summaryrefslogtreecommitdiff
path: root/fs/crypto/keyring.c
AgeCommit message (Collapse)Author
2023-12-09fscrypt: update comment for do_remove_key()Eric Biggers
Adjust a comment that was missed during commit 15baf55481de ("fscrypt: track master key presence separately from secret"). Link: https://lore.kernel.org/r/20231206002127.14790-1-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2023-10-16fscrypt: track master key presence separately from secretEric Biggers
Master keys can be in one of three states: present, incompletely removed, and absent (as per FSCRYPT_KEY_STATUS_* used in the UAPI). Currently, the way that "present" is distinguished from "incompletely removed" internally is by whether ->mk_secret exists or not. With extent-based encryption, it will be necessary to allow per-extent keys to be derived while the master key is incompletely removed, so that I/O on open files will reliably continue working after removal of the key has been initiated. (We could allow I/O to sometimes fail in that case, but that seems problematic for reasons such as writes getting silently thrown away and diverging from the existing fscrypt semantics.) Therefore, when the filesystem is using extent-based encryption, ->mk_secret can't be wiped when the key becomes incompletely removed. As a prerequisite for doing that, this patch makes the "present" state be tracked using a new field, ->mk_present. No behavior is changed yet. The basic idea here is borrowed from Josef Bacik's patch "fscrypt: use a flag to indicate that the master key is being evicted" (https://lore.kernel.org/r/e86c16dddc049ff065f877d793ad773e4c6bfad9.1696970227.git.josef@toxicpanda.com). I reimplemented it using a "present" bool instead of an "evicted" flag, fixed a couple bugs, and tried to update everything to be consistent. Note: I considered adding a ->mk_status field instead, holding one of FSCRYPT_KEY_STATUS_*. At first that seemed nice, but it ended up being more complex (despite simplifying FS_IOC_GET_ENCRYPTION_KEY_STATUS), since it would have introduced redundancy and had weird locking rules. Reviewed-by: Neal Gompa <neal@gompa.dev> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Link: https://lore.kernel.org/r/20231015061055.62673-1-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2023-10-08fscrypt: rename fscrypt_info => fscrypt_inode_infoJosef Bacik
We are going to track per-extent information, so it'll be necessary to distinguish between inode infos and extent infos. Rename fscrypt_info to fscrypt_inode_info, adjusting any lines that now exceed 80 characters. Signed-off-by: Josef Bacik <josef@toxicpanda.com> [ebiggers: rebased onto fscrypt tree, renamed fscrypt_get_info(), adjusted two comments, and fixed some lines over 80 characters] Link: https://lore.kernel.org/r/20231005025757.33521-1-ebiggers@kernel.org Reviewed-by: Neal Gompa <neal@gompa.dev> Signed-off-by: Eric Biggers <ebiggers@google.com>
2023-03-27fscrypt: use WARN_ON_ONCE instead of WARN_ONEric Biggers
As per Linus's suggestion (https://lore.kernel.org/r/CAHk-=whefxRGyNGzCzG6BVeM=5vnvgb-XhSeFJVxJyAxAF8XRA@mail.gmail.com), use WARN_ON_ONCE instead of WARN_ON. This barely adds any extra overhead, and it makes it so that if any of these ever becomes reachable (they shouldn't, but that's the point), the logs can't be flooded. Link: https://lore.kernel.org/r/20230320233943.73600-1-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2023-03-18fscrypt: check for NULL keyring in fscrypt_put_master_key_activeref()Eric Biggers
It is a bug for fscrypt_put_master_key_activeref() to see a NULL keyring. But it used to be possible due to the bug, now fixed, where fscrypt_destroy_keyring() was called before security_sb_delete(). To be consistent with how fscrypt_destroy_keyring() uses WARN_ON for the same issue, WARN and leak the fscrypt_master_key if the keyring is NULL instead of dereferencing the NULL pointer. This is a robustness improvement, not a fix. Link: https://lore.kernel.org/r/20230313221231.272498-4-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2023-03-18fscrypt: improve fscrypt_destroy_keyring() documentationEric Biggers
Document that fscrypt_destroy_keyring() must be called after all potentially-encrypted inodes have been evicted. Link: https://lore.kernel.org/r/20230313221231.272498-3-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2023-02-07fscrypt: clean up fscrypt_add_test_dummy_key()Eric Biggers
Now that fscrypt_add_test_dummy_key() is only called by setup_file_encryption_key() and not by the individual filesystems, un-export it. Also change its prototype to take the fscrypt_key_specifier directly, as the caller already has it. Signed-off-by: Eric Biggers <ebiggers@google.com> Link: https://lore.kernel.org/r/20230208062107.199831-6-ebiggers@kernel.org
