summaryrefslogtreecommitdiff
path: root/arch/x86
AgeCommit message (Collapse)Author
2018-05-26Merge branch 'x86-pti-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 store buffer fixes from Thomas Gleixner: "Two fixes for the SSBD mitigation code: - expose SSBD properly to guests. This got broken when the CPU feature flags got reshuffled. - simplify the CPU detection logic to avoid duplicate entries in the tables" * 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/speculation: Simplify the CPU bug detection logic KVM/VMX: Expose SSBD properly to guests
2018-05-26Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull KVM fixes from Radim Krčmář: "PPC: - Close a hole which could possibly lead to the host timebase getting out of sync. - Three fixes relating to PTEs and TLB entries for radix guests. - Fix a bug which could lead to an interrupt never getting delivered to the guest, if it is pending for a guest vCPU when the vCPU gets offlined. s390: - Fix false negatives in VSIE validity check (Cc stable) x86: - Fix time drift of VMX preemption timer when a guest uses LAPIC timer in periodic mode (Cc stable) - Unconditionally expose CPUID.IA32_ARCH_CAPABILITIES to allow migration from hosts that don't need retpoline mitigation (Cc stable) - Fix guest crashes on reboot by properly coupling CR4.OSXSAVE and CPUID.OSXSAVE (Cc stable) - Report correct RIP after Hyper-V hypercall #UD (introduced in -rc6)" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: x86: fix #UD address of failed Hyper-V hypercalls kvm: x86: IA32_ARCH_CAPABILITIES is always supported KVM: x86: Update cpuid properly when CR4.OSXAVE or CR4.PKE is changed x86/kvm: fix LAPIC timer drift when guest uses periodic mode KVM: s390: vsie: fix < 8k check for the itdba KVM: PPC: Book 3S HV: Do ptesync in radix guest exit path KVM: PPC: Book3S HV: XIVE: Resend re-routed interrupts on CPU priority change KVM: PPC: Book3S HV: Make radix clear pte when unmapping KVM: PPC: Book3S HV: Make radix use correct tlbie sequence in kvmppc_radix_tlbie_page KVM: PPC: Book3S HV: Snapshot timebase offset on guest entry
2018-05-25KVM: x86: fix #UD address of failed Hyper-V hypercallsRadim Krčmář
If the hypercall was called from userspace or real mode, KVM injects #UD and then advances RIP, so it looks like #UD was caused by the following instruction. This probably won't cause more than confusion, but could give an unexpected access to guest OS' instruction emulator. Also, refactor the code to count hv hypercalls that were handled by the virt userspace. Fixes: 6356ee0c9602 ("x86: Delay skip of emulated hypercall instruction") Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24kvm: x86: IA32_ARCH_CAPABILITIES is always supportedJim Mattson
If there is a possibility that a VM may migrate to a Skylake host, then the hypervisor should report IA32_ARCH_CAPABILITIES.RSBA[bit 2] as being set (future work, of course). This implies that CPUID.(EAX=7,ECX=0):EDX.ARCH_CAPABILITIES[bit 29] should be set. Therefore, kvm should report this CPUID bit as being supported whether or not the host supports it. Userspace is still free to clear the bit if it chooses. For more information on RSBA, see Intel's white paper, "Retpoline: A Branch Target Injection Mitigation" (Document Number 337131-001), currently available at https://bugzilla.kernel.org/show_bug.cgi?id=199511. Since the IA32_ARCH_CAPABILITIES MSR is emulated in kvm, there is no dependency on hardware support for this feature. Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Fixes: 28c1c9fabf48 ("KVM/VMX: Emulate MSR_IA32_ARCH_CAPABILITIES") Cc: stable@vger.kernel.org Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24KVM: x86: Update cpuid properly when CR4.OSXAVE or CR4.PKE is changedWei Huang
The CPUID bits of OSXSAVE (function=0x1) and OSPKE (func=0x7, leaf=0x0) allows user apps to detect if OS has set CR4.OSXSAVE or CR4.PKE. KVM is supposed to update these CPUID bits when CR4 is updated. Current KVM code doesn't handle some special cases when updates come from emulator. Here is one example: Step 1: guest boots Step 2: guest OS enables XSAVE ==> CR4.OSXSAVE=1 and CPUID.OSXSAVE=1 Step 3: guest hot reboot ==> QEMU reset CR4 to 0, but CPUID.OSXAVE==1 Step 4: guest os checks CPUID.OSXAVE, detects 1, then executes xgetbv Step 4 above will cause an #UD and guest crash because guest OS hasn't turned on OSXAVE yet. This patch solves the problem by comparing the the old_cr4 with cr4. If the related bits have been changed, kvm_update_cpuid() needs to be called. Signed-off-by: Wei Huang <wei@redhat.com> Reviewed-by: Bandan Das <bsd@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-24x86/kvm: fix LAPIC timer drift when guest uses periodic modeDavid Vrabel
Since 4.10, commit 8003c9ae204e (KVM: LAPIC: add APIC Timer periodic/oneshot mode VMX preemption timer support), guests using periodic LAPIC timers (such as FreeBSD 8.4) would see their timers drift significantly over time. Differences in the underlying clocks and numerical errors means the periods of the two timers (hv and sw) are not the same. This difference will accumulate with every expiry resulting in a large error between the hv and sw timer. This means the sw timer may be running slow when compared to the hv timer. When the timer is switched from hv to sw, the now active sw timer will expire late. The guest VCPU is reentered and it switches to using the hv timer. This timer catches up, injecting multiple IRQs into the guest (of which the guest only sees one as it does not get to run until the hv timer has caught up) and thus the guest's timer rate is low (and becomes increasing slower over time as the sw timer lags further and further behind). I believe a similar problem would occur if the hv timer is the slower one, but I have not observed this. Fix this by synchronizing the deadlines for both timers to the same time source on every tick. This prevents the errors from accumulating. Fixes: 8003c9ae204e21204e49816c5ea629357e283b06 Cc: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: David Vrabel <david.vrabel@nutanix.com> Cc: stable@vger.kernel.org Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-05-23x86/speculation: Simplify the CPU bug detection logicDominik Brodowski
