summaryrefslogtreecommitdiff
path: root/arch/x86/mm/tlb.c
AgeCommit message (Collapse)Author
2025-05-13Merge branch 'x86/msr' into x86/core, to resolve conflictsIngo Molnar
Conflicts: arch/x86/boot/startup/sme.c arch/x86/coco/sev/core.c arch/x86/kernel/fpu/core.c arch/x86/kernel/fpu/xstate.c Semantic conflict: arch/x86/include/asm/sev-internal.h Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-05-13Merge branch 'x86/mm' into x86/core, to resolve conflictsIngo Molnar
Conflicts: arch/x86/mm/numa.c arch/x86/mm/pgtable.c Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-05-13Merge branch 'x86/alternatives' into x86/core, to merge dependent commitsIngo Molnar
Prepare to resolve conflicts with an upstream series of fixes that conflict with pending x86 changes: 6f5bf947bab0 Merge tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-05-09x86/mm: Eliminate window where TLB flushes may be inadvertently skippedDave Hansen
tl;dr: There is a window in the mm switching code where the new CR3 is set and the CPU should be getting TLB flushes for the new mm. But should_flush_tlb() has a bug and suppresses the flush. Fix it by widening the window where should_flush_tlb() sends an IPI. Long Version: === History === There were a few things leading up to this. First, updating mm_cpumask() was observed to be too expensive, so it was made lazier. But being lazy caused too many unnecessary IPIs to CPUs due to the now-lazy mm_cpumask(). So code was added to cull mm_cpumask() periodically[2]. But that culling was a bit too aggressive and skipped sending TLB flushes to CPUs that need them. So here we are again. === Problem === The too-aggressive code in should_flush_tlb() strikes in this window: // Turn on IPIs for this CPU/mm combination, but only // if should_flush_tlb() agrees: cpumask_set_cpu(cpu, mm_cpumask(next)); next_tlb_gen = atomic64_read(&next->context.tlb_gen); choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); load_new_mm_cr3(need_flush); // ^ After 'need_flush' is set to false, IPIs *MUST* // be sent to this CPU and not be ignored. this_cpu_write(cpu_tlbstate.loaded_mm, next); // ^ Not until this point does should_flush_tlb() // become true! should_flush_tlb() will suppress TLB flushes between load_new_mm_cr3() and writing to 'loaded_mm', which is a window where they should not be suppressed. Whoops. === Solution === Thankfully, the fuzzy "just about to write CR3" window is already marked with loaded_mm==LOADED_MM_SWITCHING. Simply checking for that state in should_flush_tlb() is sufficient to ensure that the CPU is targeted with an IPI. This will cause more TLB flush IPIs. But the window is relatively small and I do not expect this to cause any kind of measurable performance impact. Update the comment where LOADED_MM_SWITCHING is written since it grew yet another user. Peter Z also raised a concern that should_flush_tlb() might not observe 'loaded_mm' and 'is_lazy' in the same order that switch_mm_irqs_off() writes them. Add a barrier to ensure that they are observed in the order they are written. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Rik van Riel <riel@surriel.com> Link: https://lore.kernel.org/oe-lkp/202411282207.6bd28eae-lkp@intel.com/ [1] Fixes: 6db2526c1d69 ("x86/mm/tlb: Only trim the mm_cpumask once a second") [2] Reported-by: Stephen Dolan <sdolan@janestreet.com> Cc: stable@vger.kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2025-05-06x86/mm: Fix false positive warning in switch_mm_irqs_off()Peter Zijlstra
Multiple testers reported the following new warning: WARNING: CPU: 0 PID: 0 at arch/x86/mm/tlb.c:795 Which corresponds to: if (IS_ENABLED(CONFIG_DEBUG_VM) && WARN_ON_ONCE(prev != &init_mm && !cpumask_test_cpu(cpu, mm_cpumask(next)))) cpumask_set_cpu(cpu, mm_cpumask(next)); So the problem is that unuse_temporary_mm() explicitly clears that bit; and it has to, because otherwise the flush_tlb_mm_range() in __text_poke() will try sending IPIs, which are not at all needed. See also: https://lore.kernel.org/all/20241113095550.GBZzR3pg-RhJKPDazS@fat_crate.local/ Notably, the whole {,un}use_temporary_mm() thing requires preemption to be disabled across it with the express purpose of keeping all TLB nonsense CPU local, such that invalidations can also stay local etc. However, as a side-effect, we violate this above WARN(), which sorta makes sense for the normal case, but very much doesn't make sense here. Change unuse_temporary_mm() to mark the mm_struct such that a further exception (beyond init_mm) can be grafted, to keep the warning for all the other cases. Reported-by: Chaitanya Kumar Borah <chaitanya.kumar.borah@intel.com> Reported-by: Jani Nikula <jani.nikula@linux.intel.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Rik van Riel <riel@surriel.com> Link: https://lore.kernel.org/r/20250430081154.GH4439@noisy.programming.kicks-ass.net
2025-05-02x86/msr: Add explicit includes of <asm/msr.h>Xin Li (Intel)
For historic reasons there are some TSC-related functions in the <asm/msr.h> header, even though there's an <asm/tsc.h> header. To facilitate the relocation of rdtsc{,_ordered}() from <asm/msr.h> to <asm/tsc.h> and to eventually eliminate the inclusion of <asm/msr.h> in <asm/tsc.h>, add an explicit <asm/msr.h> dependency to the source files that reference definitions from <asm/msr.h>. [ mingo: Clarified the changelog. ] Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Juergen Gross <jgross@suse.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Kees Cook <keescook@chromium.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Uros Bizjak <ubizjak@gmail.com> Link: https://lore.kernel.org/r/20250501054241.1245648-1-xin@zytor.com
