Age | Commit message (Collapse) | Author |
|
0-Day found a 34.6% regression in stress-ng's 'af-alg' test case, and
bisected it to commit b81fac906a8f ("x86/fpu: Move FPU initialization into
arch_cpu_finalize_init()"), which optimizes the FPU init order, and moves
the CR4_OSXSAVE enabling into a later place:
arch_cpu_finalize_init
identify_boot_cpu
identify_cpu
generic_identify
get_cpu_cap --> setup cpu capability
...
fpu__init_cpu
fpu__init_cpu_xstate
cr4_set_bits(X86_CR4_OSXSAVE);
As the FPU is not yet initialized the CPU capability setup fails to set
X86_FEATURE_OSXSAVE. Many security module like 'camellia_aesni_avx_x86_64'
depend on this feature and therefore fail to load, causing the regression.
Cure this by setting X86_FEATURE_OSXSAVE feature right after OSXSAVE
enabling.
[ tglx: Moved it into the actual BSP FPU initialization code and added a comment ]
Fixes: b81fac906a8f ("x86/fpu: Move FPU initialization into arch_cpu_finalize_init()")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/lkml/202307192135.203ac24e-oliver.sang@intel.com
Link: https://lore.kernel.org/lkml/20230823065747.92257-1-feng.tang@intel.com
|
|
The thread flag TIF_NEED_FPU_LOAD indicates that the FPU saved state is
valid and should be reloaded when returning to userspace. However, the
kernel will skip doing this if the FPU registers are already valid as
determined by fpregs_state_valid(). The logic embedded there considers
the state valid if two cases are both true:
1: fpu_fpregs_owner_ctx points to the current tasks FPU state
2: the last CPU the registers were live in was the current CPU.
This is usually correct logic. A CPU’s fpu_fpregs_owner_ctx is set to
the current FPU during the fpregs_restore_userregs() operation, so it
indicates that the registers have been restored on this CPU. But this
alone doesn’t preclude that the task hasn’t been rescheduled to a
different CPU, where the registers were modified, and then back to the
current CPU. To verify that this was not the case the logic relies on the
second condition. So the assumption is that if the registers have been
restored, AND they haven’t had the chance to be modified (by being
loaded on another CPU), then they MUST be valid on the current CPU.
Besides the lazy FPU optimizations, the other cases where the FPU
registers might not be valid are when the kernel modifies the FPU register
state or the FPU saved buffer. In this case the operation modifying the
FPU state needs to let the kernel know the correspondence has been
broken. The comment in “arch/x86/kernel/fpu/context.h” has:
/*
...
* If the FPU register state is valid, the kernel can skip restoring the
* FPU state from memory.
*
* Any code that clobbers the FPU registers or updates the in-memory
* FPU state for a task MUST let the rest of the kernel know that the
* FPU registers are no longer valid for this task.
*
* Either one of these invalidation functions is enough. Invalidate
* a resource you control: CPU if using the CPU for something else
* (with preemption disabled), FPU for the current task, or a task that
* is prevented from running by the current task.
*/
However, this is not completely true. When the kernel modifies the
registers or saved FPU state, it can only rely on
__fpu_invalidate_fpregs_state(), which wipes the FPU’s last_cpu
tracking. The exec path instead relies on fpregs_deactivate(), which sets
the CPU’s FPU context to NULL. This was observed to fail to restore the
reset FPU state to the registers when returning to userspace in the
following scenario:
1. A task is executing in userspace on CPU0
- CPU0’s FPU context points to tasks
- fpu->last_cpu=CPU0
2. The task exec()’s
3. While in the kernel the task is preempted
- CPU0 gets a thread executing in the kernel (such that no other
FPU context is activated)
- Scheduler sets task’s fpu->last_cpu=CPU0 when scheduling out
4. Task is migrated to CPU1
5. Continuing the exec(), the task gets to
fpu_flush_thread()->fpu_reset_fpregs()
- Sets CPU1’s fpu context to NULL
- Copies the init state to the task’s FPU buffer
- Sets TIF_NEED_FPU_LOAD on the task
6. The task reschedules back to CPU0 before completing the exec() and
returning to userspace
- During the reschedule, scheduler finds TIF_NEED_FPU_LOAD is set
- Skips saving the registers and updating task’s fpu→last_cpu,
because TIF_NEED_FPU_LOAD is the canonical source.