2022-11-15fscrypt: pass super_block to fscrypt_put_master_key_activeref()Eric Biggers
As this code confused Linus [1], pass the super_block as an argument to fscrypt_put_master_key_activeref(). This removes the need to have the back-pointer ->mk_sb, so remove that. [1] https://lore.kernel.org/linux-fscrypt/CAHk-=wgud4Bc_um+htgfagYpZAnOoCb3NUoW67hc9LhOKsMtJg@mail.gmail.com Signed-off-by: Eric Biggers <ebiggers@google.com> Link: https://lore.kernel.org/r/20221110082942.351615-1-ebiggers@kernel.org
2022-10-19fscrypt: fix keyring memory leak on mount failureEric Biggers
Commit d7e7b9af104c ("fscrypt: stop using keyrings subsystem for fscrypt_master_key") moved the keyring destruction from __put_super() to generic_shutdown_super() so that the filesystem's block device(s) are still available. Unfortunately, this causes a memory leak in the case where a mount is attempted with the test_dummy_encryption mount option, but the mount fails after the option has already been processed. To fix this, attempt the keyring destruction in both places. Reported-by: syzbot+104c2a89561289cec13e@syzkaller.appspotmail.com Fixes: d7e7b9af104c ("fscrypt: stop using keyrings subsystem for fscrypt_master_key") Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org> Link: https://lore.kernel.org/r/20221011213838.209879-1-ebiggers@kernel.org
2022-09-21fscrypt: stop holding extra request_queue referencesEric Biggers
Now that the fscrypt_master_key lifetime has been reworked to not be subject to the quirks of the keyrings subsystem, blk_crypto_evict_key() no longer gets called after the filesystem has already been unmounted. Therefore, there is no longer any need to hold extra references to the filesystem's request_queue(s). (And these references didn't always do their intended job anyway, as pinning a request_queue doesn't necessarily pin the corresponding blk_crypto_profile.) Stop taking these extra references. Instead, just pass the super_block to fscrypt_destroy_inline_crypt_key(), and use it to get the list of block devices the key needs to be evicted from. Signed-off-by: Eric Biggers <ebiggers@google.com> Link: https://lore.kernel.org/r/20220901193208.138056-3-ebiggers@kernel.org
2022-09-21fscrypt: stop using keyrings subsystem for fscrypt_master_keyEric Biggers
The approach of fs/crypto/ internally managing the fscrypt_master_key structs as the payloads of "struct key" objects contained in a "struct key" keyring has outlived its usefulness. The original idea was to simplify the code by reusing code from the keyrings subsystem. However, several issues have arisen that can't easily be resolved: - When a master key struct is destroyed, blk_crypto_evict_key() must be called on any per-mode keys embedded in it. (This started being the case when inline encryption support was added.) Yet, the keyrings subsystem can arbitrarily delay the destruction of keys, even past the time the filesystem was unmounted. Therefore, currently there is no easy way to call blk_crypto_evict_key() when a master key is destroyed. Currently, this is worked around by holding an extra reference to the filesystem's request_queue(s). But it was overlooked that the request_queue reference is *not* guaranteed to pin the corresponding blk_crypto_profile too; for device-mapper devices that support inline crypto, it doesn't. This can cause a use-after-free. - When the last inode that was using an incompletely-removed master key is evicted, the master key removal is completed by removing the key struct from the keyring. Currently this is done via key_invalidate(). Yet, key_invalidate() takes the key semaphore. This can deadlock when called from the shrinker, since in fscrypt_ioctl_add_key(), memory is allocated with GFP_KERNEL under the same semaphore. - More generally, the fact that the keyrings subsystem can arbitrarily delay the destruction of keys (via garbage collection delay, or via random processes getting temporary key references) is undesirable, as it means we can't strictly guarantee that all secrets are ever wiped. - Doing the master key lookups via the keyrings subsystem results in the key_permission LSM hook being called. fscrypt doesn't want this, as all access control for encrypted files is designed to happen via the files themselves, like any other files. The workaround which SELinux users are using is to change their SELinux policy to grant key search access to all domains. This works, but it is an odd extra step that shouldn't really have to be done. The fix for all these issues is to change the implementation to what I should have done originally: don't use the keyrings subsystem to keep track