2025-05-02Merge tag 'v6.15-rc4' into x86/msr, to pick up fixes and resolve conflictsIngo Molnar
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-04-18x86/mm: Fix {,un}use_temporary_mm() IRQ statePeter Zijlstra
As the function switch_mm_irqs_off() implies, it ought to be called with IRQs *off*. Commit 58f8ffa91766 ("x86/mm: Allow temporary MMs when IRQs are on") caused this to not be the case for EFI. Ensure IRQs are off where it matters. Fixes: 58f8ffa91766 ("x86/mm: Allow temporary MMs when IRQs are on") Reported-by: Borislav Petkov (AMD) <bp@alien8.de> Tested-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Rik van Riel <riel@surriel.com> Link: https://lore.kernel.org/r/20250418095034.GR38216@noisy.programming.kicks-ass.net
2025-04-17x86/mm: Remove the mm_cpumask(prev) warning from switch_mm_irqs_off()Peter Zijlstra
The CONFIG_DEBUG_VM=y warning in switch_mm_irqs_off() started triggering in testing: VM_WARN_ON_ONCE(prev != &init_mm && !cpumask_test_cpu(cpu, mm_cpumask(prev))); AFAIU what happens is that unuse_temporary_mm() clears the mm_cpumask() for the current CPU, while switch_mm_irqs_off() then checks that the mm_cpumask() bit is set for the current CPU. While this behaviour hasn't really changed since the following commit: 209954cbc7d0 ("x86/mm/tlb: Update mm_cpumask lazily") introduced both, but the warning is wrong, so remove it. [ mingo: Patchified Peter's email. ] Reported-by: syzbot+c2537ce72a879a38113e@syzkaller.appspotmail.com Reported-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Juergen Gross <jgross@suse.com> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Rik van Riel <riel@surriel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Link: https://lore.kernel.org/r/20250414135629.GA17910@noisy.programming.kicks-ass.net
2025-04-12x86/mm: Allow temporary MMs when IRQs are onAndy Lutomirski
EFI runtime services should use temporary MMs, but EFI runtime services want IRQs on. Preemption must still be disabled in a temporary MM context. At some point, the entirely temporary MM mechanism should be moved out of arch code. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20250402094540.3586683-6-mingo@kernel.org
2025-04-12x86/mm: Remove 'mm' argument from unuse_temporary_mm() againPeter Zijlstra
Now that unuse_temporary_mm() lives in tlb.c it can access cpu_tlbstate.loaded_mm. [ mingo: Merged it on top of x86/alternatives ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: https://lore.kernel.org/r/20250402094540.3586683-5-mingo@kernel.org
2025-04-12x86/mm: Make use_/unuse_temporary_mm() non-staticAndy Lutomirski
This prepares them for use outside of the alternative machinery. The code is unchanged. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: https://lore.kernel.org/r/20250402094540.3586683-4-mingo@kernel.org
2025-04-10x86/msr: Rename 'wrmsrl()' to 'wrmsrq()'Ingo Molnar
Suggested-by: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Juergen Gross <jgross@suse.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Xin Li <xin@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org>
2025-04-09x86/bugs: Don't fill RSB on context switch with eIBRSJosh Poimboeuf
User->user Spectre v2 attacks (including RSB) across context switches are already mitigated by IBPB in cond_mitigation(), if enabled globally or if either the prev or the next task has opted in to protection. RSB filling without IBPB serves no purpose for protecting user space, as indirect branches are still vulnerable. User->kernel RSB attacks are mitigated by eIBRS. In which case the RSB filling on context switch isn't needed, so remove it. Suggested-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Reviewed-by: Amit Shah <amit.shah@amd.com> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Link: https://lore.kernel.org/r/98cdefe42180358efebf78e3b80752850c7a3e1b.1744148254.git.jpoimboe@kernel.org
2025-04-03x86/tlb: Simplify choose_new_asid() and generate better codeBorislav Petkov (AMD)
Have it return the two things it does return: - a new ASID and - the need to flush the TLB or not, in a struct which fits in a single 32-bit register and whack the IO parameters. Beyond being easier to read, this also helps the compiler generate better, more compact code: # arch/x86/mm/tlb.o: text data bss dec hex filename 9341 753 516 10610 2972 tlb.o.before 9213 753 516 10482 28f2 tlb.o.after No functional changes. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Juergen Gross <jgross@suse.com> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Uros Bizjak <ubizjak@gmail.com> Cc: Rik van Riel <riel@surriel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20250403085623.20824-1-bp@kernel.org
2025-03-25Merge tag 'x86_bugs_for_v6.15' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 speculation mitigation updates from Borislav Petkov: - Some preparatory work to convert the mitigations machinery to mitigating attack vectors instead of single vulnerabilities - Untangle and remove a now unneeded X86_FEATURE_USE_IBPB flag - Add support for a Zen5-specific SRSO mitigation - Cleanups and minor improvements * tag 'x86_bugs_for_v6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/bugs: Make spectre user default depend on MITIGATION_SPECTRE_V2 x86/bugs: Use the cpu_smt_possible() helper instead of open-coded code x86/bugs: Add AUTO mitigations for mds/taa/mmio/rfds x86/bugs: Relocate mds/taa/mmio/rfds defines x86/bugs: Add X86_BUG_SPECTRE_V2_USER x86/bugs: Remove X86_FEATURE_USE_IBPB KVM: nVMX: Always use IBPB to properly virtualize IBRS x86/bugs: Use a static branch to guard IBPB on vCPU switch x86/bugs: Remove the X86_FEATURE_USE_IBPB check in ib_prctl_set() x86/mm: Remove X86_FEATURE_USE_IBPB checks in cond_mitigation() x86/bugs: Move the X86_FEATURE_USE_IBPB check into callers x86/bugs: KVM: Add support for SRSO_MSR_FIX