7. Now CPU0’s FPU context is still pointing to the task’s, and
fpu->last_cpu is still CPU0. So fpregs_state_valid() returns true even
though the reset FPU state has not been restored.
So the root cause is that exec() is doing the wrong kind of invalidate. It
should reset fpu->last_cpu via __fpu_invalidate_fpregs_state(). Further,
fpu__drop() doesn't really seem appropriate as the task (and FPU) are not
going away, they are just getting reset as part of an exec. So switch to
__fpu_invalidate_fpregs_state().
Also, delete the misleading comment that says that either kind of
invalidate will be enough, because it’s not always the case.
Fixes: 33344368cb08 ("x86/fpu: Clean up the fpu__clear() variants")
Reported-by: Lei Wang <lei4.wang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Lijun Pan <lijun.pan@intel.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Acked-by: Lijun Pan <lijun.pan@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230818170305.502891-1-rick.p.edgecombe@intel.com
|
|
Linux 6.5-rc7
This is needed for the CI stuff and the msm pull has fixes in it.
Signed-off-by: Dave Airlie <airlied@redhat.com>
|
|
CONFIG_HYPERV
When CONFIG_HYPERV is not set, arch/x86/hyperv/ivm.c is not built (see
arch/x86/Kbuild), so 'isolation_type_en_snp' in the ivm.c is not defined,
and this failure happens:
ld: arch/x86/kernel/cpu/mshyperv.o: in function `ms_hyperv_init_platform':
arch/x86/kernel/cpu/mshyperv.c:417: undefined reference to `isolation_type_en_snp'
Fix the failure by testing hv_get_isolation_type() and
ms_hyperv.paravisor_present for a fully enlightened SNP VM: when
CONFIG_HYPERV is not set, hv_get_isolation_type() is defined as a
static inline function that always returns HV_ISOLATION_TYPE_NONE
(see include/asm-generic/mshyperv.h), so the compiler won't generate any
code for the ms_hyperv.paravisor_present and static_branch_enable().
Reported-by: Tom Lendacky <thomas.lendacky@amd.com>
Closes: https://lore.kernel.org/lkml/b4979997-23b9-0c43-574e-e4a3506500ff@amd.com/
Fixes: d6e2d6524437 ("x86/hyperv: Add sev-snp enlightened guest static key")
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230823032008.18186-1-decui@microsoft.com
|
|
When building without CONFIG_AMD_MEM_ENCRYPT, there are several
repeated instances of -Wunused-function due to missing 'inline' on
the stub of hy_snp_boot_ap():
In file included from drivers/hv/hv_common.c:29:
./arch/x86/include/asm/mshyperv.h:272:12: error: 'hv_snp_boot_ap' defined but not used [-Werror=unused-function]
272 | static int hv_snp_boot_ap(int cpu, unsigned long start_ip) { return 0; }
| ^~~~~~~~~~~~~~
cc1: all warnings being treated as errors
Add 'inline' to fix the warnings.
Fixes: 44676bb9d566 ("x86/hyperv: Add smp support for SEV-SNP guest")
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230822-hv_snp_boot_ap-missing-inline-v1-1-e712dcb2da0f@kernel.org
|
|
__efi_call_virt() exists as an alternative for efi_call_virt() for the
sole reason that ResetSystem() returns void, and so we cannot use a call
to it in the RHS of an assignment.
Given that there is only a single user, let's drop the macro, and expand
it into the caller. That way, the remaining macro can be tightened
somewhat in terms of type safety too.
Note that the use of typeof() on the runtime service invocation does not
result in an actual call being made, but it does require a few pointer
types to be fixed up and converted into the proper function pointer
prototypes.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
Add Hyperv-specific handling for faults caused by VMMCALL
instructions.
Reviewed-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Tianyu Lan <tiala@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230818102919.1318039-9-ltykernel@gmail.com
|
|
In the AMD SEV-SNP guest, AP needs to be started up via sev es
save area and Hyper-V requires to call HVCALL_START_VP hypercall
to pass the gpa of sev es save area with AP's vp index and VTL(Virtual
trust level) parameters. Override wakeup_secondary_cpu_64 callback
with hv_snp_boot_ap.
Reviewed-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Tianyu Lan <tiala@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230818102919.1318039-8-ltykernel@gmail.com
|
|
enlightened guest
In sev-snp enlightened guest, Hyper-V hypercall needs
to use vmmcall to trigger vmexit and notify hypervisor
to handle hypercall request.