Only CPUs which speculate can speculate. Therefore, it seems prudent to test for cpu_no_speculation first and only then determine whether a specific speculating CPU is susceptible to store bypass speculation. This is underlined by all CPUs currently listed in cpu_no_speculation were present in cpu_no_spec_store_bypass as well. Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: bp@suse.de Cc: konrad.wilk@oracle.com Link: https://lkml.kernel.org/r/20180522090539.GA24668@light.dominikbrodowski.net
2018-05-23KVM/VMX: Expose SSBD properly to guestsKonrad Rzeszutek Wilk
The X86_FEATURE_SSBD is an synthetic CPU feature - that is it bit location has no relevance to the real CPUID 0x7.EBX[31] bit position. For that we need the new CPU feature name. Fixes: 52817587e706 ("x86/cpufeatures: Disentangle SSBD enumeration") Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: kvm@vger.kernel.org Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: stable@vger.kernel.org Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Link: https://lkml.kernel.org/r/20180521215449.26423-2-konrad.wilk@oracle.com
2018-05-21Merge branch 'speck-v20' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Merge speculative store buffer bypass fixes from Thomas Gleixner: - rework of the SPEC_CTRL MSR management to accomodate the new fancy SSBD (Speculative Store Bypass Disable) bit handling. - the CPU bug and sysfs infrastructure for the exciting new Speculative Store Bypass 'feature'. - support for disabling SSB via LS_CFG MSR on AMD CPUs including Hyperthread synchronization on ZEN. - PRCTL support for dynamic runtime control of SSB - SECCOMP integration to automatically disable SSB for sandboxed processes with a filter flag for opt-out. - KVM integration to allow guests fiddling with SSBD including the new software MSR VIRT_SPEC_CTRL to handle the LS_CFG based oddities on AMD. - BPF protection against SSB .. this is just the core and x86 side, other architecture support will come separately. * 'speck-v20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (49 commits) bpf: Prevent memory disambiguation attack x86/bugs: Rename SSBD_NO to SSB_NO KVM: SVM: Implement VIRT_SPEC_CTRL support for SSBD x86/speculation, KVM: Implement support for VIRT_SPEC_CTRL/LS_CFG x86/bugs: Rework spec_ctrl base and mask logic x86/bugs: Remove x86_spec_ctrl_set() x86/bugs: Expose x86_spec_ctrl_base directly x86/bugs: Unify x86_spec_ctrl_{set_guest,restore_host} x86/speculation: Rework speculative_store_bypass_update() x86/speculation: Add virtualized speculative store bypass disable support x86/bugs, KVM: Extend speculation control for VIRT_SPEC_CTRL x86/speculation: Handle HT correctly on AMD x86/cpufeatures: Add FEATURE_ZEN x86/cpufeatures: Disentangle SSBD enumeration x86/cpufeatures: Disentangle MSR_SPEC_CTRL enumeration from IBRS x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP KVM: SVM: Move spec control call after restore of GS x86/cpu: Make alternative_msr_write work for 32-bit code x86/bugs: Fix the parameters alignment and missing void x86/bugs: Make cpu_show_common() static ...
2018-05-20Merge branch 'x86-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Thomas Gleixner: "An unfortunately larger set of fixes, but a large portion is selftests: - Fix the missing clusterid initializaiton for x2apic cluster management which caused boot failures due to IPIs being sent to the wrong cluster - Drop TX_COMPAT when a 64bit executable is exec()'ed from a compat task - Wrap access to __supported_pte_mask in __startup_64() where clang compile fails due to a non PC relative access being generated. - Two fixes for 5 level paging fallout in the decompressor: - Handle GOT correctly for paging_prepare() and cleanup_trampoline() - Fix the page table handling in cleanup_trampoline() to avoid page table corruption. - Stop special casing protection key 0 as this is inconsistent with the manpage and also inconsistent with the allocation map handling. - Override the protection key wen moving away from PROT_EXEC to prevent inaccessible memory. - Fix and update the protection key selftests to address breakage and to cover the above issue - Add a MOV SS self test" [ Part of the x86 fixes were in the earlier core pull due to dependencies ] * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits) x86/mm: Drop TS_COMPAT on 64-bit exec() syscall x86/apic/x2apic: Initialize cluster ID properly x86/boot/compressed/64: Fix moving page table out of trampoline memory x86/boot/compressed/64: Set up GOT for paging_prepare() and cleanup_trampoline() x86/pkeys: Do not special case protection key 0 x86/pkeys/selftests: Add a test for pkey 0 x86/pkeys/selftests: Save off 'prot' for allocations x86/pkeys/selftests: Fix pointer math x86/pkeys: Override pkey when moving away from PROT_EXEC x86/pkeys/selftests: Fix pkey exhaustion test off-by-one x86/pkeys/selftests: Add PROT_EXEC test x86/pkeys/selftests: Factor out "instruction page" x86/pkeys/selftests: Allow faults on unknown keys x86/pkeys/selftests: Avoid printf-in-signal deadlocks x86/pkeys/selftests: Remove dead debugging code, fix dprint_in_signal x86/pkeys/selftests: Stop using assert() x86/pkeys/selftests: Give better unexpected fault error messages x86/selftests: Add mov_to_ss test x86/mpx/selftests: Adjust the self-test to fresh distros that export the MPX ABI x86/pkeys/selftests: Adjust the self-test to fresh distros that export the pkeys ABI ...
