summaryrefslogtreecommitdiff
path: root/fs/btrfs/backref.h
AgeCommit message (Collapse)Author
2021-02-08btrfs: add asserts for deleting backref cache nodesJosef Bacik
A weird KASAN problem that Zygo reported could have been easily caught if we checked for basic things in our backref freeing code. We have two methods of freeing a backref node - btrfs_backref_free_node: this just is kfree() essentially. - btrfs_backref_drop_node: this actually unlinks the node and cleans up everything and then calls btrfs_backref_free_node(). We should mostly be using btrfs_backref_drop_node(), to make sure the node is properly unlinked from the backref cache, and only use btrfs_backref_free_node() when we know the node isn't actually linked to the backref cache. We made a mistake here and thus got the KASAN splat. Make this style of issue easier to find by adding some ASSERT()'s to btrfs_backref_free_node() and adjusting our deletion stuff to properly init the list so we can rely on list_empty() checks working properly. BUG: KASAN: use-after-free in btrfs_backref_cleanup_node+0x18a/0x420 Read of size 8 at addr ffff888112402950 by task btrfs/28836 CPU: 0 PID: 28836 Comm: btrfs Tainted: G W 5.10.0-e35f27394290-for-next+ #23 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 Call Trace: dump_stack+0xbc/0xf9 ? btrfs_backref_cleanup_node+0x18a/0x420 print_address_description.constprop.8+0x21/0x210 ? record_print_text.cold.34+0x11/0x11 ? btrfs_backref_cleanup_node+0x18a/0x420 ? btrfs_backref_cleanup_node+0x18a/0x420 kasan_report.cold.10+0x20/0x37 ? btrfs_backref_cleanup_node+0x18a/0x420 __asan_load8+0x69/0x90 btrfs_backref_cleanup_node+0x18a/0x420 btrfs_backref_release_cache+0x83/0x1b0 relocate_block_group+0x394/0x780 ? merge_reloc_roots+0x4a0/0x4a0 btrfs_relocate_block_group+0x26e/0x4c0 btrfs_relocate_chunk+0x52/0x120 btrfs_balance+0xe2e/0x1900 ? check_flags.part.50+0x6c/0x1e0 ? btrfs_relocate_chunk+0x120/0x120 ? kmem_cache_alloc_trace+0xa06/0xcb0 ? _copy_from_user+0x83/0xc0 btrfs_ioctl_balance+0x3a7/0x460 btrfs_ioctl+0x24c8/0x4360 ? __kasan_check_read+0x11/0x20 ? check_chain_key+0x1f4/0x2f0 ? __asan_loadN+0xf/0x20 ? btrfs_ioctl_get_supported_features+0x30/0x30 ? kvm_sched_clock_read+0x18/0x30 ? check_chain_key+0x1f4/0x2f0 ? lock_downgrade+0x3f0/0x3f0 ? handle_mm_fault+0xad6/0x2150 ? do_vfs_ioctl+0xfc/0x9d0 ? ioctl_file_clone+0xe0/0xe0 ? check_flags.part.50+0x6c/0x1e0 ? check_flags.part.50+0x6c/0x1e0 ? check_flags+0x26/0x30 ? lock_is_held_type+0xc3/0xf0 ? syscall_enter_from_user_mode+0x1b/0x60 ? do_syscall_64+0x13/0x80 ? rcu_read_lock_sched_held+0xa1/0xd0 ? __kasan_check_read+0x11/0x20 ? __fget_light+0xae/0x110 __x64_sys_ioctl+0xc3/0x100 do_syscall_64+0x37/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f4c4bdfe427 RSP: 002b:00007fff33ee6df8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007fff33ee6e98 RCX: 00007f4c4bdfe427 RDX: 00007fff33ee6e98 RSI: 00000000c4009420 RDI: 0000000000000003 RBP: 0000000000000003 R08: 0000000000000003 R09: 0000000000000078 R10: fffffffffffff59d R11: 0000000000000202 R12: 0000000000000001 R13: 0000000000000000 R14: 00007fff33ee8a34 R15: 0000000000000001 Allocated by task 28836: kasan_save_stack+0x21/0x50 __kasan_kmalloc.constprop.18+0xbe/0xd0 kasan_kmalloc+0x9/0x10 kmem_cache_alloc_trace+0x410/0xcb0 btrfs_backref_alloc_node+0x46/0xf0 btrfs_backref_add_tree_node+0x60d/0x11d0 build_backref_tree+0xc5/0x700 relocate_tree_blocks+0x2be/0xb90 relocate_block_group+0x2eb/0x780 btrfs_relocate_block_group+0x26e/0x4c0 btrfs_relocate_chunk+0x52/0x120 btrfs_balance+0xe2e/0x1900 btrfs_ioctl_balance+0x3a7/0x460 btrfs_ioctl+0x24c8/0x4360 __x64_sys_ioctl+0xc3/0x100 do_syscall_64+0x37/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Freed by task 28836: kasan_save_stack+0x21/0x50 kasan_set_track+0x20/0x30 kasan_set_free_info+0x1f/0x30 __kasan_slab_free+0xf3/0x140 kasan_slab_free+0xe/0x10 kfree+0xde/0x200 btrfs_backref_error_cleanup+0x452/0x530 build_backref_tree+0x1a5/0x700 relocate_tree_blocks+0x2be/0xb90 relocate_block_group+0x2eb/0x780 btrfs_relocate_block_group+0x26e/0x4c0 btrfs_relocate_chunk+0x52/0x120 btrfs_balance+0xe2e/0x1900 btrfs_ioctl_balance+0x3a7/0x460 btrfs_ioctl+0x24c8/0x4360 __x64_sys_ioctl+0xc3/0x100 do_syscall_64+0x37/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The buggy address belongs to the object at ffff888112402900 which belongs to the cache kmalloc-128 of size 128 The buggy address is located 80 bytes inside of 128-byte region [ffff888112402900, ffff888112402980) The buggy address belongs to the page: page:0000000028b1cd08 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888131c810c0 pfn:0x112402 flags: 0x17ffe0000000200(slab) raw: 017ffe0000000200 ffffea000424f308 ffffea0007d572c8 ffff888100040440 raw: ffff888131c810c0 ffff888112402000 0000000100000009 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888112402800: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff888112402880: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >ffff888112402900: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff888112402980: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff888112402a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Link: https://lore.kernel.org/linux-btrfs/20201208194607.GI31381@hungrycats.org/ CC: stable@vger.kernel.org # 5.10+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: rename BTRFS_ROOT_REF_COWS to BTRFS_ROOT_SHAREABLEQu Wenruo