Signed-off-by: Tianyu Lan <tiala@microsoft.com>
Reviewed-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230818102919.1318039-6-ltykernel@gmail.com
|
|
hv vp assist page needs to be shared between SEV-SNP guest and Hyper-V.
So mark the page unencrypted in the SEV-SNP guest.
Reviewed-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Tianyu Lan <tiala@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230818102919.1318039-4-ltykernel@gmail.com
|
|
SEV-SNP guests on Hyper-V can run at multiple Virtual Trust
Levels (VTL). During boot, get the VTL at which we're running
using the GET_VP_REGISTERs hypercall, and save the value
for future use. Then during VMBus initialization, set the VTL
with the saved value as required in the VMBus init message.
Reviewed-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Tianyu Lan <tiala@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230818102919.1318039-3-ltykernel@gmail.com
|
|
Introduce static key isolation_type_en_snp for enlightened
sev-snp guest check.
Reviewed-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Tianyu Lan <tiala@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230818102919.1318039-2-ltykernel@gmail.com
|
|
On the parisc architecture, lockdep reports for all static objects which
are in the __initdata section (e.g. "setup_done" in devtmpfs,
"kthreadd_done" in init/main.c) this warning:
INFO: trying to register non-static key.
The warning itself is wrong, because those objects are in the __initdata
section, but the section itself is on parisc outside of range from
_stext to _end, which is why the static_obj() functions returns a wrong
answer.
While fixing this issue, I noticed that the whole existing check can
be simplified a lot.
Instead of checking against the _stext and _end symbols (which include
code areas too) just check for the .data and .bss segments (since we check a
data object). This can be done with the existing is_kernel_core_data()
macro.
In addition objects in the __initdata section can be checked with
init_section_contains(), and is_kernel_rodata() allows keys to be in the
_ro_after_init section.
This partly reverts and simplifies commit bac59d18c701 ("x86/setup: Fix static
memory detection").
Link: https://lkml.kernel.org/r/ZNqrLRaOi/3wPAdp@p100
Fixes: bac59d18c701 ("x86/setup: Fix static memory detection")
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In order to split struct ptdesc from struct page, convert various
functions to use ptdescs.
Some of the functions use the *get*page*() helper functions. Convert
these to use pagetable_alloc() and ptdesc_address() instead to help
standardize page tables further.
Link: https://lkml.kernel.org/r/20230807230513.102486-14-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Geert Uytterhoeven <geert+renesas@glider.be>
Cc: Guo Ren <guoren@kernel.org>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Palmer Dabbelt <palmer@rivosinc.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This removes some direct accesses to struct page, working towards
splitting out struct ptdesc from struct page.
Link: https://lkml.kernel.org/r/20230807230513.102486-7-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Geert Uytterhoeven <geert+renesas@glider.be>
Cc: Guo Ren <guoren@kernel.org>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Palmer Dabbelt <palmer@rivosinc.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Add support for memmap on memory feature on ppc64", v8.
This patch series update memmap on memory feature to fall back to
memmap allocation outside the memory block if the alignment rules are
not met. This makes the feature more useful on architectures like
ppc64 where alignment rules are different with 64K page size.
This patch (of 6):
Instead of adding menu entry with all supported architectures, add
mm/Kconfig variable and select the same from supported architectures.
No functional change in this patch.
Link: https://lkml.kernel.org/r/20230808091501.287660-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20230808091501.287660-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Making virt_to_pfn() a static inline taking a strongly typed
(const void *) makes the contract of a passing a pointer of that
type to the function explicit and exposes any misuse of the
macro virt_to_pfn() acting polymorphic and accepting many types
such as (void *), (unitptr_t) or (unsigned long) as arguments
without warnings.
Also fix all offending call sites to pass a (void *) rather
than an unsigned long. Since virt_to_mfn() is wrapping
virt_to_pfn() this function has become polymorphic as well
so the usage need to be fixed up.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20230810-virt-to-phys-x86-xen-v1-1-9e966d333e7a@linaro.org
Signed-off-by: Juergen Gross <jgross@suse.com>
|
|
After removing the conditional return from xen_create_contiguous_region(),
the accompanying comment was left in place, but it now precedes an
unrelated conditional and confuses readers.