of the filesystem's fscrypt_master_key structs. Instead, just store them in a regular kernel data structure, and rework the reference counting, locking, and lifetime accordingly. Retain support for RCU-mode key lookups by using a hash table. Replace fscrypt_sb_free() with fscrypt_sb_delete(), which releases the keys synchronously and runs a bit earlier during unmount, so that block devices are still available. A side effect of this patch is that neither the master keys themselves nor the filesystem keyrings will be listed in /proc/keys anymore. ("Master key users" and the master key users keyrings will still be listed.) However, this was mostly an implementation detail, and it was intended just for debugging purposes. I don't know of anyone using it. This patch does *not* change how "master key users" (->mk_users) works; that still uses the keyrings subsystem. That is still needed for key quotas, and changing that isn't necessary to solve the issues listed above. If we decide to change that too, it would be a separate patch. I've marked this as fixing the original commit that added the fscrypt keyring, but as noted above the most important issue that this patch fixes wasn't introduced until the addition of inline encryption support. Fixes: 22d94f493bfb ("fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl") Signed-off-by: Eric Biggers <ebiggers@google.com> Link: https://lore.kernel.org/r/20220901193208.138056-2-ebiggers@kernel.org
2022-05-09fscrypt: add new helper functions for test_dummy_encryptionEric Biggers
Unfortunately the design of fscrypt_set_test_dummy_encryption() doesn't work properly for the new mount API, as it combines too many steps into one function: - Parse the argument to test_dummy_encryption - Check the setting against the filesystem instance - Apply the setting to the filesystem instance The new mount API has split these into separate steps. ext4 partially worked around this by duplicating some of the logic, but it still had some bugs. To address this, add some new helper functions that split up the steps of fscrypt_set_test_dummy_encryption(): - fscrypt_parse_test_dummy_encryption() - fscrypt_dummy_policies_equal() - fscrypt_add_test_dummy_key() While we're add it, also add a function fscrypt_is_dummy_policy_set() which will be useful to avoid some #ifdef's. Signed-off-by: Eric Biggers <ebiggers@google.com> Link: https://lore.kernel.org/r/20220501050857.538984-5-ebiggers@kernel.org
2020-11-24fscrypt: simplify master key lockingEric Biggers
The stated reasons for separating fscrypt_master_key::mk_secret_sem from the standard semaphore contained in every 'struct key' no longer apply. First, due to commit a992b20cd4ee ("fscrypt: add fscrypt_prepare_new_inode() and fscrypt_set_context()"), fscrypt_get_encryption_info() is no longer called from within a filesystem transaction. Second, due to commit d3ec10aa9581 ("KEYS: Don't write out to userspace while holding key semaphore"), the semaphore for the "keyring" key type no longer ranks above page faults. That leaves performance as the only possible reason to keep the separate mk_secret_sem. Specifically, having mk_secret_sem reduces the contention between setup_file_encryption_key() and FS_IOC_{ADD,REMOVE}_ENCRYPTION_KEY. However, these ioctls aren't executed often, so this doesn't seem to be worth the extra complexity. Therefore, simplify the locking design by just using key->sem instead of mk_secret_sem. Link: https://lore.kernel.org/r/20201117032626.320275-1-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-11-16fscrypt: remove kernel-internal constants from UAPI headerEric Biggers
There isn't really any valid reason to use __FSCRYPT_MODE_MAX or FSCRYPT_POLICY_FLAGS_VALID in a userspace program. These constants are only meant to be used by the kernel internally, and they are defined in the UAPI header next to the mode numbers and flags only so that kernel developers don't forget to update them when adding new modes or flags. In https://lkml.kernel.org/r/20201005074133.1958633-2-satyat@google.com there was an example of someone wanting to use __FSCRYPT_MODE_MAX in a user program, and it was wrong because the program would have broken if __FSCRYPT_MODE_MAX were ever increased. So having this definition available is harmful. FSCRYPT_POLICY_FLAGS_VALID has the same problem. So, remove these definitions from the UAPI header. Replace FSCRYPT_POLICY_FLAGS_VALID with just listing the valid flags explicitly in the one kernel function that needs it. Move __FSCRYPT_MODE_MAX to fscrypt_private.h, remove the double underscores (which were only present to discourage use by userspace), and add a BUILD_BUG_ON() and comments to (hopefully) ensure it is kept in sync. Keep