2018-05-20Merge branch 'ras-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull RAS fix from Thomas Gleixner: "Fix a regression in the new AMD SMCA code which issues an SMP function call from the early interrupt disabled region of CPU hotplug. To avoid that, use cached block addresses which can be used directly" * 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/MCE/AMD: Cache SMCA MISC block addresses
2018-05-20Merge branch 'efi-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull EFI fixes from Thomas Gleixner: - Use explicitely sized type for the romimage pointer in the 32bit EFI protocol struct so a 64bit kernel does not expand it to 64bit. Ditto for the 64bit struct to avoid the reverse issue on 32bit kernels. - Handle randomized tex offset correctly in the ARM64 EFI stub to avoid unaligned data resulting in stack corruption and other hard to diagnose wreckage. * 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: efi/libstub/arm64: Handle randomized TEXT_OFFSET efi: Avoid potential crashes, fix the 'struct efi_pci_io_protocol_32' definition for mixed mode
2018-05-20Merge branch 'core-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core fixes from Thomas Gleixner: - Unbreak the BPF compilation which got broken by the unconditional requirement of asm-goto, which is not supported by clang. - Prevent probing on exception masking instructions in uprobes and kprobes to avoid the issues of the delayed exceptions instead of having an ugly workaround. - Prevent a double free_page() in the error path of do_kexec_load() - A set of objtool updates addressing various issues mostly related to switch tables and the noreturn detection for recursive sibling calls - Header sync for tools. * 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: objtool: Detect RIP-relative switch table references, part 2 objtool: Detect RIP-relative switch table references objtool: Support GCC 8 switch tables objtool: Support GCC 8's cold subfunctions objtool: Fix "noreturn" detection for recursive sibling calls objtool, kprobes/x86: Sync the latest <asm/insn.h> header with tools/objtool/arch/x86/include/asm/insn.h x86/cpufeature: Guard asm_volatile_goto usage for BPF compilation uprobes/x86: Prohibit probing on MOV SS instruction kprobes/x86: Prohibit probing on exception masking instructions x86/kexec: Avoid double free_page() upon do_kexec_load() failure
2018-05-19x86/MCE/AMD: Cache SMCA MISC block addressesBorislav Petkov
... into a global, two-dimensional array and service subsequent reads from that cache to avoid rdmsr_on_cpu() calls during CPU hotplug (IPIs with IRQs disabled). In addition, this fixes a KASAN slab-out-of-bounds read due to wrong usage of the bank->blocks pointer. Fixes: 27bd59502702 ("x86/mce/AMD: Get address from already initialized block") Reported-by: Johannes Hirte <johannes.hirte@datenkhaos.de> Tested-by: Johannes Hirte <johannes.hirte@datenkhaos.de> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Yazen Ghannam <yazen.ghannam@amd.com> Link: http://lkml.kernel.org/r/20180414004230.GA2033@probook
2018-05-19x86/mm: Drop TS_COMPAT on 64-bit exec() syscallDmitry Safonov
The x86 mmap() code selects the mmap base for an allocation depending on the bitness of the syscall. For 64bit sycalls it select mm->mmap_base and for 32bit mm->mmap_compat_base. exec() calls mmap() which in turn uses in_compat_syscall() to check whether the mapping is for a 32bit or a 64bit task. The decision is made on the following criteria: ia32 child->thread.status & TS_COMPAT x32 child->pt_regs.orig_ax & __X32_SYSCALL_BIT ia64 !ia32 && !x32 __set_personality_x32() was dropping TS_COMPAT flag, but set_personality_64bit() has kept compat syscall flag making in_compat_syscall() return true during the first exec() syscall. Which in result has user-visible effects, mentioned by Alexey: 1) It breaks ASAN $ gcc -fsanitize=address wrap.c -o wrap-asan $ ./wrap32 ./wrap-asan true ==1217==Shadow memory range interleaves with an existing memory mapping. ASan cannot proceed correctly. ABORTING. ==1217==ASan shadow was supposed to be located in the [0x00007fff7000-0x10007fff7fff] range. ==1217==Process memory map follows: 0x000000400000-0x000000401000 /home/izbyshev/test/gcc/asan-exec-from-32bit/wrap-asan 0x000000600000-0x000000601000 /home/izbyshev/test/gcc/asan-exec-from-32bit/wrap-asan 0x000000601000-0x000000602000 /home/izbyshev/test/gcc/asan-exec-from-32bit/wrap-asan 0x0000f7dbd000-0x0000f7de2000 /lib64/ld-2.27.so 0x0000f7fe2000-0x0000f7fe3000 /lib64/ld-2.27.so 0x0000f7fe3000-0x0000f7fe4000 /lib64/ld-2.27.so 0x0000f7fe4000-0x0000f7fe5000 0x7fed9abff000-0x7fed9af54000 0x7fed9af54000-0x7fed9af6b000 /lib64/libgcc_s.so.1 [snip] 2) It doesn't seem to be great for security if an attacker always knows that ld.so is going to be mapped into the first 4GB in this case (the same thing happens for PIEs as well). The testcase: $ cat wrap.c int main(int argc, char *argv[]) { execvp(argv[1], &argv[1]); return 127; } $ gcc wrap.c -o wrap $ LD_SHOW_AUXV=1 ./wrap ./wrap true |& grep AT_BASE AT_BASE: 0x7f63b8309000 AT_BASE: 0x7faec143c000 AT_BASE: 0x7fbdb25fa000 $ gcc -m32 wrap.c -o wrap32 $ LD_SHOW_AUXV=1 ./wrap32 ./wrap true |& grep AT_BASE AT_BASE: 0xf7eff000 AT_BASE: 0xf7cee000 AT_BASE: 0x7f8b9774e000 Fixes: 1b028f784e8c ("x86/mm: Introduce mmap_compat_base() for 32-bit mmap()") Fixes: ada26481dfe6 ("x86/mm: Make in_compat_syscall() work during exec") Reported-by: Alexey Izbyshev <izbyshev@ispras.ru> Bisected-by: Alexander Monakov <amonakov@ispras.ru> Investigated-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Borislav Petkov <bp@suse.de> Cc: Alexander Monakov <amonakov@ispras.ru> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: stable@vger.kernel.org Cc: linux-mm@kvack.org Cc: Andy Lutomirski <luto@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: https://lkml.kernel.org/r/20180517233510.24996-1-dima@arista.com