Fixes: 989513a735f5 ("xen: cleanup pvh leftovers from pv-only sources")
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lore.kernel.org/r/20230802163151.1486-1-petrtesarik@huaweicloud.com
Signed-off-by: Juergen Gross <jgross@suse.com>
|
|
Cross-merge networking fixes after downstream PR.
Conflicts:
drivers/net/ethernet/sfc/tc.c
fa165e194997 ("sfc: don't unregister flow_indr if it was never registered")
3bf969e88ada ("sfc: add MAE table machinery for conntrack table")
https://lore.kernel.org/all/20230818112159.7430e9b4@canb.auug.org.au/
No adjacent changes.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Currently kcov instrument is disabled for object files under
arch/x86/kernel folder.
For object files under arch/x86/kernel, actually just disabling the kcov
instrument of files:"head32.o or head64.o and sev.o" could achieve
successful booting and provide kcov coverage for object files that do not
disable kcov instrument. The additional kcov coverage collected from
arch/x86/kernel folder helps kernel fuzzing efforts to find bugs.
Link to related improvement discussion is below:
https://groups.google.com/g/syzkaller/c/Dsl-RYGCqs8/m/x-tfpTyFBAAJ Related
ticket is as follow: https://bugzilla.kernel.org/show_bug.cgi?id=198443
Link: https://lkml.kernel.org/r/06c0bb7b5f61e5884bf31180e8c122648c752010.1690771380.git.pengfei.xu@intel.com
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Pengfei Xu <pengfei.xu@intel.com>
Cc: Aleksandr Nogikh <nogikh@google.com>
Cc: <heng.su@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Kees Cook <keescook@google.com>,
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The APIs that allow backtracing across CPUs have always had a way to
exclude the current CPU. This convenience means callers didn't need to
find a place to allocate a CPU mask just to handle the common case.
Let's extend the API to take a CPU ID to exclude instead of just a
boolean. This isn't any more complex for the API to handle and allows the
hardlockup detector to exclude a different CPU (the one it already did a
trace for) without needing to find space for a CPU mask.
Arguably, this new API also encourages safer behavior. Specifically if
the caller wants to avoid tracing the current CPU (maybe because they
already traced the current CPU) this makes it more obvious to the caller
that they need to make sure that the current CPU ID can't change.
[akpm@linux-foundation.org: fix trigger_allbutcpu_cpu_backtrace() stub]
Link: https://lkml.kernel.org/r/20230804065935.v4.1.Ia35521b91fc781368945161d7b28538f9996c182@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
range.h works with struct range data type. The resource_size_t
is an alien here.
(1) Move cap_resource() implementation into its only user, and
(2) rename and move RESOURCE_SIZE_MAX to limits.h.
Link: https://lkml.kernel.org/r/20230804064636.15368-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Alexander Sverdlin <alexander.sverdlin@nokia.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Replace custom implementation of the macros from args.h.
Link: https://lkml.kernel.org/r/20230718211147.18647-3-andriy.shevchenko@linux.intel.com
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Brendan Higgins <brendan.higgins@linux.dev>
Cc: Daniel Latypov <dlatypov@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Gow <davidgow@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lorenzo Pieralisi <lpieralisi@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The Kconfig refactor to consolidate KEXEC and CRASH options utilized
option names of the form ARCH_SUPPORTS_<option>. Thus rename the
ARCH_HAS_KEXEC_PURGATORY to ARCH_SUPPORTS_KEXEC_PURGATORY to follow
the same.
Link: https://lkml.kernel.org/r/20230712161545.87870-15-eric.devolder@oracle.com
Signed-off-by: Eric DeVolder <eric.devolder@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The kexec and crash kernel options are provided in the common
kernel/Kconfig.kexec. Utilize the common options and provide
the ARCH_SUPPORTS_ and ARCH_SELECTS_ entries to recreate the
equivalent set of KEXEC and CRASH options.
Link: https://lkml.kernel.org/r/20230712161545.87870-3-eric.devolder@oracle.com
Signed-off-by: Eric DeVolder <eric.devolder@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Arm disabled hugetlb vmemmap optimization [1] because hugetlb vmemmap
optimization includes an update of both the permissions (writeable to
read-only) and the output address (pfn) of the vmemmap ptes. That is not
supported without unmapping of pte(marking it invalid) by some
architectures.