The name BTRFS_ROOT_REF_COWS is not very clear about the meaning. In fact, that bit can only be set to those trees: - Subvolume roots - Data reloc root - Reloc roots for above roots All other trees won't get this bit set. So just by the result, it is obvious that, roots with this bit set can have tree blocks shared with other trees. Either shared by snapshots, or by reloc roots (an special snapshot created by relocation). This patch will rename BTRFS_ROOT_REF_COWS to BTRFS_ROOT_SHAREABLE to make it easier to understand, and update all comment mentioning "reference counted" to follow the rename. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: reloc: move error handling of build_backref_tree() to backref.cQu Wenruo
The error cleanup will be extracted as a new function, btrfs_backref_error_cleanup(), and moved to backref.c and exported for later usage. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: backref: rename and move finish_upper_links()Qu Wenruo
This the the 2nd major part of generic backref cache. Move it to backref.c so we can reuse it. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: backref: rename and move handle_one_tree_block()Qu Wenruo
This function is the major part of backref cache build process, move it to backref.c so we can reuse it later. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: backref: rename and move backref_tree_panic()Qu Wenruo
Also change the parameter, since all callers can easily grab an fs_info, there is no need for all the pointer chasing. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: backref: rename and move backref_cache_cleanup()Qu Wenruo
Since we're releasing all existing nodes/edges, other than cleanup the mess after error, "release" is a more proper naming here. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: backref: rename and move remove_backref_node()Qu Wenruo
Also add comment explaining the cleanup progress, to differ it from btrfs_backref_drop_node(). Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: backref: rename and move drop_backref_node()Qu Wenruo
With extra comment for drop_backref_node() as it has some similarity with remove_backref_node(), thus we need extra comment explaining the difference. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: backref: rename and move free_backref_(node|edge)Qu Wenruo
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: backref: rename and move link_backref_edge()Qu Wenruo
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: backref: rename and move alloc_backref_edge()Qu Wenruo
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: backref: rename and move alloc_backref_node()Qu Wenruo
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: backref: rename and move backref_cache_init()Qu Wenruo
Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: rename tree_entry to rb_simple_node and export itQu Wenruo
Structure tree_entry provides a very simple rb_tree which only uses bytenr as search index. That tree_entry is used in 3 structures: backref_node, mapping_node and tree_block. Since we're going to make backref_node independnt from relocation, it's a good time to extract the tree_entry into rb_simple_node, and export it into misc.h. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: backref: move btrfs_backref_(node|edge|cache) structures to backref.hQu Wenruo
These 3 structures are the main part of btrfs backref cache, move them to backref.h to build the basis for later reuse. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: backref: implement btrfs_backref_iter_next()Qu Wenruo
This function will go to the next inline/keyed backref for btrfs_backref_iter infrastructure. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: backref: introduce the skeleton of btrfs_backref_iterQu Wenruo
Due to the complex nature of btrfs extent tree, when we want to iterate all backrefs of one extent, this involves quite a lot of work, like searching the EXTENT_ITEM/METADATA_ITEM, iteration through inline and keyed backrefs. Normally this would result in a complex code, something like: btrfs_search_slot() /* Ensure we are at EXTENT_ITEM/METADATA_ITEM */ while (1) { /* Loop for extent tree items */ while (ptr < end) { /* Loop for inlined items */ /* Real work here */ } next: ret = btrfs_next_item() /* Ensure we're still at keyed item for specified bytenr */ } The idea of btrfs_backref_iter is to avoid such complex and hard to read code structure, but something like the following: iter = btrfs_backref_iter_alloc(); ret = btrfs_backref_iter_start(iter, bytenr); if (ret < 0) goto out; for (; ; ret = btrfs_backref_iter_next(iter)) { /* Real work here */ } out: btrfs_backref_iter_free(iter); This patch is just the skeleton + btrfs_backref_iter_start() code. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23btrfs: relocation: Use btrfs_find_all_leafs to locate data extent parent ↵Qu Wenruo