2018-05-18x86/bugs: Rename SSBD_NO to SSB_NOKonrad Rzeszutek Wilk
The "336996 Speculative Execution Side Channel Mitigations" from May defines this as SSB_NO, hence lets sync-up. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-05-17Merge tag 'hwmon-for-linus-v4.17-rc6' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging Pull hwmon fixes from Guenter Roeck: "Two k10temp fixes: - fix race condition when accessing System Management Network registers - fix reading critical temperatures on F15h M60h and M70h Also add PCI ID's for the AMD Raven Ridge root bridge" * tag 'hwmon-for-linus-v4.17-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging: hwmon: (k10temp) Use API function to access System Management Network x86/amd_nb: Add support for Raven Ridge CPUs hwmon: (k10temp) Fix reading critical temperature register
2018-05-17x86/apic/x2apic: Initialize cluster ID properlyThomas Gleixner
Rick bisected a regression on large systems which use the x2apic cluster mode for interrupt delivery to the commit wich reworked the cluster management. The problem is caused by a missing initialization of the clusterid field in the shared cluster data structures. So all structures end up with cluster ID 0 which only allows sharing between all CPUs which belong to cluster 0. All other CPUs with a cluster ID > 0 cannot share the data structure because they cannot find existing data with their cluster ID. This causes malfunction with IPIs because IPIs are sent to the wrong cluster and the caller waits for ever that the target CPU handles the IPI. Add the missing initialization when a upcoming CPU is the first in a cluster so that the later booting CPUs can find the data and share it for proper operation. Fixes: 023a611748fd ("x86/apic/x2apic: Simplify cluster management") Reported-by: Rick Warner <rick@microway.com> Bisected-by: Rick Warner <rick@microway.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Rick Warner <rick@microway.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1805171418210.1947@nanos.tec.linutronix.de
2018-05-17Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull kvm fixes from Paolo Bonzini: - ARM/ARM64 locking fixes - x86 fixes: PCID, UMIP, locking - improved support for recent Windows version that have a 2048 Hz APIC timer - rename KVM_HINTS_DEDICATED CPUID bit to KVM_HINTS_REALTIME - better behaved selftests * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: kvm: rename KVM_HINTS_DEDICATED to KVM_HINTS_REALTIME KVM: arm/arm64: VGIC/ITS save/restore: protect kvm_read_guest() calls KVM: arm/arm64: VGIC/ITS: protect kvm_read_guest() calls with SRCU lock KVM: arm/arm64: VGIC/ITS: Promote irq_lock() in update_affinity KVM: arm/arm64: Properly protect VGIC locks from IRQs KVM: X86: Lower the default timer frequency limit to 200us KVM: vmx: update sec exec controls for UMIP iff emulating UMIP kvm: x86: Suppress CR3_PCID_INVD bit only when PCIDs are enabled KVM: selftests: exit with 0 status code when tests cannot be run KVM: hyperv: idr_find needs RCU protection x86: Delay skip of emulated hypercall instruction KVM: Extend MAX_IRQ_ROUTES to 4096 for all archs
2018-05-17kvm: rename KVM_HINTS_DEDICATED to KVM_HINTS_REALTIMEMichael S. Tsirkin
KVM_HINTS_DEDICATED seems to be somewhat confusing: Guest doesn't really care whether it's the only task running on a host CPU as long as it's not preempted. And there are more reasons for Guest to be preempted than host CPU sharing, for example, with memory overcommit it can get preempted on a memory access, post copy migration can cause preemption, etc. Let's call it KVM_HINTS_REALTIME which seems to better match what guests expect. Also, the flag most be set on all vCPUs - current guests assume this. Note so in the documentation. Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-17KVM: SVM: Implement VIRT_SPEC_CTRL support for SSBDTom Lendacky
Expose the new virtualized architectural mechanism, VIRT_SSBD, for using speculative store bypass disable (SSBD) under SVM. This will allow guests to use SSBD on hardware that uses non-architectural mechanisms for enabling SSBD. [ tglx: Folded the migration fixup from Paolo Bonzini ] Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-05-17x86/speculation, KVM: Implement support for VIRT_SPEC_CTRL/LS_CFGThomas Gleixner
Add the necessary logic for supporting the emulated VIRT_SPEC_CTRL MSR to x86_virt_spec_ctrl(). If either X86_FEATURE_LS_CFG_SSBD or X86_FEATURE_VIRT_SPEC_CTRL is set then use the new guest_virt_spec_ctrl argument to check whether the state must be modified on the host. The update reuses speculative_store_bypass_update() so the ZEN-specific sibling coordination can be reused. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-05-17x86/bugs: Rework spec_ctrl base and mask logicThomas Gleixner
x86_spec_ctrL_mask is intended to mask out bits from a MSR_SPEC_CTRL value which are not to be modified. However the implementation is not really used and the bitmask was inverted to make a check easier, which was removed in "x86/bugs: Remove x86_spec_ctrl_set()" Aside of that it is missing the STIBP bit if it is supported by the platform, so if the mask would be used in x86_virt_spec_ctrl() then it would prevent a guest from setting STIBP. Add the STIBP bit if supported and use the mask in x86_virt_spec_ctrl() to sanitize the value which is supplied by the guest. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de>