With DAX vmemmap optimization we don't require such pte updates and
architectures can enable DAX vmemmap optimization while having hugetlb
vmemmap optimization disabled. Hence split DAX optimization support into
a different config.
s390, loongarch and riscv don't have devdax support. So the DAX config is
not enabled for them. With this change, arm64 should be able to select
DAX optimization
[1] commit 060a2c92d1b6 ("arm64: mm: hugetlb: Disable HUGETLB_PAGE_OPTIMIZE_VMEMMAP")
Link: https://lkml.kernel.org/r/20230724190759.483013-8-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Handle most file-backed faults under the VMA lock", v3.
This patchset adds the ability to handle page faults on parts of files
which are already in the page cache without taking the mmap lock.
This patch (of 10):
Provide lock_vma_under_rcu() when CONFIG_PER_VMA_LOCK is not defined to
eliminate ifdefs in the users.
Link: https://lkml.kernel.org/r/20230724185410.1124082-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20230724185410.1124082-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Cc: Arjun Roy <arjunroy@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There are two main use cases for mmu notifiers. One is by KVM which uses
mmu_notifier_invalidate_range_start()/end() to manage a software TLB.
The other is to manage hardware TLBs which need to use the
invalidate_range() callback because HW can establish new TLB entries at
any time. Hence using start/end() can lead to memory corruption as these
callbacks happen too soon/late during page unmap.
mmu notifier users should therefore either use the start()/end() callbacks
or the invalidate_range() callbacks. To make this usage clearer rename
the invalidate_range() callback to arch_invalidate_secondary_tlbs() and
update documention.
Link: https://lkml.kernel.org/r/6f77248cd25545c8020a54b4e567e8b72be4dca1.1690292440.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Andrew Donnellan <ajd@linux.ibm.com>
Cc: Chaitanya Kumar Borah <chaitanya.kumar.borah@intel.com>
Cc: Frederic Barrat <fbarrat@linux.ibm.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Nicolin Chen <nicolinc@nvidia.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The invalidate_range() is going to become an architecture specific mmu
notifier used to keep the TLB of secondary MMUs such as an IOMMU in sync
with the CPU page tables. Currently it is called from separate code paths
to the main CPU TLB invalidations. This can lead to a secondary TLB not
getting invalidated when required and makes it hard to reason about when
exactly the secondary TLB is invalidated.
To fix this move the notifier call to the architecture specific TLB
maintenance functions for architectures that have secondary MMUs requiring
explicit software invalidations.
This fixes a SMMU bug on ARM64. On ARM64 PTE permission upgrades require
a TLB invalidation. This invalidation is done by the architecture
specific ptep_set_access_flags() which calls flush_tlb_page() if required.
However this doesn't call the notifier resulting in infinite faults being
generated by devices using the SMMU if it has previously cached a
read-only PTE in it's TLB.
Moving the invalidations into the TLB invalidation functions ensures all
invalidations happen at the same time as the CPU invalidation. The
architecture specific flush_tlb_all() routines do not call the notifier as
none of the IOMMUs require this.
Link: https://lkml.kernel.org/r/0287ae32d91393a582897d6c4db6f7456b1001f2.1690292440.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Suggested-by: Jason Gunthorpe <jgg@ziepe.ca>
Tested-by: SeongJae Park <sj@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Tested-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Andrew Donnellan <ajd@linux.ibm.com>
Cc: Chaitanya Kumar Borah <chaitanya.kumar.borah@intel.com>
Cc: Frederic Barrat <fbarrat@linux.ibm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Nicolin Chen <nicolinc@nvidia.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently we'll flush the mm in flush_tlb_batched_pending() to avoid race
between reclaim unmaps pages by batched TLB flush and mprotect/munmap/etc.
Other architectures like arm64 may only need a synchronization
barrier(dsb) here rather than a full mm flush. So add
arch_flush_tlb_batched_pending() to allow an arch-specific implementation
here. This intends no functional changes on x86 since still a full mm
flush for x86.
Link: https://lkml.kernel.org/r/20230717131004.12662-4-yangyicong@huawei.com
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Barry Song <baohua@kernel.org>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Darren Hart <darren@os.amperecomputing.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: lipeifeng <lipeifeng@oppo.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Xin Hao <xhao@linux.alibaba.com>
Cc: Zeng Tao <prime.zeng@hisilicon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This patch does some preparation works to extend batched TLB flush to
arm64. Including:
- Extend set_tlb_ubc_flush_pending() and arch_tlbbatch_add_mm()
to accept an additional argument for address, architectures
like arm64 may need this for tlbi.