2025-03-19x86/mm: Only do broadcast flush from reclaim if pages were unmappedRik van Riel
Track whether pages were unmapped from any MM (even ones with a currently empty mm_cpumask) by the reclaim code, to figure out whether or not broadcast TLB flush should be done when reclaim finishes. The reason any MM must be tracked, and not only ones contributing to the tlbbatch cpumask, is that broadcast ASIDs are expected to be kept up to date even on CPUs where the MM is not currently active. This change allows reclaim to avoid doing TLB flushes when only clean page cache pages and/or slab memory were reclaimed, which is fairly common. ( This is a simpler alternative to the code that was in my INVLPGB series before, and it seems to capture most of the benefit due to how common it is to reclaim only page cache. ) Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20250319132520.6b10ad90@fangorn
2025-03-19x86/mm: Enable broadcast TLB invalidation for multi-threaded processesRik van Riel
There is not enough room in the 12-bit ASID address space to hand out broadcast ASIDs to every process. Only hand out broadcast ASIDs to processes when they are observed to be simultaneously running on 4 or more CPUs. This also allows single threaded process to continue using the cheaper, local TLB invalidation instructions like INVLPGB. Due to the structure of flush_tlb_mm_range(), the INVLPGB flushing is done in a generically named broadcast_tlb_flush() function which can later also be used for Intel RAR. Combined with the removal of unnecessary lru_add_drain calls() (see https://lore.kernel.org/r/20241219153253.3da9e8aa@fangorn) this results in a nice performance boost for the will-it-scale tlb_flush2_threads test on an AMD Milan system with 36 cores: - vanilla kernel: 527k loops/second - lru_add_drain removal: 731k loops/second - only INVLPGB: 527k loops/second - lru_add_drain + INVLPGB: 1157k loops/second Profiling with only the INVLPGB changes showed while TLB invalidation went down from 40% of the total CPU time to only around 4% of CPU time, the contention simply moved to the LRU lock. Fixing both at the same time about doubles the number of iterations per second from this case. Comparing will-it-scale tlb_flush2_threads with several different numbers of threads on a 72 CPU AMD Milan shows similar results. The number represents the total number of loops per second across all the threads: threads tip INVLPGB 1 315k 304k 2 423k 424k 4 644k 1032k 8 652k 1267k 16 737k 1368k 32 759k 1199k 64 636k 1094k 72 609k 993k 1 and 2 thread performance is similar with and without INVLPGB, because INVLPGB is only used on processes using 4 or more CPUs simultaneously. The number is the median across 5 runs. Some numbers closer to real world performance can be found at Phoronix, thanks to Michael: https://www.phoronix.com/news/AMD-INVLPGB-Linux-Benefits [ bp: - Massage - :%s/\<static_cpu_has\>/cpu_feature_enabled/cgi - :%s/\<clear_asid_transition\>/mm_clear_asid_transition/cgi - Fold in a 0day bot fix: https://lore.kernel.org/oe-kbuild-all/202503040000.GtiWUsBm-lkp@intel.com ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Nadav Amit <nadav.amit@gmail.com> Link: https://lore.kernel.org/r/20250226030129.530345-11-riel@surriel.com
2025-03-19x86/mm: Handle global ASID context switch and TLB flushRik van Riel
Do context switch and TLB flush support for processes that use a global ASID and PCID across all CPUs. At both context switch time and TLB flush time, it needs to be checked whether a task is switching to a global ASID, and, if so, reload the TLB with the new ASID as appropriate. In both code paths, the TLB flush is avoided if a global ASID is used, because the global ASIDs are always kept up to date across CPUs, even when the process is not running on a CPU. [ bp: - Massage - :%s/\<static_cpu_has\>/cpu_feature_enabled/cgi ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250226030129.530345-9-riel@surriel.com
2025-03-19x86/mm: Add global ASID allocation helper functionsRik van Riel
Add functions to manage global ASID space. Multithreaded processes that are simultaneously active on 4 or more CPUs can get a global ASID, resulting in the same PCID being used for that process on every CPU. This in turn will allow the kernel to use hardware-assisted TLB flushing through AMD INVLPGB or Intel RAR for these processes. [ bp: - Extend use_global_asid() comment - s/X86_BROADCAST_TLB_FLUSH/BROADCAST_TLB_FLUSH/g - other touchups ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250226030129.530345-8-riel@surriel.com
2025-03-19x86/mm: Use broadcast TLB flushing in page reclaimRik van Riel
Page reclaim tracks only the CPU(s) where the TLB needs to be flushed, rather than all the individual mappings that may be getting invalidated. Use broadcast TLB flushing when that is available. [ bp: Massage commit message. ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250226030129.530345-7-riel@surriel.com
2025-03-19x86/mm: Use INVLPGB for kernel TLB flushesRik van Riel
Use broadcast TLB invalidation for kernel addresses when available. Remove the need to send IPIs for kernel TLB flushes. [ bp: Integrate dhansen's comments additions, merge the flush_tlb_all() change into this one too. ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250226030129.530345-5-riel@surriel.com
2025-03-19x86/mm: Consolidate full flush threshold decisionRik van Riel