2018-05-17x86/bugs: Remove x86_spec_ctrl_set()Thomas Gleixner
x86_spec_ctrl_set() is only used in bugs.c and the extra mask checks there provide no real value as both call sites can just write x86_spec_ctrl_base to MSR_SPEC_CTRL. x86_spec_ctrl_base is valid and does not need any extra masking or checking. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17x86/bugs: Expose x86_spec_ctrl_base directlyThomas Gleixner
x86_spec_ctrl_base is the system wide default value for the SPEC_CTRL MSR. x86_spec_ctrl_get_default() returns x86_spec_ctrl_base and was intended to prevent modification to that variable. Though the variable is read only after init and globaly visible already. Remove the function and export the variable instead. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17x86/bugs: Unify x86_spec_ctrl_{set_guest,restore_host}Borislav Petkov
Function bodies are very similar and are going to grow more almost identical code. Add a bool arg to determine whether SPEC_CTRL is being set for the guest or restored to the host. No functional changes. Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17x86/speculation: Rework speculative_store_bypass_update()Thomas Gleixner
The upcoming support for the virtual SPEC_CTRL MSR on AMD needs to reuse speculative_store_bypass_update() to avoid code duplication. Add an argument for supplying a thread info (TIF) value and create a wrapper speculative_store_bypass_update_current() which is used at the existing call site. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17x86/speculation: Add virtualized speculative store bypass disable supportTom Lendacky
Some AMD processors only support a non-architectural means of enabling speculative store bypass disable (SSBD). To allow a simplified view of this to a guest, an architectural definition has been created through a new CPUID bit, 0x80000008_EBX[25], and a new MSR, 0xc001011f. With this, a hypervisor can virtualize the existence of this definition and provide an architectural method for using SSBD to a guest. Add the new CPUID feature, the new MSR and update the existing SSBD support to use this MSR when present. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de>
2018-05-17x86/bugs, KVM: Extend speculation control for VIRT_SPEC_CTRLThomas Gleixner
AMD is proposing a VIRT_SPEC_CTRL MSR to handle the Speculative Store Bypass Disable via MSR_AMD64_LS_CFG so that guests do not have to care about the bit position of the SSBD bit and thus facilitate migration. Also, the sibling coordination on Family 17H CPUs can only be done on the host. Extend x86_spec_ctrl_set_guest() and x86_spec_ctrl_restore_host() with an extra argument for the VIRT_SPEC_CTRL MSR. Hand in 0 from VMX and in SVM add a new virt_spec_ctrl member to the CPU data structure which is going to be used in later patches for the actual implementation. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17x86/speculation: Handle HT correctly on AMDThomas Gleixner
The AMD64_LS_CFG MSR is a per core MSR on Family 17H CPUs. That means when hyperthreading is enabled the SSBD bit toggle needs to take both cores into account. Otherwise the following situation can happen: CPU0 CPU1 disable SSB disable SSB enable SSB <- Enables it for the Core, i.e. for CPU0 as well So after the SSB enable on CPU1 the task on CPU0 runs with SSB enabled again. On Intel the SSBD control is per core as well, but the synchronization logic is implemented behind the per thread SPEC_CTRL MSR. It works like this: CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL i.e. if one of the threads enables a mitigation then this affects both and the mitigation is only disabled in the core when both threads disabled it. Add the necessary synchronization logic for AMD family 17H. Unfortunately that requires a spinlock to serialize the access to the MSR, but the locks are only shared between siblings. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17x86/cpufeatures: Add FEATURE_ZENThomas Gleixner
Add a ZEN feature bit so family-dependent static_cpu_has() optimizations can be built for ZEN. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17x86/cpufeatures: Disentangle SSBD enumerationThomas Gleixner
The SSBD enumeration is similarly to the other bits magically shared between Intel and AMD though the mechanisms are different. Make X86_FEATURE_SSBD synthetic and set it depending on the vendor specific features or family dependent setup. Change the Intel bit to X86_FEATURE_SPEC_CTRL_SSBD to denote that SSBD is controlled via MSR_SPEC_CTRL and fix up the usage sites. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17x86/cpufeatures: Disentangle MSR_SPEC_CTRL enumeration from IBRSThomas Gleixner
The availability of the SPEC_CTRL MSR is enumerated by a CPUID bit on Intel and implied by IBRS or STIBP support on AMD. That's just confusing and in case an AMD CPU has IBRS not supported because the underlying problem has been fixed but has another bit valid in the SPEC_CTRL MSR, the thing falls apart. Add a synthetic feature bit X86_FEATURE_MSR_SPEC_CTRL to denote the availability on both Intel and AMD. While at it replace the boot_cpu_has() checks with static_cpu_has() where possible. This prevents late microcode loading from exposing SPEC_CTRL, but late loading is already very limited as it does not reevaluate the mitigation options and other bits and pieces. Having static_cpu_has() is the simplest and least fragile solution. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2018-05-17x86/speculation: Use synthetic bits for IBRS/IBPB/STIBPBorislav Petkov