- Rename arch_tlbbatch_add_mm() to arch_tlbbatch_add_pending()
to match its current function since we don't need to handle
mm on architectures like arm64 and add_mm is not proper,
add_pending will make sense to both as on x86 we're pending the
TLB flush operations while on arm64 we're pending the synchronize
operations.
This intends no functional changes on x86.
Link: https://lkml.kernel.org/r/20230717131004.12662-3-yangyicong@huawei.com
Tested-by: Yicong Yang <yangyicong@hisilicon.com>
Tested-by: Xin Hao <xhao@linux.alibaba.com>
Tested-by: Punit Agrawal <punit.agrawal@bytedance.com>
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Nadav Amit <namit@vmware.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Barry Song <baohua@kernel.org>
Cc: Darren Hart <darren@os.amperecomputing.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: lipeifeng <lipeifeng@oppo.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zeng Tao <prime.zeng@hisilicon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "arm64: support batched/deferred tlb shootdown during page
reclamation/migration", v11.
Though ARM64 has the hardware to do tlb shootdown, the hardware
broadcasting is not free. A simplest micro benchmark shows even on
snapdragon 888 with only 8 cores, the overhead for ptep_clear_flush is
huge even for paging out one page mapped by only one process: 5.36% a.out
[kernel.kallsyms] [k] ptep_clear_flush
While pages are mapped by multiple processes or HW has more CPUs, the cost
should become even higher due to the bad scalability of tlb shootdown.
The same benchmark can result in 16.99% CPU consumption on ARM64 server
with around 100 cores according to the test on patch 4/4.
This patchset leverages the existing BATCHED_UNMAP_TLB_FLUSH by
1. only send tlbi instructions in the first stage -
arch_tlbbatch_add_mm()
2. wait for the completion of tlbi by dsb while doing tlbbatch
sync in arch_tlbbatch_flush()
Testing on snapdragon shows the overhead of ptep_clear_flush is removed by
the patchset. The micro benchmark becomes 5% faster even for one page
mapped by single process on snapdragon 888.
Since BATCHED_UNMAP_TLB_FLUSH is implemented only on x86, the patchset
does some renaming/extension for the current implementation first (Patch
1-3), then add the support on arm64 (Patch 4).
This patch (of 4):
The entire scheme of deferred TLB flush in reclaim path rests on the fact
that the cost to refill TLB entries is less than flushing out individual
entries by sending IPI to remote CPUs. But architecture can have
different ways to evaluate that. Hence apart from checking
TTU_BATCH_FLUSH in the TTU flags, rest of the decision should be
architecture specific.
[yangyicong@hisilicon.com: rebase and fix incorrect return value type]
Link: https://lkml.kernel.org/r/20230717131004.12662-1-yangyicong@huawei.com
Link: https://lkml.kernel.org/r/20230717131004.12662-2-yangyicong@huawei.com
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
[https://lore.kernel.org/linuxppc-dev/20171101101735.2318-2-khandual@linux.vnet.ibm.com/]
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Reviewed-by: Xin Hao <xhao@linux.alibaba.com>
Tested-by: Punit Agrawal <punit.agrawal@bytedance.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Darren Hart <darren@os.amperecomputing.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: lipeifeng <lipeifeng@oppo.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zeng Tao <prime.zeng@hisilicon.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nadav Amit <namit@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: ioremap: Convert architectures to take GENERIC_IOREMAP
way", v8.
Motivation and implementation:
==============================
Currently, many architecutres have't taken the standard GENERIC_IOREMAP
way to implement ioremap_prot(), iounmap(), and ioremap_xx(), but make
these functions specifically under each arch's folder. Those cause many
duplicated code of ioremap() and iounmap().
In this patchset, firstly introduce generic_ioremap_prot() and
generic_iounmap() to extract the generic code for GENERIC_IOREMAP. By
taking GENERIC_IOREMAP method, the generic generic_ioremap_prot(),
generic_iounmap(), and their generic wrapper ioremap_prot(), ioremap() and
iounmap() are all visible and available to arch. Arch needs to provide
wrapper functions to override the generic version if there's arch specific
handling in its corresponding ioremap_prot(), ioremap() or iounmap().
With these changes, duplicated ioremap/iounmap() code uder ARCH-es are
removed, and the equivalent functioality is kept as before.