Reduce code duplication by consolidating the decision point for whether to do individual invalidations or a full flush inside get_flush_tlb_info(). Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Dave Hansen <dave.hansen@intel.com> Link: https://lore.kernel.org/r/20250226030129.530345-2-riel@surriel.com
2025-02-27x86/mm: Remove X86_FEATURE_USE_IBPB checks in cond_mitigation()Yosry Ahmed
The check is performed when either switch_mm_cond_ibpb or switch_mm_always_ibpb is set. In both cases, X86_FEATURE_USE_IBPB is always set. Remove the redundant check. Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Link: https://lore.kernel.org/r/20250227012712.3193063-3-yosry.ahmed@linux.dev
2025-02-27x86/bugs: Move the X86_FEATURE_USE_IBPB check into callersYosry Ahmed
indirect_branch_prediction_barrier() only performs the MSR write if X86_FEATURE_USE_IBPB is set, using alternative_msr_write(). In preparation for removing X86_FEATURE_USE_IBPB, move the feature check into the callers so that they can be addressed one-by-one, and use X86_FEATURE_IBPB instead to guard the MSR write. Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Acked-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20250227012712.3193063-2-yosry.ahmed@linux.dev
2025-02-05x86: Compare physical instead of virtual PGD addressesMaciej Wieczor-Retman
This is a preparatory patch for when pointers have tags in their upper address bits. But it's a harmless change on its own. The mm->pgd virtual address may be tagged because it came out of the allocator at some point. The __va(read_cr3_pa()) address will never be tagged (the tag bits are all 1's). A direct pointer value comparison would fail if one is tagged and the other is not. To fix this, just compare the physical addresses which are never affected by tagging. [ dhansen: subject and changelog munging ] Signed-off-by: Maciej Wieczor-Retman <maciej.wieczor-retman@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/fde443d0e67f76a51e7ab4e96647705840f53ddb.1738686764.git.maciej.wieczor-retman%40intel.com
2024-12-20Merge branch 'linus' into x86/mm, to pick up fixesIngo Molnar
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-12-06x86/mm/tlb: Only trim the mm_cpumask once a secondRik van Riel
Setting and clearing CPU bits in the mm_cpumask is only ever done by the CPU itself, from the context switch code or the TLB flush code. Synchronization is handled by switch_mm_irqs_off() blocking interrupts. Sending TLB flush IPIs to CPUs that are in the mm_cpumask, but no longer running the program causes a regression in the will-it-scale tlbflush2 test. This test is contrived, but a large regression here might cause a small regression in some real world workload. Instead of always sending IPIs to CPUs that are in the mm_cpumask, but no longer running the program, send these IPIs only once a second. The rest of the time we can skip over CPUs where the loaded_mm is different from the target mm. Reported-by: kernel test roboto <oliver.sang@intel.com> Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20241204210316.612ee573@fangorn Closes: https://lore.kernel.org/oe-lkp/202411282207.6bd28eae-lkp@intel.com/
2024-12-06x86/mm/tlb: Also remove local CPU from mm_cpumask if staleRik van Riel
The code in flush_tlb_func() that removes a remote CPU from the cpumask if it is no longer running the target mm is also needed on the originating CPU of a TLB flush, now that CPUs are no longer cleared from the mm_cpumask at context switch time. Flushing the TLB when we are not running the target mm is harmless, because the CPU's tlb_gen only gets updated to match the mm_tlb_gen, but it does hit this warning: WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen); [ 210.343902][ T4668] WARNING: CPU: 38 PID: 4668 at arch/x86/mm/tlb.c:815 flush_tlb_func (arch/x86/mm/tlb.c:815) Removing both local and remote CPUs from the mm_cpumask when doing a flush for a not currently loaded mm avoids that warning. Reported-by: kernel test robot <oliver.sang@intel.com> Tested-by: kernel test robot <oliver.sang@intel.com> Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20241205104630.755706ca@fangorn Closes: https://lore.kernel.org/oe-lkp/202412051551.690e9656-lkp@intel.com
2024-11-25x86/mm: Carve out INVLPG inline asm for use by othersBorislav Petkov (AMD)
No functional changes. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/ZyulbYuvrkshfsd2@antipodes
2024-11-19x86/mm/tlb: Add tracepoint for TLB flush IPI to stale CPURik van Riel
Add a tracepoint when we send a TLB flush IPI to a CPU that used to be in the mm_cpumask, but isn't any more. Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20241114152723.1294686-3-riel@surriel.com
2024-11-19x86/mm/tlb: Update mm_cpumask lazilyRik van Riel
On busy multi-threaded workloads, there can be significant contention on the mm_cpumask at context switch time. Reduce that contention by updating mm_cpumask lazily, setting the CPU bit at context switch time (if not already set), and clearing the CPU bit at the first TLB flush sent to a CPU where the process isn't running. When a flurry of TLB flushes for a process happen, only the first one will be sent to CPUs where the process isn't running. The others will be sent to CPUs where the process is currently running. On an AMD Milan system with 36 cores, there is a noticeable difference: $ hackbench --groups 20 --loops 10000 Before: ~4.5s +/- 0.1s After: ~4.2s +/- 0.1s Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20241114152723.1294686-2-riel@surriel.com
2024-11-13x86/mm/tlb: Put cpumask_test_cpu() check in switch_mm_irqs_off() under ↵Rik van Riel