Intel and AMD have different CPUID bits hence for those use synthetic bits which get set on the respective vendor's in init_speculation_control(). So that debacles like what the commit message of c65732e4f721 ("x86/cpu: Restore CPUID_8000_0008_EBX reload") talks about don't happen anymore. Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Tested-by: Jörg Otte <jrg.otte@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: https://lkml.kernel.org/r/20180504161815.GG9257@pd.tnic
2018-05-17KVM: SVM: Move spec control call after restore of GSThomas Gleixner
svm_vcpu_run() invokes x86_spec_ctrl_restore_host() after VMEXIT, but before the host GS is restored. x86_spec_ctrl_restore_host() uses 'current' to determine the host SSBD state of the thread. 'current' is GS based, but host GS is not yet restored and the access causes a triple fault. Move the call after the host GS restore. Fixes: 885f82bfbc6f x86/process: Allow runtime control of Speculative Store Bypass Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-16Merge tag 'trace-v4.17-rc4-2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing fix from Steven Rostedt: "Some of the ftrace internal events use a zero for a data size of a field event. This is increasingly important for the histogram trigger work that is being extended. While auditing trace events, I found that a couple of the xen events were used as just marking that a function was called, by creating a static array of size zero. This can play havoc with the tracing features if these events are used, because a zero size of a static array is denoted as a special nul terminated dynamic array (this is what the trace_marker code uses). But since the xen events have no size, they are not nul terminated, and unexpected results may occur. As trace events were never intended on being a marker to denote that a function was hit or not, especially since function tracing and kprobes can trivially do the same, the best course of action is to simply remove these events" * tag 'trace-v4.17-rc4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: tracing/x86/xen: Remove zero data size trace events trace_xen_mmu_flush_tlb{_all}
2018-05-16x86/boot/compressed/64: Fix moving page table out of trampoline memoryKirill A. Shutemov
cleanup_trampoline() relocates the top-level page table out of trampoline memory. We use 'top_pgtable' as our new top-level page table. But if the 'top_pgtable' would be referenced from C in a usual way, the address of the table will be calculated relative to RIP. After kernel gets relocated, the address will be in the middle of decompression buffer and the page table may get overwritten. This leads to a crash. We calculate the address of other page tables relative to the relocation address. It makes them safe. We should do the same for 'top_pgtable'. Calculate the address of 'top_pgtable' in assembly and pass down to cleanup_trampoline(). Move the page table to .pgtable section where the rest of page tables are. The section is @nobits so we save 4k in kernel image. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: e9d0e6330eb8 ("x86/boot/compressed/64: Prepare new top-level page table for trampoline") Link: http://lkml.kernel.org/r/20180516080131.27913-3-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-16x86/boot/compressed/64: Set up GOT for paging_prepare() and cleanup_trampoline()Kirill A. Shutemov
Eric and Hugh have reported instant reboot due to my recent changes in decompression code. The root cause is that I didn't realize that we need to adjust GOT to be able to run C code that early. The problem is only visible with an older toolchain. Binutils >= 2.24 is able to eliminate GOT references by replacing them with RIP-relative address loads: https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;a=commitdiff;h=80d873266dec We need to adjust GOT two times: - before calling paging_prepare() using the initial load address - before calling C code from the relocated kernel Reported-by: Eric Dumazet <eric.dumazet@gmail.com> Reported-by: Hugh Dickins <hughd@google.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: 194a9749c73d ("x86/boot/compressed/64: Handle 5-level paging boot if kernel is above 4G") Link: http://lkml.kernel.org/r/20180516080131.27913-2-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-15KVM: X86: Lower the default timer frequency limit to 200usWanpeng Li
Anthoine reported: The period used by Windows change over time but it can be 1 milliseconds or less. I saw the limit_periodic_timer_frequency print so 500 microseconds is sometimes reached. As suggested by Paolo, lower the default timer frequency limit to a smaller interval of 200 us (5000 Hz) to leave some headroom. This is required due to Windows 10 changing the scheduler tick limit from 1024 Hz to 2048 Hz. Reported-by: Anthoine Bourgeois <anthoine.bourgeois@blade-group.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Darren Kenny <darren.kenny@oracle.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Anthoine Bourgeois <anthoine.bourgeois@blade-group.com> Cc: Darren Kenny <darren.kenny@oracle.com> Cc: Jan Kiszka <jan.kiszka@web.de> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-05-14tracing/x86/xen: Remove zero data size trace events ↵Steven Rostedt (VMware)