tree leaves In relocation, we need to locate all parent tree leaves referring to one data extent, thus we have a complex mechanism to iterate throught extent tree and subvolume trees to locate the related leaves. However this is already done in backref.c, we have btrfs_find_all_leafs(), which can return a ulist containing all leaves referring to that data extent. Use btrfs_find_all_leafs() to replace find_data_references(). There is a special handling for v1 space cache data extents, where we need to delete the v1 space cache data extents, to avoid those data extents to hang the data relocation. In this patch, the special handling is done by re-iterating the root tree leaf. Although it's a little less efficient than the old handling, considering we can reuse a lot of code, it should be acceptable. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-01btrfs: fiemap: preallocate ulists for btrfs_check_sharedDavid Sterba
btrfs_check_shared looks up parents of a given extent and uses ulists for that. These are allocated and freed repeatedly. Preallocation in the caller will avoid the overhead and also allow us to use the GFP_KERNEL as it is happens before the extent locks are taken. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-12btrfs: replace GPL boilerplate by SPDX -- headersDavid Sterba
Remove GPL boilerplate text (long, short, one-line) and keep the rest, ie. personal, company or original source copyright statements. Add the SPDX header. Unify the include protection macros to match the file names. Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-26btrfs: add more __cold annotationsDavid Sterba
The __cold functions are placed to a special section, as they're expected to be called rarely. This could help i-cache prefetches or help compiler to decide which branches are more/less likely to be taken without any other annotations needed. Though we can't add more __exit annotations, it's still possible to add __cold (that's also added with __exit). That way the following function categories are tagged: - printf wrappers, error messages - exit helpers Signed-off-by: David Sterba <dsterba@suse.com>
2017-11-01btrfs: add a flag to iterate_inodes_from_logical to find all extent refs for ↵Zygo Blaxell
uncompressed extents The LOGICAL_INO ioctl provides a backward mapping from extent bytenr and offset (encoded as a single logical address) to a list of extent refs. LOGICAL_INO complements TREE_SEARCH, which provides the forward mapping (extent ref -> extent bytenr and offset, or logical address). These are useful capabilities for programs that manipulate extents and extent references from userspace (e.g. dedup and defrag utilities). When the extents are uncompressed (and not encrypted and not other), check_extent_in_eb performs filtering of the extent refs to remove any extent refs which do not contain the same extent offset as the 'logical' parameter's extent offset. This prevents LOGICAL_INO from returning references to more than a single block. To find the set of extent references to an uncompressed extent from [a, b), userspace has to run a loop like this pseudocode: for (i = a; i < b; ++i) extent_ref_set += LOGICAL_INO(i); At each iteration of the loop (up to 32768 iterations for a 128M extent), data we are interested in is collected in the kernel, then deleted by the filter in check_extent_in_eb. When the extents are compressed (or encrypted or other), the 'logical' parameter must be an extent bytenr (the 'a' parameter in the loop). No filtering by extent offset is done (or possible?) so the result is the complete set of extent refs for the entire extent. This removes the need for the loop, since we get all the extent refs in one call. Add an 'ignore_offset' argument to iterate_inodes_from_logical, [...several levels of function call graph...], and check_extent_in_eb, so that we can disable the extent offset filtering for uncompressed extents. This flag can be set by an improved version of the LOGICAL_INO ioctl to get either behavior as desired. There is no functional change in this patch. The new flag is always false. Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Reviewed-by: David Sterba <dsterba@suse.com> [ minor coding style fixes ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16btrfs: backref, add tracepoints for prelim_ref insertion and mergingJeff Mahoney
This patch adds a tracepoint event for prelim_ref insertion and merging. For each, the ref being inserted or merged and the count of tree nodes is issued. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16btrfs: btrfs_check_shared should manage its own transactionEdmund Nadolski
Commit afce772e87c3 ("btrfs: fix check_shared for fiemap ioctl") added transaction semantics around calls to btrfs_check_shared() in order to provide accurate accounting of delayed refs. The transaction management should be done inside btrfs_check_shared(), so that callers do not need to manage transactions individually. Signed-off-by: Edmund Nadolski <enadolski@suse.com> Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2015-01-14btrfs: cleanup, remove inode_item_info helperDavid Sterba