the old name FS_POLICY_FLAGS_VALID, since it's been around for longer and there's a greater chance that removing it would break source compatibility with some program. Indeed, mtd-utils is using it in an #ifdef, and removing it would introduce compiler warnings (about FS_POLICY_FLAGS_PAD_* being redefined) into the mtd-utils build. However, reduce its value to 0x07 so that it only includes the flags with old names (the ones present before Linux 5.4), and try to make it clear that it's now "frozen" and no new flags should be added to it. Fixes: 2336d0deb2d4 ("fscrypt: use FSCRYPT_ prefix for uapi constants") Cc: <stable@vger.kernel.org> # v5.4+ Link: https://lore.kernel.org/r/20201024005132.495952-1-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-09-22fscrypt: adjust logging for in-creation inodesEric Biggers
Now that a fscrypt_info may be set up for inodes that are currently being created and haven't yet had an inode number assigned, avoid logging confusing messages about "inode 0". Acked-by: Jeff Layton <jlayton@kernel.org> Link: https://lore.kernel.org/r/20200917041136.178600-7-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-08-07mm, treewide: rename kzfree() to kfree_sensitive()Waiman Long
As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-07-21fscrypt: use smp_load_acquire() for ->s_master_keysEric Biggers
Normally smp_store_release() or cmpxchg_release() is paired with smp_load_acquire(). Sometimes smp_load_acquire() can be replaced with the more lightweight READ_ONCE(). However, for this to be safe, all the published memory must only be accessed in a way that involves the pointer itself. This may not be the case if allocating the object also involves initializing a static or global variable, for example. super_block::s_master_keys is a keyring, which is internal to and is allocated by the keyrings subsystem. By using READ_ONCE() for it, we're relying on internal implementation details of the keyrings subsystem. Remove this fragile assumption by using smp_load_acquire() instead. (Note: I haven't seen any real-world problems here. This change is just fixing the code to be guaranteed correct and less fragile.) Fixes: 22d94f493bfb ("fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl") Link: https://lore.kernel.org/r/20200721225920.114347-4-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-08fscrypt: add inline encryption supportSatya Tangirala
Add support for inline encryption to fs/crypto/. With "inline encryption", the block layer handles the decryption/encryption as part of the bio, instead of the filesystem doing the crypto itself via Linux's crypto API. This model is needed in order to take advantage of the inline encryption hardware present on most modern mobile SoCs. To use inline encryption, the filesystem needs to be mounted with '-o inlinecrypt'. Blk-crypto will then be used instead of the traditional filesystem-layer crypto whenever possible to encrypt the contents of any encrypted files in that filesystem. Fscrypt still provides the key and IV to use, and the actual ciphertext on-disk is still the same; therefore it's testable using the existing fscrypt ciphertext verification tests. Note that since blk-crypto has a fallback to Linux's crypto API, and also supports all the encryption modes currently supported by fscrypt, this feature is usable and testable even without actual inline encryption hardware. Per-filesystem changes will be needed to set encryption contexts when submitting bios and to implement the 'inlinecrypt' mount option. This patch just adds the common code. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Link: https://lore.kernel.org/r/20200702015607.1215430-3-satyat@google.com Co-developed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-05-19fscrypt: add support for IV_INO_LBLK_32 policiesEric Biggers
The eMMC inline crypto standard will only specify 32 DUN bits (a.k.a. IV bits), unlike UFS's 64. IV_INO_LBLK_64 is therefore not applicable, but an encryption format which uses one key per policy and permits the moving of encrypted file contents (as f2fs's garbage collector requires) is still desirable. To support such hardware, add a new encryption format IV_INO_LBLK_32 that makes the best use of the 32 bits: the IV is set to 'SipHash-2-4(inode_number) + file_logical_block_number mod 2^32', where the SipHash key is derived from the fscrypt master key. We hash only the inode number and not also the block number, because we need to maintain contiguity of DUNs to merge bios. Unlike with IV_INO_LBLK_64, with this format IV reuse is possible; this is unavoidable given the size of the DUN. This means this format should only be used where the requirements of the first paragraph apply. However, the hash spreads out the IVs in the whole usable range, and the use of a keyed hash makes it difficult for an attacker to determine which files use which IVs. Besides the above differences, this flag works like IV_INO_LBLK_64 in that on ext4 it is only allowed if the stable_inodes feature has been enabled to prevent inode numbers and the filesystem UUID from changing. Link: https://lore.kernel.org/r/20200515204141.251098-1-ebiggers@kernel.org Reviewed-by: Theodore Ts'o <tytso@mit.edu> Reviewed-by: Paul Crowley <paulcrowley@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-05-15fscrypt: add fscrypt_add_test_dummy_key()Eric Biggers
