and '0' otherwise. Moreover, its result is used raw by kvm_get_time_and_clockread()/kvm_get_walltime_and_clockread() which are 'bool'. No functional change intended. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20240109141121.1619463-6-vkuznets@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-01-31KVM: x86: Give a hint when Win2016 might fail to boot due to XSAVES erratumMaciej S. Szmigiero
Since commit b0563468eeac ("x86/CPU/AMD: Disable XSAVES on AMD family 0x17") kernel unconditionally clears the XSAVES CPU feature bit on Zen1/2 CPUs. Because KVM CPU caps are initialized from the kernel boot CPU features this makes the XSAVES feature also unavailable for KVM guests in this case. At the same time the XSAVEC feature is left enabled. Unfortunately, having XSAVEC but no XSAVES in CPUID breaks Hyper-V enabled Windows Server 2016 VMs that have more than one vCPU. Let's at least give users hint in the kernel log what could be wrong since these VMs currently simply hang at boot with a black screen - giving no clue what suddenly broke them and how to make them work again. Trigger the kernel message hint based on the particular guest ID written to the Guest OS Identity Hyper-V MSR implemented by KVM. Defer this check to when the L1 Hyper-V hypervisor enables SVM in EFER since we want to limit this message to Hyper-V enabled Windows guests only (Windows session running nested as L2) but the actual Guest OS Identity MSR write is done by L1 and happens before it enables SVM. Fixes: b0563468eeac ("x86/CPU/AMD: Disable XSAVES on AMD family 0x17") Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com> Message-Id: <b83ab45c5e239e5d148b0ae7750133a67ac9575c.1706127425.git.maciej.szmigiero@oracle.com> [Move some checks before mutex_lock(), rename function. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-01-31KVM: x86: Check irqchip mode before create PITTengfei Yu
As the kvm api(https://docs.kernel.org/virt/kvm/api.html) reads, KVM_CREATE_PIT2 call is only valid after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. Without this check, I can create PIT first and enable irqchip-split then, which may cause the PIT invalid because of lacking of in-kernel PIC to inject the interrupt. Signed-off-by: Tengfei Yu <moehanabichan@gmail.com> Message-Id: <20240125050823.4893-1-moehanabichan@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-01-31KVM: VMX: Call fred_entry_from_kvm() for IRQ/NMI handlingXin Li
When FRED is enabled, call fred_entry_from_kvm() to handle IRQ/NMI in IRQ/NMI induced VM exits. Signed-off-by: Xin Li <xin3.li@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Tested-by: Shan Kang <shan.kang@intel.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Link: https://lore.kernel.org/r/20231205105030.8698-33-xin3.li@intel.com
2024-01-31KVM: x86: make KVM_REQ_NMI request iff NMI pending for vcpuPrasad Pandit
kvm_vcpu_ioctl_x86_set_vcpu_events() routine makes 'KVM_REQ_NMI' request for a vcpu even when its 'events->nmi.pending' is zero. Ex: qemu_thread_start kvm_vcpu_thread_fn qemu_wait_io_event qemu_wait_io_event_common process_queued_cpu_work do_kvm_cpu_synchronize_post_init/_reset kvm_arch_put_registers kvm_put_vcpu_events (cpu, level=[2|3]) This leads vCPU threads in QEMU to constantly acquire & release the global mutex lock, delaying the guest boot due to lock contention. Add check to make KVM_REQ_NMI request only if vcpu has NMI pending. Fixes: bdedff263132 ("KVM: x86: Route pending NMIs from userspace through process_nmi()") Cc: stable@vger.kernel.org Signed-off-by: Prasad Pandit <pjp@fedoraproject.org> Link: https://lore.kernel.org/r/20240103075343.549293-1-ppandit@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-01-29KVM: SEV: Make AVIC backing, VMSA and VMCB memory allocation SNP safeBrijesh Singh
Implement a workaround for an SNP erratum where the CPU will incorrectly signal an RMP violation #PF if a hugepage (2MB or 1GB) collides with the RMP entry of a VMCB, VMSA or AVIC backing page. When SEV-SNP is globally enabled, the CPU marks the VMCB, VMSA, and AVIC backing pages as "in-use" via a reserved bit in the corresponding RMP entry after a successful VMRUN. This is done for _all_ VMs, not just SNP-Active VMs. If the hypervisor accesses an in-use page through a writable translation, the CPU will throw an RMP violation #PF. On early SNP hardware, if an in-use page is 2MB-aligned and software accesses any part of the associated 2MB region with a hugepage, the CPU will incorrectly treat the entire 2MB region as in-use and signal a an RMP violation #PF. To avoid this, the recommendation is to not use a 2MB-aligned page for the VMCB, VMSA or AVIC pages. Add a generic allocator that will ensure that the page returned is not 2MB-aligned and is safe to be used when SEV-SNP is enabled. Also implement similar handling for the VMCB/VMSA pages of nested guests. [ mdr: Squash in nested guest handling from Ashish, commit msg fixups. ] Reported-by: Alper Gun <alpergun@google.com> # for nested VMSA case Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Co-developed-by: Marc Orr <marcorr@google.com> Signed-off-by: Marc Orr <marcorr@google.com> Co-developed-by: Ashish Kalra <ashish.kalra@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Link: https://lore.kernel.org/r/20240126041126.1927228-22-michael.roth@amd.com