It's only a simple wrapper around btrfs_find_item, the locally defined key is not used. Signed-off-by: David Sterba <dsterba@suse.cz>
2014-09-17Btrfs: make fiemap not blow when you have lots of snapshotsJosef Bacik
We have been iterating all references for each extent we have in a file when we do fiemap to see if it is shared. This is fine when you have a few clones or a few snapshots, but when you have 5k snapshots suddenly fiemap just sits there and stares at you. So add btrfs_check_shared which will use the backref walking code but will short circuit as soon as it finds a root or inode that doesn't match the one we currently have. This makes fiemap on my testbox go from looking at me blankly for a day to spitting out actual output in a reasonable amount of time. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09Btrfs: fix scrub_print_warning to handle skinny metadata extentsLiu Bo
The skinny extents are intepreted incorrectly in scrub_print_warning(), and end up hitting the BUG() in btrfs_extent_inline_ref_size. Reported-by: Konstantinos Skarlatos <k.skarlatos@gmail.com> Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-06-09Btrfs: rework qgroup accountingJosef Bacik
Currently qgroups account for space by intercepting delayed ref updates to fs trees. It does this by adding sequence numbers to delayed ref updates so that it can figure out how the tree looked before the update so we can adjust the counters properly. The problem with this is that it does not allow delayed refs to be merged, so if you say are defragging an extent with 5k snapshots pointing to it we will thrash the delayed ref lock because we need to go back and manually merge these things together. Instead we want to process quota changes when we know they are going to happen, like when we first allocate an extent, we free a reference for an extent, we add new references etc. This patch accomplishes this by only adding qgroup operations for real ref changes. We only modify the sequence number when we need to lookup roots for bytenrs, this reduces the amount of churn on the sequence number and allows us to merge delayed refs as we add them most of the time. This patch encompasses a bunch of architectural changes 1) qgroup ref operations: instead of tracking qgroup operations through the delayed refs we simply add new ref operations whenever we notice that we need to when we've modified the refs themselves. 2) tree mod seq: we no longer have this separation of major/minor counters. this makes the sequence number stuff much more sane and we can remove some locking that was needed to protect the counter. 3) delayed ref seq: we now read the tree mod seq number and use that as our sequence. This means each new delayed ref doesn't have it's own unique sequence number, rather whenever we go to lookup backrefs we inc the sequence number so we can make sure to keep any new operations from screwing up our world view at that given point. This allows us to merge delayed refs during runtime. With all of these changes the delayed ref stuff is a little saner and the qgroup accounting stuff no longer goes negative in some cases like it was before. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2013-09-01Btrfs: allocate prelim_ref with a slab allocaterWang Shilong
struct __prelim_ref is allocated and freed frequently when walking backref tree, using slab allocater can not only speed up allocating but also detect memory leaks. Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com> Reviewed-by: Miao Xie <miaox@cn.fujitsu.com> Reviewed-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-07-01Btrfs: cleanup backref search commit root flag stuffJosef Bacik
Looking into this backref problem I noticed we're using a macro to what turns out to essentially be a NULL check to see if we need to search the commit root. I'm killing this, let's just do what everybody else does and checks if trans == NULL. I've also made it so we pass in the path to __resolve_indirect_refs which will have the search_commit_root flag set properly already and that way we can avoid allocating another path when we have a perfectly good one to use. Thanks, Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-06btrfs: make static code static & remove dead codeEric Sandeen
Big patch, but all it does is add statics to functions which are in fact static, then remove the associated dead-code fallout. removed functions: btrfs_iref_to_path() __btrfs_lookup_delayed_deletion_item() __btrfs_search_delayed_insertion_item() __btrfs_search_delayed_deletion_item() find_eb_for_page() btrfs_find_block_group() range_straddles_pages() extent_range_uptodate() btrfs_file_extent_length() btrfs_scrub_cancel_devid() btrfs_start_transaction_lflush() btrfs_print_tree() is left because it is used for debugging. btrfs_start_transaction_lflush() and btrfs_reada_detach() are left for symmetry. ulist.c functions are left, another patch will take care of those. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-02-20Btrfs: move fs/btrfs/ioctl.h to include/uapi/linux/btrfs.hFilipe Brandenburger