CONFIG_DEBUG_VM On a web server workload, the cpumask_test_cpu() inside the WARN_ON_ONCE() in the 'prev == next branch' takes about 17% of all the CPU time of switch_mm_irqs_off(). On a large fleet, this WARN_ON_ONCE() has not fired in at least a month, possibly never. Move this test under CONFIG_DEBUG_VM so it does not get compiled in production kernels. Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20241109003727.3958374-4-riel@surriel.com
2024-08-14x86/mm: Remove duplicate check from build_cr3()Yuntao Wang
There is already a check for 'asid > MAX_ASID_AVAILABLE' in kern_pcid(), so it is unnecessary to perform this check in build_cr3() right before calling kern_pcid(). Remove it. Signed-off-by: Yuntao Wang <yuntao.wang@linux.dev> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20240814124645.51019-1-yuntao.wang@linux.dev
2024-08-10x86/mm: Remove unused CR3_HW_ASID_BITSYosry Ahmed
Commit 6fd166aae78c ("x86/mm: Use/Fix PCID to optimize user/kernel switches") removed the last usage of CR3_HW_ASID_BITS and opted to use X86_CR3_PCID_BITS instead. Remove CR3_HW_ASID_BITS. Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20240425215951.2310105-1-yosryahmed@google.com
2024-07-02x86/mm: Fix LAM inconsistency during context switchYosry Ahmed
LAM can only be enabled when a process is single-threaded. But _kernel_ threads can temporarily use a single-threaded process's mm. That means that a context-switching kernel thread can race and observe the mm's LAM metadata (mm->context.lam_cr3_mask) change. The context switch code does two logical things with that metadata: populate CR3 and populate 'cpu_tlbstate.lam'. If it hits this race, 'cpu_tlbstate.lam' and CR3 can end up out of sync. This de-synchronization is currently harmless. But it is confusing and might lead to warnings or real bugs. Update set_tlbstate_lam_mode() to take in the LAM mask and untag mask instead of an mm_struct pointer, and while we are at it, rename it to cpu_tlbstate_update_lam(). This should also make it clearer that we are updating cpu_tlbstate. In switch_mm_irqs_off(), read the LAM mask once and use it for both the cpu_tlbstate update and the CR3 update. Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Link: https://lore.kernel.org/all/20240702132139.3332013-3-yosryahmed%40google.com
2024-07-02x86/mm: Use IPIs to synchronize LAM enablementYosry Ahmed
LAM can only be enabled when a process is single-threaded. But _kernel_ threads can temporarily use a single-threaded process's mm. If LAM is enabled by a userspace process while a kthread is using its mm, the kthread will not observe LAM enablement (i.e. LAM will be disabled in CR3). This could be fine for the kthread itself, as LAM only affects userspace addresses. However, if the kthread context switches to a thread in the same userspace process, CR3 may or may not be updated because the mm_struct doesn't change (based on pending TLB flushes). If CR3 is not updated, the userspace thread will run incorrectly with LAM disabled, which may cause page faults when using tagged addresses. Example scenario: CPU 1 CPU 2 /* kthread */ kthread_use_mm() /* user thread */ prctl_enable_tagged_addr() /* LAM enabled on CPU 2 */ /* LAM disabled on CPU 1 */ context_switch() /* to CPU 1 */ /* Switching to user thread */ switch_mm_irqs_off() /* CR3 not updated */ /* LAM is still disabled on CPU 1 */ Synchronize LAM enablement by sending an IPI to all CPUs running with the mm_struct to enable LAM. This makes sure LAM is enabled on CPU 1 in the above scenario before prctl_enable_tagged_addr() returns and userspace starts using tagged addresses, and before it's possible to run the userspace process on CPU 1. In switch_mm_irqs_off(), move reading the LAM mask until after mm_cpumask() is updated. This ensures that if an outdated LAM mask is written to CR3, an IPI is received to update it right after IRQs are re-enabled. [ dhansen: Add a LAM enabling helper and comment it ] Fixes: 82721d8b25d7 ("x86/mm: Handle LAM on context switch") Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Link: https://lore.kernel.org/all/20240702132139.3332013-2-yosryahmed%40google.com
2024-03-14Merge tag 'mm-stable-2024-03-13-20-04' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames from hotplugged memory rather than only from main memory. Series "implement "memmap on memory" feature on s390". - More folio conversions from Matthew Wilcox in the series "Convert memcontrol charge moving to use folios" "mm: convert mm counter to take a folio" - Chengming Zhou has optimized zswap's rbtree locking, providing significant reductions in system time and modest but measurable reductions in overall runtimes. The series is "mm/zswap: optimize the scalability of zswap rb-tree". - Chengming Zhou has also provided the series "mm/zswap: optimize zswap lru list" which provides measurable runtime benefits in some swap-intensive situations. - And Chengming Zhou further optimizes zswap in the series "mm/zswap: optimize for dynamic zswap_pools". Measured improvements are modest. - zswap cleanups and simplifications from Yosry Ahmed in the series "mm: zswap: simplify zswap_swapoff()". - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has contributed several DAX cleanups as well as adding a sysfs tunable to control the memmap_on_memory setting when the dax device is hotplugged as system memory. - Johannes Weiner has added the large series "mm: zswap: cleanups", which does that. - More DAMON work from SeongJae Park in the series "mm/damon: make DAMON debugfs interface deprecation unignorable" "selftests/damon: add more tests for core functionalities and corner cases" "Docs/mm/damon: misc readability improvements" "mm/damon: let DAMOS feeds and tame/auto-tune itself" - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs extension" Rakie Kim has developed a new mempolicy interleaving policy wherein