2024-01-29crypto: ccp: Add support to initialize the AMD-SP for SEV-SNPBrijesh Singh
Before SNP VMs can be launched, the platform must be appropriately configured and initialized via the SNP_INIT command. During the execution of SNP_INIT command, the firmware configures and enables SNP security policy enforcement in many system components. Some system components write to regions of memory reserved by early x86 firmware (e.g. UEFI). Other system components write to regions provided by the operation system, hypervisor, or x86 firmware. Such system components can only write to HV-fixed pages or Default pages. They will error when attempting to write to pages in other page states after SNP_INIT enables their SNP enforcement. Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list of system physical address ranges to convert into the HV-fixed page states during the RMP initialization. If INIT_RMP is 1, hypervisors should provide all system physical address ranges that the hypervisor will never assign to a guest until the next RMP re-initialization. For instance, the memory that UEFI reserves should be included in the range list. This allows system components that occasionally write to memory (e.g. logging to UEFI reserved regions) to not fail due to RMP initialization and SNP enablement. Note that SNP_INIT(_EX) must not be executed while non-SEV guests are executing, otherwise it is possible that the system could reset or hang. The psp_init_on_probe module parameter was added for SEV/SEV-ES support and the init_ex_path module parameter to allow for time for the necessary file system to be mounted/available. SNP_INIT(_EX) does not use the file associated with init_ex_path. So, to avoid running into issues where SNP_INIT(_EX) is called while there are other running guests, issue it during module probe regardless of the psp_init_on_probe setting, but maintain the previous deferrable handling for SEV/SEV-ES initialization. [ mdr: Squash in psp_init_on_probe changes from Tom, reduce proliferation of 'probe' function parameter where possible. bp: Fix 32-bit allmodconfig build. ] Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Co-developed-by: Ashish Kalra <ashish.kalra@amd.com> Signed-off-by: Ashish Kalra <ashish.kalra@amd.com> Co-developed-by: Jarkko Sakkinen <jarkko@profian.com> Signed-off-by: Jarkko Sakkinen <jarkko@profian.com> Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20240126041126.1927228-14-michael.roth@amd.com
2024-01-17Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull kvm updates from Paolo Bonzini: "Generic: - Use memdup_array_user() to harden against overflow. - Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures. - Clean up Kconfigs that all KVM architectures were selecting - New functionality around "guest_memfd", a new userspace API that creates an anonymous file and returns a file descriptor that refers to it. guest_memfd files are bound to their owning virtual machine, cannot be mapped, read, or written by userspace, and cannot be resized. guest_memfd files do however support PUNCH_HOLE, which can be used to switch a memory area between guest_memfd and regular anonymous memory. - New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify per-page attributes for a given page of guest memory; right now the only attribute is whether the guest expects to access memory via guest_memfd or not, which in Confidential SVMs backed by SEV-SNP, TDX or ARM64 pKVM is checked by firmware or hypervisor that guarantees confidentiality (AMD PSP, Intel TDX module, or EL2 in the case of pKVM). x86: - Support for "software-protected VMs" that can use the new guest_memfd and page attributes infrastructure. This is mostly useful for testing, since there is no pKVM-like infrastructure to provide a meaningfully reduced TCB. - Fix a relatively benign off-by-one error when splitting huge pages during CLEAR_DIRTY_LOG. - Fix a bug where KVM could incorrectly test-and-clear dirty bits in non-leaf TDP MMU SPTEs if a racing thread