The header file will then be installed under /usr/include/linux so that userspace applications can refer to Btrfs ioctls by name and use the same structs used internally in the kernel. Signed-off-by: Filipe Brandenburger <filbranden@google.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2012-10-25Btrfs: extended inode refs support for send mechanismJan Schmidt
This adds support for the new extended inode refs to btrfs send. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-10-09btrfs: extended inode ref iterationMark Fasheh
The iterate_irefs in backref.c is used to build path components from inode refs. This patch adds code to iterate extended refs as well. I had modify the callback function signature to abstract out some of the differences between ref structures. iref_to_path() also needed similar changes. Signed-off-by: Mark Fasheh <mfasheh@suse.de>
2012-10-09btrfs: extended inode refsMark Fasheh
This patch adds basic support for extended inode refs. This includes support for link and unlink of the refs, which basically gets us support for rename as well. Inode creation does not need changing - extended refs are only added after the ref array is full. Signed-off-by: Mark Fasheh <mfasheh@suse.de>
2012-10-01Btrfs: fix a bug in parsing return value in logical resolveLiu Bo
In logical resolve, we parse extent_from_logical()'s 'ret' as a kind of flag. It is possible to lose our errors because (-EXXXX & BTRFS_EXTENT_FLAG_TREE_BLOCK) is true. I'm not sure if it is on purpose, it just looks too hacky if it is. I'd rather use a real flag and a 'ret' to catch errors. Acked-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Liu Bo <liub.liubo@gmail.com>
2012-07-25Merge branch 'send-v2' of git://github.com/ablock84/linux-btrfs into for-linusChris Mason
This is the kernel portion of btrfs send/receive Conflicts: fs/btrfs/Makefile fs/btrfs/backref.h fs/btrfs/ctree.c fs/btrfs/ioctl.c fs/btrfs/ioctl.h Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2012-07-25Btrfs: make iref_to_path non staticAlexander Block
Make iref_to_path non static (needed in send) and rename it to btrfs_iref_to_path Signed-off-by: Alexander Block <ablock84@googlemail.com>
2012-07-10Btrfs: join tree mod log code with the code holding back delayed refsJan Schmidt
We've got two mechanisms both required for reliable backref resolving (tree mod log and holding back delayed refs). You cannot make use of one without the other. So instead of requiring the user of this mechanism to setup both correctly, we join them into a single interface. Additionally, we stop inserting non-blockers into fs_info->tree_mod_seq_list as we did before, which was of no value. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-05-30Btrfs: use the tree modification log for backref resolvingJan Schmidt
This enables backref resolving on life trees while they are changing. This is a prerequisite for quota groups and just nice to have for everything else. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-05-26Btrfs: look into the extent during find_all_leafsJan Schmidt
Before this patch we called find_all_leafs for a data extent, then called find_all_roots and then looked into the extent to grab the information we were seeking. This was done without holding the leaves locked to avoid deadlocks. However, this can obviouly race with concurrent tree modifications. Instead, we now look into the extent while we're holding the lock during find_all_leafs and store this information together with the leaf list. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-03-27Btrfs: fix regression in scrub path resolvingJan Schmidt
In commit 4692cf58 we introduced new backref walking code for btrfs. This assumes we're searching live roots, which requires a transaction context. While scrubbing, however, we must not join a transaction because this could deadlock with the commit path. Additionally, what scrub really wants to do is resolving a logical address in the commit root it's currently checking. This patch adds support for logical to path resolving on commit roots and makes scrub use that. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2012-01-04Btrfs: added btrfs_find_all_roots()Jan Schmidt
This function gets a byte number (a data extent), collects all the leafs pointing to it and walks up the trees to find all fs roots pointing to those leafs. It also returns the list of all leafs pointing to that extent. It does proper locking for the involved trees, can be used on busy file systems and honors delayed refs. Signed-off-by: Arne Jansen <sensille@gmx.net> Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
2011-09-29btrfs: added helper functions to iterate backrefsJan Schmidt
These helper functions iterate back references and call a function for each backref. There is also a function to resolve an inode to a path in the file system. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>