we allocate memory across nodes in a weighted fashion rather than uniformly. This is beneficial in heterogeneous memory environments appearing with CXL. - Christophe Leroy has contributed some cleanup and consolidation work against the ARM pagetable dumping code in the series "mm: ptdump: Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute". - Luis Chamberlain has added some additional xarray selftesting in the series "test_xarray: advanced API multi-index tests". - Muhammad Usama Anjum has reworked the selftest code to make its human-readable output conform to the TAP ("Test Anything Protocol") format. Amongst other things, this opens up the use of third-party tools to parse and process out selftesting results. - Ryan Roberts has added fork()-time PTE batching of THP ptes in the series "mm/memory: optimize fork() with PTE-mapped THP". Mainly targeted at arm64, this significantly speeds up fork() when the process has a large number of pte-mapped folios. - David Hildenbrand also gets in on the THP pte batching game in his series "mm/memory: optimize unmap/zap with PTE-mapped THP". It implements batching during munmap() and other pte teardown situations. The microbenchmark improvements are nice. - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte mappings"). Kernel build times on arm64 improved nicely. Ryan's series "Address some contpte nits" provides some followup work. - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has fixed an obscure hugetlb race which was causing unnecessary page faults. He has also added a reproducer under the selftest code. - In the series "selftests/mm: Output cleanups for the compaction test", Mark Brown did what the title claims. - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring". - Even more zswap material from Nhat Pham. The series "fix and extend zswap kselftests" does as claimed. - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in our handling of DAX on archiecctures which have virtually aliasing data caches. The arm architecture is the main beneficiary. - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic improvements in worst-case mmap_lock hold times during certain userfaultfd operations. - Some page_owner enhancements and maintenance work from Oscar Salvador in his series "page_owner: print stacks and their outstanding allocations" "page_owner: Fixup and cleanup" - Uladzislau Rezki has contributed some vmalloc scalability improvements in his series "Mitigate a vmap lock contention". It realizes a 12x improvement for a certain microbenchmark. - Some kexec/crash cleanup work from Baoquan He in the series "Split crash out from kexec and clean up related config items". - Some zsmalloc maintenance work from Chengming Zhou in the series "mm/zsmalloc: fix and optimize objects/page migration" "mm/zsmalloc: some cleanup for get/set_zspage_mapping()" - Zi Yan has taught the MM to perform compaction on folios larger than order=0. This a step along the path to implementaton of the merging of large anonymous folios. The series is named "Enable >0 order folio memory compaction". - Christoph Hellwig has done quite a lot of cleanup work in the pagecache writeback code in his series "convert write_cache_pages() to an iterator". - Some modest hugetlb cleanups and speedups in Vishal Moola's series "Handle hugetlb faults under the VMA lock". - Zi Yan has changed the page splitting code so we can split huge pages into sizes other than order-0 to better utilize large folios. The series is named "Split a folio to any lower order folios". - David Hildenbrand has contributed the series "mm: remove total_mapcount()", a cleanup. - Matthew Wilcox has sought to improve the performance of bulk memory freeing in his series "Rearrange batched folio freeing". - Gang Li's series "hugetlb: parallelize hugetlb page init on boot" provides large improvements in bootup times on large machines which are configured to use large numbers of hugetlb pages. - Matthew Wilcox's series "PageFlags cleanups" does that. - Qi Zheng's series "minor fixes and supplement for ptdesc" does that also. S390 is affected. - Cleanups to our pagemap utility functions from Peter Xu in his series "mm/treewide: Replace pXd_large() with pXd_leaf()". - Nico Pache has fixed a few things with our hugepage selftests in his series "selftests/mm: Improve Hugepage Test Handling in MM Selftests". - Also, of course, many singleton patches to many things. Please see the individual changelogs for details. * tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits) mm/zswap: remove the memcpy if acomp is not sleepable crypto: introduce: acomp_is_async to expose if comp drivers might sleep memtest: use {READ,WRITE}_ONCE in memory scanning mm: prohibit the last subpage from reusing the entire large folio mm: recover pud_leaf() definitions in nopmd case selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements selftests/mm: skip uffd hugetlb tests with insufficient hugepages selftests/mm: dont fail testsuite due to a lack of hugepages mm/huge_memory: skip invalid debugfs new_order input for folio split mm/huge_memory: check new folio order when split a folio mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure mm: add an explicit smp_wmb() to UFFDIO_CONTINUE mm: fix list corruption in put_pages_list mm: remove folio from deferred split list before uncharging it filemap: avoid unnecessary major faults in filemap_fault() mm,page_owner: drop unnecessary check mm,page_owner: check for null stack_record before bumping its refcount mm: swap: fix race between free_swap_and_cache() and swapoff() mm/treewide: align up pXd_leaf() retval across archs mm/treewide: drop pXd_large() ...