replaces a huge SPTE with a non-huge SPTE. - Use more generic lockdep assertions in paths that don't actually care about whether the caller is a reader or a writer. - let Xen guests opt out of having PV clock reported as "based on a stable TSC", because some of them don't expect the "TSC stable" bit (added to the pvclock ABI by KVM, but never set by Xen) to be set. - Revert a bogus, made-up nested SVM consistency check for TLB_CONTROL. - Advertise flush-by-ASID support for nSVM unconditionally, as KVM always flushes on nested transitions, i.e. always satisfies flush requests. This allows running bleeding edge versions of VMware Workstation on top of KVM. - Sanity check that the CPU supports flush-by-ASID when enabling SEV support. - On AMD machines with vNMI, always rely on hardware instead of intercepting IRET in some cases to detect unmasking of NMIs - Support for virtualizing Linear Address Masking (LAM) - Fix a variety of vPMU bugs where KVM fail to stop/reset counters and other state prior to refreshing the vPMU model. - Fix a double-overflow PMU bug by tracking emulated counter events using a dedicated field instead of snapshotting the "previous" counter. If the hardware PMC count triggers overflow that is recognized in the same VM-Exit that KVM manually bumps an event count, KVM would pend PMIs for both the hardware-triggered overflow and for KVM-triggered overflow. - Turn off KVM_WERROR by default for all configs so that it's not inadvertantly enabled by non-KVM developers, which can be problematic for subsystems that require no regressions for W=1 builds. - Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL "features". - Don't force a masterclock update when a vCPU synchronizes to the current TSC generation, as updating the masterclock can cause kvmclock's time to "jump" unexpectedly, e.g. when userspace hotplugs a pre-created vCPU. - Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths, partly as a super minor optimization, but mostly to make KVM play nice with position independent executable builds. - Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on CONFIG_HYPERV as a minor optimization, and to self-document the code. - Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation" at build time. ARM64: - LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB base granule sizes. Branch shared with the arm64 tree. - Large Fine-Grained Trap rework, bringing some sanity to the feature, although there is more to come. This comes with a prefix branch shared with the arm64 tree. - Some additional Nested Virtualization groundwork, mostly introducing the NV2 VNCR support and retargetting the NV support to that version of the architecture. - A small set of vgic fixes and associated cleanups. Loongarch: - Optimization for memslot hugepage checking - Cleanup and fix some HW/SW timer issues - Add LSX/LASX (128bit/256bit SIMD) support RISC-V: - KVM_GET_REG_LIST improvement for vector registers - Generate ISA extension reg_list using macros in get-reg-list selftest - Support for reporting steal time along with selftest s390: - Bugfixes Selftests: - Fix an annoying goof where the NX hugepage test prints out garbage instead of the magic token needed to run the test. - Fix build errors when a header is delete/moved due to a missing flag in the Makefile. - Detect if KVM bugged/killed a selftest's VM and print out a helpful message instead of complaining that a random ioctl() failed. - Annotate the guest printf/assert helpers with __printf(), and fix the various bugs that were lurking due to lack of said annotation" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (185 commits) x86/kvm: Do not try to disable kvmclock if it was not enabled KVM: x86: add missing "depends on KVM" KVM: fix direction of dependency on MMU notifiers KVM: introduce CONFIG_KVM_COMMON KVM: arm64: Add missing memory barriers when switching to pKVM's hyp pgd KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache RISC-V: KVM: selftests: Add get-reg-list test for STA registers RISC-V: KVM: selftests: Add steal_time test support RISC-V: KVM: selftests: Add guest_sbi_probe_extension RISC-V: KVM: selftests: Move sbi_ecall to processor.c RISC-V: KVM: Implement SBI STA extension RISC-V: KVM: Add support for SBI STA registers RISC-V: KVM: Add support for SBI extension registers RISC-V: KVM: Add SBI STA info to vcpu_arch RISC-V: KVM: Add steal-update vcpu request RISC-V: KVM: Add SBI STA extension skeleton RISC-V: paravirt: Implement steal-time support RISC-V: Add SBI STA extension definitions RISC-V: paravirt: Add skeleton for pv-time support RISC-V: KVM: Fix indentation in kvm_riscv_vcpu_set_reg_csr() ...