Background info:
================
1) The converting more architectures to take GENERIC_IOREMAP way is
suggested by Christoph in below discussion:
https://lore.kernel.org/all/Yp7h0Jv6vpgt6xdZ@infradead.org/T/#u
2) In the previous v1 to v3, it's basically further action after arm64
has converted to GENERIC_IOREMAP way in below patchset. It's done by
adding hook ioremap_allowed() and iounmap_allowed() in ARCH to add ARCH
specific handling the middle of ioremap_prot() and iounmap().
[PATCH v5 0/6] arm64: Cleanup ioremap() and support ioremap_prot()
https://lore.kernel.org/all/20220607125027.44946-1-wangkefeng.wang@huawei.com/T/#u
Later, during v3 reviewing, Christophe Leroy suggested to introduce
generic_ioremap_prot() and generic_iounmap() to generic codes, and ARCH
can provide wrapper function ioremap_prot(), ioremap() or iounmap() if
needed. Christophe made a RFC patchset as below to specially demonstrate
his idea. This is what v4 and now v5 is doing.
[RFC PATCH 0/8] mm: ioremap: Convert architectures to take GENERIC_IOREMAP way
https://lore.kernel.org/all/cover.1665568707.git.christophe.leroy@csgroup.eu/T/#u
Testing:
========
In v8, I only applied this patchset onto the latest linus's tree to build
and run on arm64 and s390.
This patch (of 19):
Let's use '#define ioremap_xx' and "#ifdef ioremap_xx" instead.
To remove defined ARCH_HAS_IOREMAP_xx macros in <asm/io.h> of each ARCH,
the ARCH's own ioremap_wc|wt|np definition need be above "#include
<asm-generic/iomap.h>. Otherwise the redefinition error would be seen
during compiling. So the relevant adjustments are made to avoid compiling
error:
loongarch:
- doesn't include <asm-generic/iomap.h>, defining ARCH_HAS_IOREMAP_WC
is redundant, so simply remove it.
m68k:
- selected GENERIC_IOMAP, <asm-generic/iomap.h> has been added in
<asm-generic/io.h>, and <asm/kmap.h> is included above
<asm-generic/iomap.h>, so simply remove ARCH_HAS_IOREMAP_WT defining.
mips:
- move "#include <asm-generic/iomap.h>" below ioremap_wc definition
in <asm/io.h>
powerpc:
- remove "#include <asm-generic/iomap.h>" in <asm/io.h> because it's
duplicated with the one in <asm-generic/io.h>, let's rely on the
latter.
x86:
- selected GENERIC_IOMAP, remove #include <asm-generic/iomap.h> in
the middle of <asm/io.h>. Let's rely on <asm-generic/io.h>.
Link: https://lkml.kernel.org/r/20230706154520.11257-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: Helge Deller <deller@gmx.de>
Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Niklas Schnelle <schnelle@linux.ibm.com>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Brian Cain <bcain@quicinc.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Remove unused addr in __page_table_check_pud_set and
page_table_check_pud_set.
Link: https://lkml.kernel.org/r/20230713172636.1705415-9-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Remove unused addr in __page_table_check_pmd_set and
page_table_check_pmd_set.
Link: https://lkml.kernel.org/r/20230713172636.1705415-8-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Remove unused addr in __page_table_check_pte_set and
page_table_check_pte_set.
Link: https://lkml.kernel.org/r/20230713172636.1705415-7-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Remove unused addr in __page_table_check_pud_clear and
page_table_check_pud_clear.
Link: https://lkml.kernel.org/r/20230713172636.1705415-6-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Remove unused addr in page_table_check_pmd_clear and
__page_table_check_pmd_clear.
Link: https://lkml.kernel.org/r/20230713172636.1705415-5-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Remove unused addr in page_table_check_pte_clear and
__page_table_check_pte_clear.
Link: https://lkml.kernel.org/r/20230713172636.1705415-4-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The Instruction Fetch (IF) units on current AMD Zen-based systems do not
guarantee a synchronous #MC is delivered for poison consumption errors.
Therefore, MCG_STATUS[EIPV|RIPV] will not be set. However, the
microarchitecture does guarantee that the exception is delivered within
the same context. In other words, the exact rIP is not known, but the
context is known to not have changed.
There is no architecturally-defined method to determine this behavior.
The Code Segment (CS) register is always valid on such IF unit poison
errors regardless of the value of MCG_STATUS[EIPV|RIPV].