2024-03-04x86/mm: always pass NULL as the first argument of switch_mm_irqs_off()Yosry Ahmed
The first argument of switch_mm_irqs_off() is unused by the x86 implementation. Make sure that x86 code never passes a non-NULL value to make this clear. Update the only non violating caller, switch_mm(). Link: https://lkml.kernel.org/r/20240222190911.1903054-2-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Suggested-by: Dave Hansen <dave.hansen@intel.com> Acked-by: Dave Hansen <dave.hansen@intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-04x86/mm: further clarify switch_mm_irqs_off() documentationYosry Ahmed
Commit accf6b23d1e5a ("x86/mm: clarify "prev" usage in switch_mm_irqs_off()") attempted to clarify x86's usage of the arguments passed by generic code, specifically the "prev" argument the is unused by x86. However, it could have done a better job with the comment above switch_mm_irqs_off(). Rewrite this comment according to Dave Hansen's suggestion. Link: https://lkml.kernel.org/r/20240222190911.1903054-1-yosryahmed@google.com Fixes: 3cfd6625a6cf ("x86/mm: clarify "prev" usage in switch_mm_irqs_off()") Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Suggested-by: Dave Hansen <dave.hansen@intel.com> Acked-by: Dave Hansen <dave.hansen@intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22x86/mm: clarify "prev" usage in switch_mm_irqs_off()Yosry Ahmed
In the x86 implementation of switch_mm_irqs_off(), we do not use the "prev" argument passed in by the caller, we use exclusively use "real_prev", which is cpu_tlbstate.loaded_mm. This is not obvious at the first sight. Furthermore, a comment describes a condition that happens when called with prev == next, but this should not affect the function in any way since prev is unused. Apparently, the comment is intended to clarify why we don't rely on prev == next to decide whether we need to update CR3, but again, it is not obvious. The comment also references the fact that leave_mm() calls with prev == NULL and tsk == NULL, but this also shouldn't matter because prev is unused and tsk is only used in one function which has a NULL check. Clarify things by renaming (prev -> unused) and (real_prev -> prev), also move and rewrite the comment as an explanation for why we don't rely on "prev" supplied by the caller in x86 code and use our own. Hopefully this makes reading the code easier. Link: https://lkml.kernel.org/r/20240126080644.1714297-2-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22x86/mm: delete unused cpu argument to leave_mm()Yosry Ahmed
The argument is unused since commit 3d28ebceaffa ("x86/mm: Rework lazy TLB to track the actual loaded mm"), delete it. Link: https://lkml.kernel.org/r/20240126080644.1714297-1-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-10x86/bugs: Rename CONFIG_PAGE_TABLE_ISOLATION => ↵Breno Leitao
CONFIG_MITIGATION_PAGE_TABLE_ISOLATION Step 4/10 of the namespace unification of CPU mitigations related Kconfig options. [ mingo: Converted new uses that got added since the series was posted. ] Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20231121160740.1249350-5-leitao@debian.org
2024-01-03arch/x86: Fix typosBjorn Helgaas
Fix typos, most reported by "codespell arch/x86". Only touches comments, no code changes. Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Link: https://lore.kernel.org/r/20240103004011.1758650-1-helgaas@kernel.org
2023-08-30Merge tag 'x86_mm_for_6.6-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 mm updates from Dave Hansen: "A pair of small x86/mm updates. The INVPCID one is purely a cleanup. The PAT one fixes a real issue, albeit a relatively obscure one (graphics device passthrough under Xen). The fix also makes the code much more readable. Summary: - Remove unnecessary "INVPCID single" feature tracking - Include PAT in page protection modify mask" * tag 'x86_mm_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm: Remove "INVPCID single" feature tracking x86/mm: Fix PAT bit missing from page protection modify mask
2023-08-18mmu_notifiers: rename invalidate_range notifierAlistair Popple
There are two main use cases for mmu notifiers. One is by KVM which uses mmu_notifier_invalidate_range_start()/end() to manage a software TLB. The other is to manage hardware TLBs which need to use the invalidate_range() callback because HW can establish new TLB entries at any time. Hence using start/end() can lead to memory corruption as these callbacks happen too soon/late during page unmap. mmu notifier users should therefore either use the start()/end() callbacks or the invalidate_range() callbacks. To make this usage clearer rename the invalidate_range() callback to arch_invalidate_secondary_tlbs() and update documention. Link: https://lkml.kernel.org/r/6f77248cd25545c8020a54b4e567e8b72be4dca1.1690292440.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Cc: Andrew Donnellan <ajd@linux.ibm.com> Cc: Chaitanya Kumar Borah <chaitanya.kumar.borah@intel.com> Cc: Frederic Barrat <fbarrat@linux.ibm.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kevin Tian <kevin.tian@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Nicolin Chen <nicolinc@nvidia.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Sean Christopherson <seanjc@google.com> Cc: SeongJae Park <sj@kernel.org> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Zhi Wang <zhi.wang.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18mmu_notifiers: call invalidate_range() when invalidating TLBsAlistair Popple