2024-01-10x86/bugs: Rename CONFIG_RETPOLINE => CONFIG_MITIGATION_RETPOLINEBreno Leitao
Step 5/10 of the namespace unification of CPU mitigations related Kconfig options. [ mingo: Converted a few more uses in comments/messages as well. ] Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ariel Miculas <amiculas@cisco.com> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20231121160740.1249350-6-leitao@debian.org
2024-01-08Merge tag 'x86-cleanups-2024-01-08' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cleanups from Ingo Molnar: - Change global variables to local - Add missing kernel-doc function parameter descriptions - Remove unused parameter from a macro - Remove obsolete Kconfig entry - Fix comments - Fix typos, mostly scripted, manually reviewed and a micro-optimization got misplaced as a cleanup: - Micro-optimize the asm code in secondary_startup_64_no_verify() * tag 'x86-cleanups-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: arch/x86: Fix typos x86/head_64: Use TESTB instead of TESTL in secondary_startup_64_no_verify() x86/docs: Remove reference to syscall trampoline in PTI x86/Kconfig: Remove obsolete config X86_32_SMP x86/io: Remove the unused 'bw' parameter from the BUILDIO() macro x86/mtrr: Document missing function parameters in kernel-doc x86/setup: Make relocated_ramdisk a local variable of relocate_initrd()
2024-01-08Merge tag 'vfs-6.8.misc' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs Pull misc vfs updates from Christian Brauner: "This contains the usual miscellaneous features, cleanups, and fixes for vfs and individual fses. Features: - Add Jan Kara as VFS reviewer - Show correct device and inode numbers in proc/<pid>/maps for vma files on stacked filesystems. This is now easily doable thanks to the backing file work from the last cycles. This comes with selftests Cleanups: - Remove a redundant might_sleep() from wait_on_inode() - Initialize pointer with NULL, not 0 - Clarify comment on access_override_creds() - Rework and simplify eventfd_signal() and eventfd_signal_mask() helpers - Process aio completions in batches to avoid needless wakeups - Completely decouple struct mnt_idmap from namespaces. We now only keep the actual idmapping around and don't stash references to namespaces - Reformat maintainer entries to indicate that a given subsystem belongs to fs/ - Simplify fput() for files that were never opened - Get rid of various pointless file helpers - Rename various file helpers - Rename struct file members after SLAB_TYPESAFE_BY_RCU switch from last cycle - Make relatime_need_update() return bool - Use GFP_KERNEL instead of GFP_USER when allocating superblocks - Replace deprecated ida_simple_*() calls with their current ida_*() counterparts Fixes: - Fix comments on user namespace id mapping helpers. They aren't kernel doc comments so they shouldn't be using /** - s/Retuns/Returns/g in various places - Add missing parameter documentation on can_move_mount_beneath() - Rename i_mapping->private_data to i_mapping->i_private_data - Fix a false-positive lockdep warning in pipe_write() for watch queues - Improve __fget_files_rcu() code generation to improve performance - Only notify writer that pipe resizing has finished after setting pipe->max_usage otherwise writers are never notified that the pipe has been resized and hang - Fix some kernel docs in hfsplus - s/passs/pass/g in various places - Fix kernel docs in ntfs - Fix kcalloc() arguments order reported by gcc 14 - Fix uninitialized value in reiserfs" * tag 'vfs-6.8.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (36 commits) reiserfs: fix uninit-value in comp_keys watch_queue: fix kcalloc() arguments order ntfs: dir.c: fix kernel-doc function parameter warnings fs: fix doc comment typo fs tree wide selftests/overlayfs: verify device and inode numbers in /proc/pid/maps fs/proc: show correct device and inode numbers in /proc/pid/maps eventfd: Remove usage of the deprecated ida_simple_xx() API fs: super: use GFP_KERNEL instead of GFP_USER for super block allocation fs/hfsplus: wrapper.c: fix kernel-doc warnings fs: add Jan Kara as reviewer fs/inode: Make relatime_need_update return bool pipe: wakeup wr_wait after setting max_usage file: remove __receive_fd() file: stop exposing receive_fd_user() fs: replace f_rcuhead with f_task_work file: remove pointless wrapper file: s/close_fd_get_file()/file_close_fd()/g Improve __fget_files_rcu() code generation (and thus __fget_light()) file: massage cleanup of files that failed to open fs/pipe: Fix lockdep false-positive in watchqueue pipe_write() ...