Currently, the test_dummy_encryption mount option (which is used for encryption I/O testing with xfstests) uses v1 encryption policies, and it relies on userspace inserting a test key into the session keyring. We need test_dummy_encryption to support v2 encryption policies too. Requiring userspace to add the test key doesn't work well with v2 policies, since v2 policies only support the filesystem keyring (not the session keyring), and keys in the filesystem keyring are lost when the filesystem is unmounted. Hooking all test code that unmounts and re-mounts the filesystem would be difficult. Instead, let's make the filesystem automatically add the test key to its keyring when test_dummy_encryption is enabled. That puts the responsibility for choosing the test key on the kernel. We could just hard-code a key. But out of paranoia, let's first try using a per-boot random key, to prevent this code from being misused. A per-boot key will work as long as no one expects dummy-encrypted files to remain accessible after a reboot. (gce-xfstests doesn't.) Therefore, this patch adds a function fscrypt_add_test_dummy_key() which implements the above. The next patch will use it. Link: https://lore.kernel.org/r/20200512233251.118314-3-ebiggers@kernel.org Reviewed-by: Theodore Ts'o <tytso@mit.edu> Reviewed-by: Jaegeuk Kim <jaegeuk@kernel.org> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-01-22fscrypt: don't print name of busy file when removing keyEric Biggers
When an encryption key can't be fully removed due to file(s) protected by it still being in-use, we shouldn't really print the path to one of these files to the kernel log, since parts of this path are likely to be encrypted on-disk, and (depending on how the system is set up) the confidentiality of this path might be lost by printing it to the log. This is a trade-off: a single file path often doesn't matter at all, especially if it's a directory; the kernel log might still be protected in some way; and I had originally hoped that any "inode(s) still busy" bugs (which are security weaknesses in their own right) would be quickly fixed and that to do so it would be super helpful to always know the file path and not have to run 'find dir -inum $inum' after the fact. But in practice, these bugs can be hard to fix (e.g. due to asynchronous process killing that is difficult to eliminate, for performance reasons), and also not tied to specific files, so knowing a file path doesn't necessarily help. So to be safe, for now let's just show the inode number, not the path. If someone really wants to know a path they can use 'find -inum'. Fixes: b1c0ec3599f4 ("fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY ioctl") Cc: <stable@vger.kernel.org> # v5.4+ Link: https://lore.kernel.org/r/20200120060732.390362-1-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-12-31fscrypt: support passing a keyring key to FS_IOC_ADD_ENCRYPTION_KEYEric Biggers
Extend the FS_IOC_ADD_ENCRYPTION_KEY ioctl to allow the raw key to be specified by a Linux keyring key, rather than specified directly. This is useful because fscrypt keys belong to a particular filesystem instance, so they are destroyed when that filesystem is unmounted. Usually this is desired. But in some cases, userspace may need to unmount and re-mount the filesystem while keeping the keys, e.g. during a system update. This requires keeping the keys somewhere else too. The keys could be kept in memory in a userspace daemon. But depending on the security architecture and assumptions, it can be preferable to keep them only in kernel memory, where they are unreadable by userspace. We also can't solve this by going back to the original fscrypt API (where for each file, the master key was looked up in the process's keyring hierarchy) because that caused lots of problems of its own. Therefore, add the ability for FS_IOC_ADD_ENCRYPTION_KEY to accept a Linux keyring key. This solves the problem by allowing userspace to (if needed) save the keys securely in a Linux keyring for re-provisioning, while still