trace_xen_mmu_flush_tlb{_all} Doing an audit of trace events, I discovered two trace events in the xen subsystem that use a hack to create zero data size trace events. This is not what trace events are for. Trace events add memory footprint overhead, and if all you need to do is see if a function is hit or not, simply make that function noinline and use function tracer filtering. Worse yet, the hack used was: __array(char, x, 0) Which creates a static string of zero in length. There's assumptions about such constructs in ftrace that this is a dynamic string that is nul terminated. This is not the case with these tracepoints and can cause problems in various parts of ftrace. Nuke the trace events! Link: http://lkml.kernel.org/r/20180509144605.5a220327@gandalf.local.home Cc: stable@vger.kernel.org Fixes: 95a7d76897c1e ("xen/mmu: Use Xen specific TLB flush instead of the generic one.") Reviewed-by: Juergen Gross <jgross@suse.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-05-14x86/pkeys: Do not special case protection key 0Dave Hansen
mm_pkey_is_allocated() treats pkey 0 as unallocated. That is inconsistent with the manpages, and also inconsistent with mm->context.pkey_allocation_map. Stop special casing it and only disallow values that are actually bad (< 0). The end-user visible effect of this is that you can now use mprotect_pkey() to set pkey=0. This is a bit nicer than what Ram proposed[1] because it is simpler and removes special-casing for pkey 0. On the other hand, it does allow applications to pkey_free() pkey-0, but that's just a silly thing to do, so we are not going to protect against it. The scenario that could happen is similar to what happens if you free any other pkey that is in use: it might get reallocated later and used to protect some other data. The most likely scenario is that pkey-0 comes back from pkey_alloc(), an access-disable or write-disable bit is set in PKRU for it, and the next stack access will SIGSEGV. It's not horribly different from if you mprotect()'d your stack or heap to be unreadable or unwritable, which is generally very foolish, but also not explicitly prevented by the kernel. 1. http://lkml.kernel.org/r/1522112702-27853-1-git-send-email-linuxram@us.ibm.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org>p Cc: Dave Hansen <dave.hansen@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Ellermen <mpe@ellerman.id.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Cc: stable@vger.kernel.org Fixes: 58ab9a088dda ("x86/pkeys: Check against max pkey to avoid overflows") Link: http://lkml.kernel.org/r/20180509171358.47FD785E@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-14x86/pkeys: Override pkey when moving away from PROT_EXECDave Hansen
I got a bug report that the following code (roughly) was causing a SIGSEGV: mprotect(ptr, size, PROT_EXEC); mprotect(ptr, size, PROT_NONE); mprotect(ptr, size, PROT_READ); *ptr = 100; The problem is hit when the mprotect(PROT_EXEC) is implicitly assigned a protection key to the VMA, and made that key ACCESS_DENY|WRITE_DENY. The PROT_NONE mprotect() failed to remove the protection key, and the PROT_NONE-> PROT_READ left the PTE usable, but the pkey still in place and left the memory inaccessible. To fix this, we ensure that we always "override" the pkee at mprotect() if the VMA does not have execute-only permissions, but the VMA has the execute-only pkey. We had a check for PROT_READ/WRITE, but it did not work for PROT_NONE. This entirely removes the PROT_* checks, which ensures that PROT_NONE now works. Reported-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Ellermen <mpe@ellerman.id.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Cc: stable@vger.kernel.org Fixes: 62b5f7d013f ("mm/core, x86/mm/pkeys: Add execute-only protection keys support") Link: http://lkml.kernel.org/r/20180509171351.084C5A71@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-14x86/boot/64/clang: Use fixup_pointer() to access '__supported_pte_mask'Alexander Potapenko
Clang builds with defconfig started crashing after the following commit: fb43d6cb91ef ("x86/mm: Do not auto-massage page protections") This was caused by introducing a new global access in __startup_64(). Code in __startup_64() can be relocated during execution, but the compiler doesn't have to generate PC-relative relocations when accessing globals from that function. Clang actually does not generate them, which leads to boot-time crashes. To work around this problem, every global pointer must be adjusted using fixup_pointer(). Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: dvyukov@google.com Cc: kirill.shutemov@linux.intel.com Cc: linux-mm@kvack.org Cc: md@google.com Cc: mka@chromium.org Fixes: fb43d6cb91ef ("x86/mm: Do not auto-massage page protections") Link: http://lkml.kernel.org/r/20180509091822.191810-1-glider@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-14x86/cpu: Make alternative_msr_write work for 32-bit codeJim Mattson
Cast val and (val >> 32) to (u32), so that they fit in a general-purpose register in both 32-bit and 64-bit code. [ tglx: Made it u32 instead of uintptr_t ] Fixes: c65732e4f721 ("x86/cpu: Restore CPUID_8000_0008_EBX reload") Signed-off-by: Jim Mattson <jmattson@google.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-14efi: Avoid potential crashes, fix the 'struct efi_pci_io_protocol_32' ↵Ard Biesheuvel
definition for mixed mode Mixed mode allows a kernel built for x86_64 to interact with 32-bit EFI firmware, but requires us to define all struct definitions carefully when it comes to pointer sizes. 'struct efi_pci_io_protocol_32' currently uses a 'void *' for the 'romimage' field, which will be interpreted as a 64-bit field on such kernels, potentially resulting in bogus memory references and subsequent crashes. Tested-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: <stable@vger.kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20180504060003.19618-13-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-13x86/cpufeature: Guard asm_volatile_goto usage for BPF compilationAlexei Starovoitov