2024-01-08Merge tag 'kvm-x86-mmu-6.8' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 MMU changes for 6.8: - Fix a relatively benign off-by-one error when splitting huge pages during CLEAR_DIRTY_LOG. - Fix a bug where KVM could incorrectly test-and-clear dirty bits in non-leaf TDP MMU SPTEs if a racing thread replaces a huge SPTE with a non-huge SPTE. - Relax the TDP MMU's lockdep assertions related to holding mmu_lock for read versus write so that KVM doesn't pass "bool shared" all over the place just to have precise assertions in paths that don't actually care about whether the caller is a reader or a writer.
2024-01-08Merge tag 'kvm-x86-xen-6.8' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM Xen change for 6.8: To workaround Xen guests that don't expect Xen PV clocks to be marked as being based on a stable TSC, add a Xen config knob to allow userspace to opt out of KVM setting the "TSC stable" bit in Xen PV clocks. Note, the "TSC stable" bit was added to the PVCLOCK ABI by KVM without an ack from Xen, i.e. KVM isn't entirely blameless for the buggy guest behavior.
2024-01-08Merge tag 'kvm-x86-svm-6.8' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM SVM changes for 6.8: - Revert a bogus, made-up nested SVM consistency check for TLB_CONTROL. - Advertise flush-by-ASID support for nSVM unconditionally, as KVM always flushes on nested transitions, i.e. always satisfies flush requests. This allows running bleeding edge versions of VMware Workstation on top of KVM. - Sanity check that the CPU supports flush-by-ASID when enabling SEV support. - Fix a benign NMI virtualization bug where KVM would unnecessarily intercept IRET when manually injecting an NMI, e.g. when KVM pends an NMI and injects a second, "simultaneous" NMI.
2024-01-08Merge tag 'kvm-x86-lam-6.8' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 support for virtualizing Linear Address Masking (LAM) Add KVM support for Linear Address Masking (LAM). LAM tweaks the canonicality checks for most virtual address usage in 64-bit mode, such that only the most significant bit of the untranslated address bits must match the polarity of the last translated address bit. This allows software to use ignored, untranslated address bits for metadata, e.g. to efficiently tag pointers for address sanitization. LAM can be enabled separately for user pointers and supervisor pointers, and for userspace LAM can be select between 48-bit and 57-bit masking - 48-bit LAM: metadata bits 62:48, i.e. LAM width of 15. - 57-bit LAM: metadata bits 62:57, i.e. LAM width of 6. For user pointers, LAM enabling utilizes two previously-reserved high bits from CR3 (similar to how PCID_NOFLUSH uses bit 63): LAM_U48 and LAM_U57, bits 62 and 61 respectively. Note, if LAM_57 is set, LAM_U48 is ignored, i.e.: - CR3.LAM_U48=0 && CR3.LAM_U57=0 == LAM disabled for user pointers - CR3.LAM_U48=1 && CR3.LAM_U57=0 == LAM-48 enabled for user pointers - CR3.LAM_U48=x && CR3.LAM_U57=1 == LAM-57 enabled for user pointers For supervisor pointers, LAM is controlled by a single bit, CR4.LAM_SUP, with the 48-bit versus 57-bit LAM behavior following the current paging mode, i.e.: - CR4.LAM_SUP=0 && CR4.LA57=x == LAM disabled for supervisor pointers - CR4.LAM_SUP=1 && CR4.LA57=0 == LAM-48 enabled for supervisor pointers - CR4.LAM_SUP=1 && CR4.LA57=1 == LAM-57 enabled for supervisor pointers The modified LAM canonicality checks: - LAM_S48 : [ 1 ][ metadata ][ 1 ] 63 47 - LAM_U48 : [ 0 ][ metadata ][ 0 ] 63 47 - LAM_S57 : [ 1 ][ metadata ][ 1 ] 63 56 - LAM_U57 + 5-lvl paging : [ 0 ][ metadata ][ 0 ] 63 56 - LAM_U57 + 4-lvl paging : [ 0 ][ metadata ][ 0...0 ] 63 56..47 The bulk of KVM support for LAM is to emulate LAM's modified canonicality checks. The approach taken by KVM is to "fill" the metadata bits using the highest bit of the translated address, e.g. for LAM-48, bit 47 is sign-extended to bits 62:48. The most significant bit, 63, is *not* modified, i.e. its value from the raw, untagged virtual address is kept for the canonicality check. This untagging allows Aside from emulating LAM's canonical checks behavior, LAM has the usual KVM touchpoints for selectable features: enumeration (CPUID.7.1:EAX.LAM[bit 26], enabling via CR3 and CR4 bits, etc.