Add a quirk to save the CS register for poison consumption from the IF
unit banks.
This is needed to properly determine the context of the error.
Otherwise, the severity grading function will assume the context is
IN_KERNEL due to the m->cs value being 0 (the initialized value). This
leads to unnecessary kernel panics on data poison errors due to the
kernel believing the poison consumption occurred in kernel context.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230814200853.29258-1-yazen.ghannam@amd.com
|
|
Specify how is SRSO mitigated when SMT is disabled. Also, correct the
SMT check for that.
Fixes: e9fbc47b818b ("x86/srso: Disable the mitigation on unaffected configurations")
Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20230814200813.p5czl47zssuej7nv@treble
|
|
Now that KVM has a framework for caching guest CPUID feature flags, add
a "rule" that IRQs must be enabled when doing guest CPUID lookups, and
enforce the rule via a lockdep assertion. CPUID lookups are slow, and
within KVM, IRQs are only ever disabled in hot paths, e.g. the core run
loop, fast page fault handling, etc. I.e. querying guest CPUID with IRQs
disabled, especially in the run loop, should be avoided.
Link: https://lore.kernel.org/r/20230815203653.519297-16-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Track "virtual NMI exposed to L1" via a governed feature flag instead of
using a dedicated bit/flag in vcpu_svm.
Note, checking KVM's capabilities instead of the "vnmi" param means that
the code isn't strictly equivalent, as vnmi_enabled could have been set
if nested=false where as that the governed feature cannot. But that's a
glorified nop as the feature/flag is consumed only by paths that are
gated by nSVM being enabled.
Link: https://lore.kernel.org/r/20230815203653.519297-15-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Track "virtual GIF exposed to L1" via a governed feature flag instead of
using a dedicated bit/flag in vcpu_svm.
Note, checking KVM's capabilities instead of the "vgif" param means that
the code isn't strictly equivalent, as vgif_enabled could have been set
if nested=false where as that the governed feature cannot. But that's a
glorified nop as the feature/flag is consumed only by paths that are
Link: https://lore.kernel.org/r/20230815203653.519297-14-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Track "Pause Filtering is exposed to L1" via governed feature flags
instead of using dedicated bits/flags in vcpu_svm.
No functional change intended.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-13-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Track "LBR virtualization exposed to L1" via a governed feature flag
instead of using a dedicated bit/flag in vcpu_svm.
Note, checking KVM's capabilities instead of the "lbrv" param means that
the code isn't strictly equivalent, as lbrv_enabled could have been set
if nested=false where as that the governed feature cannot. But that's a
glorified nop as the feature/flag is consumed only by paths that are
gated by nSVM being enabled.
Link: https://lore.kernel.org/r/20230815203653.519297-12-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Track "virtual VMSAVE/VMLOAD exposed to L1" via a governed feature flag
instead of using a dedicated bit/flag in vcpu_svm.
Opportunistically add a comment explaining why KVM disallows virtual
VMLOAD/VMSAVE when the vCPU model is Intel.
No functional change intended.
Link: https://lore.kernel.org/r/20230815203653.519297-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Track "TSC scaling exposed to L1" via a governed feature flag instead of
using a dedicated bit/flag in vcpu_svm.
Note, this fixes a benign bug where KVM would mark TSC scaling as exposed
to L1 even if overall nested SVM supported is disabled, i.e. KVM would let
L1 write MSR_AMD64_TSC_RATIO even when KVM didn't advertise TSCRATEMSR
support to userspace.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Track "NRIPS exposed to L1" via a governed feature flag instead of using
a dedicated bit/flag in vcpu_svm.
No functional change intended.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Track "VMX exposed to L1" via a governed feature flag instead of using a
dedicated helper to provide the same functionality. The main goal is to
drive convergence between VMX and SVM with respect to querying features
that are controllable via module param (SVM likes to cache nested
features), avoiding the guest CPUID lookups at runtime is just a bonus
and unlikely to provide any meaningful performance benefits.
Note, X86_FEATURE_VMX is set in kvm_cpu_caps if and only if "nested" is
true, and the CPU obviously supports VMX if KVM+VMX is running. I.e. the
check on "nested" is now implicitly down by the kvm_cpu_cap_has() check
in kvm_governed_feature_check_and_set().
No functional change intended.
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Reviwed-by: Kai Huang <kai.huang@intel.com>
Link: https://lore.kernel.org/r/20230815203653.519297-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|