using the new fscrypt key management ioctls. This is analogous to how dm-crypt accepts a Linux keyring key, but the key is then stored internally in the dm-crypt data structures rather than being looked up again each time the dm-crypt device is accessed. Use a custom key type "fscrypt-provisioning" rather than one of the existing key types such as "logon". This is strongly desired because it enforces that these keys are only usable for a particular purpose: for fscrypt as input to a particular KDF. Otherwise, the keys could also be passed to any kernel API that accepts a "logon" key with any service prefix, e.g. dm-crypt, UBIFS, or (recently proposed) AF_ALG. This would risk leaking information about the raw key despite it ostensibly being unreadable. Of course, this mistake has already been made for multiple kernel APIs; but since this is a new API, let's do it right. This patch has been tested using an xfstest which I wrote to test it. Link: https://lore.kernel.org/r/20191119222447.226853-1-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-12-09treewide: Use sizeof_field() macroPankaj Bharadiya
Replace all the occurrences of FIELD_SIZEOF() with sizeof_field() except at places where these are defined. Later patches will remove the unused definition of FIELD_SIZEOF(). This patch is generated using following script: EXCLUDE_FILES="include/linux/stddef.h|include/linux/kernel.h" git grep -l -e "\bFIELD_SIZEOF\b" | while read file; do if [[ "$file" =~ $EXCLUDE_FILES ]]; then continue fi sed -i -e 's/\bFIELD_SIZEOF\b/sizeof_field/g' $file; done Signed-off-by: Pankaj Bharadiya <pankaj.laxminarayan.bharadiya@intel.com> Link: https://lore.kernel.org/r/20190924105839.110713-3-pankaj.laxminarayan.bharadiya@intel.com Co-developed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: David Miller <davem@davemloft.net> # for net
2019-11-06fscrypt: add support for IV_INO_LBLK_64 policiesEric Biggers
Inline encryption hardware compliant with the UFS v2.1 standard or with the upcoming version of the eMMC standard has the following properties: (1) Per I/O request, the encryption key is specified by a previously loaded keyslot. There might be only a small number of keyslots. (2) Per I/O request, the starting IV is specified by a 64-bit "data unit number" (DUN). IV bits 64-127 are assumed to be 0. The hardware automatically increments the DUN for each "data unit" of configurable size in the request, e.g. for each filesystem block. Property (1) makes it inefficient to use the traditional fscrypt per-file keys. Property (2) precludes the use of the existing DIRECT_KEY fscrypt policy flag, which needs at least 192 IV bits. Therefore, add a new fscrypt policy flag IV_INO_LBLK_64 which causes the encryption to modified as follows: - The encryption keys are derived from the master key, encryption mode number, and filesystem UUID. - The IVs are chosen as (inode_number << 32) | file_logical_block_num. For filenames encryption, file_logical_block_num is 0. Since the file nonces aren't used in the key derivation, many files may share the same encryption key. This is much more efficient on the target hardware. Including the inode number in the IVs and mixing the filesystem UUID into the keys ensures that data in different files is nevertheless still encrypted differently. Additionally, limiting the inode and block numbers to 32 bits and placing the block number in the low bits maintains compatibility with the 64-bit DUN convention (property (2) above). Since this scheme assumes that inode numbers are stable (which may preclude filesystem shrinking) and that inode and file logical block numbers are at most 32-bit, IV_INO_LBLK_64 will only be allowed on filesystems that meet these constraints. These are acceptable limitations for the cases where this format would actually be used. Note that IV_INO_LBLK_64 is an on-disk format, not an implementation. This patch just adds support for it using the existing filesystem layer encryption. A later patch will add support for inline encryption. Reviewed-by: Paul Crowley <paulcrowley@google.com> Co-developed-by: Satya Tangirala <satyat@google.com> Signed-off-by: Satya Tangirala <satyat@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: require that key be added when setting a v2 encryption policyEric Biggers
By looking up the master keys in a filesystem-level keyring rather than in the calling processes' key hierarchy, it becomes possible for a user to set an encryption policy which refers to some key they don't actually know, then encrypt their files using that key. Cryptographically this isn't much of a problem, but the semantics of this would be a bit weird. Thus, enforce that a v2 encryption policy can only be set if the user has previously added the key, or has capable(CAP_FOWNER). We tolerate that this problem will continue to exist for v1 encryption policies, however; there is no way around that. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS ioctlEric Biggers