The invalidate_range() is going to become an architecture specific mmu notifier used to keep the TLB of secondary MMUs such as an IOMMU in sync with the CPU page tables. Currently it is called from separate code paths to the main CPU TLB invalidations. This can lead to a secondary TLB not getting invalidated when required and makes it hard to reason about when exactly the secondary TLB is invalidated. To fix this move the notifier call to the architecture specific TLB maintenance functions for architectures that have secondary MMUs requiring explicit software invalidations. This fixes a SMMU bug on ARM64. On ARM64 PTE permission upgrades require a TLB invalidation. This invalidation is done by the architecture specific ptep_set_access_flags() which calls flush_tlb_page() if required. However this doesn't call the notifier resulting in infinite faults being generated by devices using the SMMU if it has previously cached a read-only PTE in it's TLB. Moving the invalidations into the TLB invalidation functions ensures all invalidations happen at the same time as the CPU invalidation. The architecture specific flush_tlb_all() routines do not call the notifier as none of the IOMMUs require this. Link: https://lkml.kernel.org/r/0287ae32d91393a582897d6c4db6f7456b1001f2.1690292440.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Suggested-by: Jason Gunthorpe <jgg@ziepe.ca> Tested-by: SeongJae Park <sj@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Tested-by: Luis Chamberlain <mcgrof@kernel.org> Cc: Andrew Donnellan <ajd@linux.ibm.com> Cc: Chaitanya Kumar Borah <chaitanya.kumar.borah@intel.com> Cc: Frederic Barrat <fbarrat@linux.ibm.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kevin Tian <kevin.tian@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Nicolin Chen <nicolinc@nvidia.com> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Will Deacon <will@kernel.org> Cc: Zhi Wang <zhi.wang.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-03x86/mm: Remove "INVPCID single" feature trackingDave Hansen
From: Dave Hansen <dave.hansen@linux.intel.com> tl;dr: Replace a synthetic X86_FEATURE with a hardware X86_FEATURE and check of existing per-cpu state. == Background == There are three features in play here: 1. Good old Page Table Isolation (PTI) 2. Process Context IDentifiers (PCIDs) which allow entries from multiple address spaces to be in the TLB at once. 3. Support for the "Invalidate PCID" (INVPCID) instruction, specifically the "individual address" mode (aka. mode 0). When all *three* of these are in place, INVPCID can and should be used to flush out individual addresses in the PTI user address space. But there's a wrinkle or two: First, this INVPCID mode is dependent on CR4.PCIDE. Even if X86_FEATURE_INVPCID==1, the instruction may #GP without setting up CR4. Second, TLB flushing is done very early, even before CR4 is fully set up. That means even if PTI, PCID and INVPCID are supported, there is *still* a window where INVPCID can #GP. == Problem == The current code seems to work, but mostly by chance and there are a bunch of ways it can go wrong. It's also somewhat hard to follow since X86_FEATURE_INVPCID_SINGLE is set far away from its lone user. == Solution == Make "INVPCID single" more robust and easier to follow by placing all the logic in one place. Remove X86_FEATURE_INVPCID_SINGLE. Make two explicit checks before using INVPCID: 1. Check that the system supports INVPCID itself (boot_cpu_has()) 2. Then check the CR4.PCIDE shadow to ensures that the CPU can safely use INVPCID for individual address invalidation. The CR4 check *always* works and is not affected by any X86_FEATURE_* twiddling or inconsistencies between the boot and secondary CPUs. This has been tested on non-Meltdown hardware by using pti=on and then flipping PCID and INVPCID support with qemu. == Aside == How does this code even work today? By chance, I think. First, PTI is initialized around the same time that the boot CPU sets CR4.PCIDE=1. There are currently no TLB invalidations when PTI=1 but CR4.PCIDE=0. That means that the X86_FEATURE_INVPCID_SINGLE check is never even reached. this_cpu_has() is also very nasty to use in this context because the boot CPU reaches here before cpu_data(0) has been initialized. It happens to work for X86_FEATURE_INVPCID_SINGLE since it's a software-defined feature but it would fall over for a hardware- derived X86_FEATURE. Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20230718170630.7922E235%40davehans-spike.ostc.intel.com
2023-04-28Merge tag 'x86_mm_for_6.4' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 LAM (Linear Address Masking) support from Dave Hansen: "Add support for the new Linear Address Masking CPU feature. This is similar to ARM's Top Byte Ignore and allows userspace to store metadata in some bits of pointers without masking it out before use" * tag 'x86_mm_for_6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm/iommu/sva: Do not allow to set FORCE_TAGGED_SVA bit from outside x86/mm/iommu/sva: Fix error code for LAM enabling failure due to SVA selftests/x86/lam: Add test cases for LAM vs thread creation selftests/x86/lam: Add ARCH_FORCE_TAGGED_SVA test cases for linear-address masking selftests/x86/lam: Add inherit test cases for linear-address masking selftests/x86/lam: Add io_uring test cases for linear-address masking selftests/x86/lam: Add mmap and SYSCALL test cases for linear-address masking selftests/x86/lam: Add malloc and tag-bits test cases for linear-address masking x86/mm/iommu/sva: Make LAM and SVA mutually exclusive iommu/sva: Replace pasid_valid() helper with mm_valid_pasid() mm: Expose untagging mask in /proc/$PID/status x86/mm: Provide arch_prctl() interface for LAM x86/mm: Reduce untagged_addr() overhead for systems without LAM x86/uaccess: Provide untagged_addr() and remove tags before address check mm: Introduce untagged_addr_remote() x86/mm: Handle LAM on context switch x86: CPUID and CR3/CR4 flags for Linear Address Masking x86: Allow atomic MM_CONTEXT flags setting x86/mm: Rework address range check in get_user() and put_user()
2023-03-30docs: move x86 documentation into Documentation/arch/Jonathan Corbet
Move the x86 documentation under Documentation/arch/ as a way of cleaning up the top-level directory and making the structure of our docs more closely match the structure of the source directories it describes. All in-kernel references to the old paths have been updated. Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: linux-arch@vger.kernel.org Cc: x86@kernel.org Cc: Borislav Petkov <bp@alien8.de> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/lkml/20230315211523.108836-1-corbet@lwn.net/ Signed-off-by: Jonathan Corbet <corbet@lwn.net>