2024-01-08Merge tag 'kvm-x86-pmu-6.8' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 PMU changes for 6.8: - Fix a variety of bugs where KVM fail to stop/reset counters and other state prior to refreshing the vPMU model. - Fix a double-overflow PMU bug by tracking emulated counter events using a dedicated field instead of snapshotting the "previous" counter. If the hardware PMC count triggers overflow that is recognized in the same VM-Exit that KVM manually bumps an event count, KVM would pend PMIs for both the hardware-triggered overflow and for KVM-triggered overflow.
2024-01-08Merge tag 'kvm-x86-misc-6.8' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 misc changes for 6.8: - Turn off KVM_WERROR by default for all configs so that it's not inadvertantly enabled by non-KVM developers, which can be problematic for subsystems that require no regressions for W=1 builds. - Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL "features". - Don't force a masterclock update when a vCPU synchronizes to the current TSC generation, as updating the masterclock can cause kvmclock's time to "jump" unexpectedly, e.g. when userspace hotplugs a pre-created vCPU. - Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths, partly as a super minor optimization, but mostly to make KVM play nice with position independent executable builds.
2024-01-08Merge tag 'kvm-x86-hyperv-6.8' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
KVM x86 Hyper-V changes for 6.8: - Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on CONFIG_HYPERV as a minor optimization, and to self-document the code. - Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation" at build time.
2024-01-08Merge tag 'kvm-x86-generic-6.8' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini
Common KVM changes for 6.8: - Use memdup_array_user() to harden against overflow. - Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures.
2024-01-08KVM: x86: add missing "depends on KVM"Paolo Bonzini
Support for KVM software-protected VMs should not be configurable, if KVM is not available at all. Fixes: 89ea60c2c7b5 ("KVM: x86: Add support for "protected VMs" that can utilize private memory") Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-01-08KVM: introduce CONFIG_KVM_COMMONPaolo Bonzini
CONFIG_HAVE_KVM is currently used by some architectures to either enabled the KVM config proper, or to enable host-side code that is not part of the KVM module. However, CONFIG_KVM's "select" statement in virt/kvm/Kconfig corresponds to a third meaning, namely to enable common Kconfigs required by all architectures that support KVM. These three meanings can be replaced respectively by an architecture-specific Kconfig, by IS_ENABLED(CONFIG_KVM), or by a new Kconfig symbol that is in turn selected by the architecture-specific "config KVM". Start by introducing such a new Kconfig symbol, CONFIG_KVM_COMMON. Unlike CONFIG_HAVE_KVM, it is selected by CONFIG_KVM, not by architecture code, and it brings in all dependencies of common KVM code. In particular, INTERVAL_TREE was missing in loongarch and riscv, so that is another thing that is fixed. Fixes: 8132d887a702 ("KVM: remove CONFIG_HAVE_KVM_EVENTFD", 2023-12-08) Reported-by: Randy Dunlap <rdunlap@infradead.org> Closes: https://lore.kernel.org/all/44907c6b-c5bd-4e4a-a921-e4d3825539d8@infradead.org/ Reviewed-by: Andrew Jones <ajones@ventanamicro.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-01-03arch/x86: Fix typosBjorn Helgaas
Fix typos, most reported by "codespell arch/x86". Only touches comments, no code changes. Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Link: https://lore.kernel.org/r/20240103004011.1758650-1-helgaas@kernel.org
2024-01-02Merge tag 'kvm-riscv-6.8-1' of https://github.com/kvm-riscv/linux into HEADPaolo Bonzini
KVM/riscv changes for 6.8 part #1 - KVM_GET_REG_LIST improvement for vector registers - Generate ISA extension reg_list using macros in get-reg-list selftest - Steal time account support along with selftest