Workaround for the sake of BPF compilation which utilizes kernel headers, but clang does not support ASM GOTO and fails the build. Fixes: d0266046ad54 ("x86: Remove FAST_FEATURE_TESTS") Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: daniel@iogearbox.net Cc: peterz@infradead.org Cc: netdev@vger.kernel.org Cc: bp@alien8.de Cc: yhs@fb.com Cc: kernel-team@fb.com Cc: torvalds@linux-foundation.org Cc: davem@davemloft.net Link: https://lkml.kernel.org/r/20180513193222.1997938-1-ast@kernel.org
2018-05-13Merge branch 'x86-pti-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86/pti updates from Thomas Gleixner: "A mixed bag of fixes and updates for the ghosts which are hunting us. The scheduler fixes have been pulled into that branch to avoid conflicts. - A set of fixes to address a khread_parkme() race which caused lost wakeups and loss of state. - A deadlock fix for stop_machine() solved by moving the wakeups outside of the stopper_lock held region. - A set of Spectre V1 array access restrictions. The possible problematic spots were discuvered by Dan Carpenters new checks in smatch. - Removal of an unused file which was forgotten when the rest of that functionality was removed" * 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/vdso: Remove unused file perf/x86/cstate: Fix possible Spectre-v1 indexing for pkg_msr perf/x86/msr: Fix possible Spectre-v1 indexing in the MSR driver perf/x86: Fix possible Spectre-v1 indexing for x86_pmu::event_map() perf/x86: Fix possible Spectre-v1 indexing for hw_perf_event cache_* perf/core: Fix possible Spectre-v1 indexing for ->aux_pages[] sched/autogroup: Fix possible Spectre-v1 indexing for sched_prio_to_weight[] sched/core: Fix possible Spectre-v1 indexing for sched_prio_to_weight[] sched/core: Introduce set_special_state() kthread, sched/wait: Fix kthread_parkme() completion issue kthread, sched/wait: Fix kthread_parkme() wait-loop sched/fair: Fix the update of blocked load when newly idle stop_machine, sched: Fix migrate_swap() vs. active_balance() deadlock
2018-05-13uprobes/x86: Prohibit probing on MOV SS instructionMasami Hiramatsu
Since MOV SS and POP SS instructions will delay the exceptions until the next instruction is executed, single-stepping on it by uprobes must be prohibited. uprobe already rejects probing on POP SS (0x1f), but allows probing on MOV SS (0x8e and reg == 2). This checks the target instruction and if it is MOV SS or POP SS, returns -ENOTSUPP to reject probing. Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Cc: Francis Deslauriers <francis.deslauriers@efficios.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Yonghong Song <yhs@fb.com> Cc: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: "David S . Miller" <davem@davemloft.net> Link: https://lkml.kernel.org/r/152587072544.17316.5950935243917346341.stgit@devbox
2018-05-13kprobes/x86: Prohibit probing on exception masking instructionsMasami Hiramatsu
Since MOV SS and POP SS instructions will delay the exceptions until the next instruction is executed, single-stepping on it by kprobes must be prohibited. However, kprobes usually executes those instructions directly on trampoline buffer (a.k.a. kprobe-booster), except for the kprobes which has post_handler. Thus if kprobe user probes MOV SS with post_handler, it will do single-stepping on the MOV SS. This means it is safe that if it is used via ftrace or perf/bpf since those don't use the post_handler. Anyway, since the stack switching is a rare case, it is safer just rejecting kprobes on such instructions. Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Cc: Francis Deslauriers <francis.deslauriers@efficios.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Yonghong Song <yhs@fb.com> Cc: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: "David S . Miller" <davem@davemloft.net> Link: https://lkml.kernel.org/r/152587069574.17316.3311695234863248641.stgit@devbox
2018-05-13x86/kexec: Avoid double free_page() upon do_kexec_load() failureTetsuo Handa
>From ff82bedd3e12f0d3353282054ae48c3bd8c72012 Mon Sep 17 00:00:00 2001 From: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Date: Wed, 9 May 2018 12:12:39 +0900 Subject: [PATCH v3] x86/kexec: avoid double free_page() upon do_kexec_load() failure. syzbot is reporting crashes after memory allocation failure inside do_kexec_load() [1]. This is because free_transition_pgtable() is called by both init_transition_pgtable() and machine_kexec_cleanup() when memory allocation failed inside init_transition_pgtable(). Regarding 32bit code, machine_kexec_free_page_tables() is called by both machine_kexec_alloc_page_tables() and machine_kexec_cleanup() when memory allocation failed inside machine_kexec_alloc_page_tables(). Fix this by leaving the error handling to machine_kexec_cleanup() (and optionally setting NULL after free_page()). [1] https://syzkaller.appspot.com/bug?id=91e52396168cf2bdd572fe1e1bc0bc645c1c6b40 Fixes: f5deb79679af6eb4 ("x86: kexec: Use one page table in x86_64 machine_kexec") Fixes: 92be3d6bdf2cb349 ("kexec/i386: allocate page table pages dynamically") Reported-by: syzbot <syzbot+d96f60296ef613fe1d69@syzkaller.appspotmail.com> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Baoquan He <bhe@redhat.com> Cc: thomas.lendacky@amd.com Cc: prudo@linux.vnet.ibm.com Cc: Huang Ying <ying.huang@intel.com> Cc: syzkaller-bugs@googlegroups.com Cc: takahiro.akashi@linaro.org Cc: H. Peter Anvin <hpa@zytor.com> Cc: akpm@linux-foundation.org Cc: dyoung@redhat.com Cc: kirill.shutemov@linux.intel.com Link: https://lkml.kernel.org/r/201805091942.DGG12448.tMFVFSJFQOOLHO@I-love.SAKURA.ne.jp