Add a root-only variant of the FS_IOC_REMOVE_ENCRYPTION_KEY ioctl which removes all users' claims of the key, not just the current user's claim. I.e., it always removes the key itself, no matter how many users have added it. This is useful for forcing a directory to be locked, without having to figure out which user ID(s) the key was added under. This is planned to be used by a command like 'sudo fscrypt lock DIR --all-users' in the fscrypt userspace tool (http://github.com/google/fscrypt). Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: allow unprivileged users to add/remove keys for v2 policiesEric Biggers
Allow the FS_IOC_ADD_ENCRYPTION_KEY and FS_IOC_REMOVE_ENCRYPTION_KEY ioctls to be used by non-root users to add and remove encryption keys from the filesystem-level crypto keyrings, subject to limitations. Motivation: while privileged fscrypt key management is sufficient for some users (e.g. Android and Chromium OS, where a privileged process manages all keys), the old API by design also allows non-root users to set up and use encrypted directories, and we don't want to regress on that. Especially, we don't want to force users to continue using the old API, running into the visibility mismatch between files and keyrings and being unable to "lock" encrypted directories. Intuitively, the ioctls have to be privileged since they manipulate filesystem-level state. However, it's actually safe to make them unprivileged if we very carefully enforce some specific limitations. First, each key must be identified by a cryptographic hash so that a user can't add the wrong key for another user's files. For v2 encryption policies, we use the key_identifier for this. v1 policies don't have this, so managing keys for them remains privileged. Second, each key a user adds is charged to their quota for the keyrings service. Thus, a user can't exhaust memory by adding a huge number of keys. By default each non-root user is allowed up to 200 keys; this can be changed using the existing sysctl 'kernel.keys.maxkeys'. Third, if multiple users add the same key, we keep track of those users of the key (of which there remains a single copy), and won't really remove the key, i.e. "lock" the encrypted files, until all those users have removed it. This prevents denial of service attacks that would be possible under simpler schemes, such allowing the first user who added a key to remove it -- since that could be a malicious user who has compromised the key. Of course, encryption keys should be kept secret, but the idea is that using encryption should never be *less* secure than not using encryption, even if your key was compromised. We tolerate that a user will be unable to really remove a key, i.e. unable to "lock" their encrypted files, if another user has added the same key. But in a sense, this is actually a good thing because it will avoid providing a false notion of security where a key appears to have been removed when actually it's still in memory, available to any attacker who compromises the operating system kernel. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: v2 encryption policy supportEric Biggers
Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: add FS_IOC_GET_ENCRYPTION_KEY_STATUS ioctlEric Biggers
Add a new fscrypt ioctl, FS_IOC_GET_ENCRYPTION_KEY_STATUS. Given a key specified by 'struct fscrypt_key_specifier' (the same way a key is specified for the other fscrypt key management ioctls), it returns status information in a 'struct fscrypt_get_key_status_arg'. The main motivation for this is that applications need to be able to check whether an encrypted directory is "unlocked" or not, so that they can add the key if it is not, and avoid adding the key (which may involve prompting the user for a passphrase) if it already is. It's possible to use some workarounds such as checking whether opening a regular file fails with ENOKEY, or checking whether the filenames "look like gibberish" or not. However, no workaround is usable in all cases. Like the other key management ioctls, the keyrings syscalls may seem at first to be a good fit for this. Unfortunately, they are not. Even if we exposed the keyring ID of the ->s_master_keys keyring and gave everyone Search permission on it (note: currently the keyrings permission system would also allow everyone to "invalidate" the keyring too), the fscrypt keys have an additional state that doesn't map cleanly to the keyrings API: the secret can be removed, but we can be still tracking the files that were using the key, and the removal can be re-attempted or the secret added again. After later patches, some applications will also need a way to determine whether a key was added by the current user vs. by some other user. Reserved fields are included in fscrypt_get_key_status_arg for this and other future extensions. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY ioctlEric Biggers
Add a new fscrypt ioctl, FS_IOC_REMOVE_ENCRYPTION_KEY. This ioctl removes an encryption key that was added by FS_IOC_ADD_ENCRYPTION_KEY. It wipes the secret key itself, then "locks" the encrypted files and directories that had been unlocked using that key -- implemented by evicting the relevant dentries and inodes from the VFS caches. The problem this solves is that many fscrypt users want the ability to remove encryption keys, causing the corresponding encrypted directories to appear "locked" (presented in ciphertext form) again. Moreover, users want removing an encryption key to *really* remove it, in the sense that the removed keys cannot be recovered even if kernel memory is compromised, e.g. by the exploit of a kernel security vulnerability or by a physical attack. This is desirable after a user logs out of the system, for example. In many cases users even already assume this to be the case and are surprised to hear when it's not. It is not sufficient to simply unlink the master key from the keyring (or to revoke or invalidate it), since the actual encryption transform objects are still pinned in memory by their inodes. Therefore, to really remove a key we must also evict the relevant inodes. Currently one workaround is to run 'sync && echo 2 > /proc/sys/vm/drop_caches'. But, that evicts all unused inodes in the system rather than just the inodes associated with the key being removed, causing severe performance problems. Moreover, it requires root privileges, so regular users can't "lock" their encrypted files. Another workaround, used in Chromium OS kernels, is to add a new VFS-level ioctl FS_IOC_DROP_CACHE which is a more restricted version of drop_caches that operates on a single super_block. It does: shrink_dcache_sb(sb); invalidate_inodes(sb, false); But it's still a hack. Yet, the major users of filesystem encryption want this feature badly enough that they are actually using these hacks. To properly solve the problem, start maintaining a list of the inodes which have been "unlocked" using each master key. Originally this wasn't possible because the kernel didn't keep track of in-use master keys at all. But, with the ->s_master_keys keyring it is now possible. Then, add an ioctl FS_IOC_REMOVE_ENCRYPTION_KEY. It finds the specified master key in ->s_master_keys, then wipes the secret key itself, which prevents any additional inodes from being unlocked with the key. Then, it syncs the filesystem and evicts the inodes in the key's list. The normal inode eviction code will free and wipe the per-file keys (in ->i_crypt_info). Note that freeing ->i_crypt_info without evicting the inodes was also considered, but would have been racy. Some inodes may still be in use when a master key is removed, and we can't simply revoke random file descriptors, mmap's, etc. Thus, the ioctl simply skips in-use inodes, and returns -EBUSY to indicate that some inodes weren't evicted. The master key *secret* is still removed, but the fscrypt_master_key struct remains to keep track of the remaining inodes. Userspace can then retry the ioctl to evict the remaining inodes. Alternatively, if userspace adds the key again, the refreshed secret will be associated with the existing list of inodes so they remain correctly tracked for future key removals. The ioctl doesn't wipe pagecache pages. Thus, we tolerate that after a kernel compromise some portions of plaintext file contents may still be recoverable from memory. This can be solved by enabling page poisoning system-wide, which security conscious users may choose to do. But it's very difficult to solve otherwise, e.g. note that plaintext file contents may have been read in other places than pagecache pages. Like FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY is initially restricted to privileged users only. This is sufficient for some use cases, but not all. A later patch will relax this restriction, but it will require introducing key hashes, among other changes. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctlEric Biggers
Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an encryption key to the filesystem's fscrypt keyring ->s_master_keys, making any files encrypted with that key appear "unlocked". Why we need this ~~~~~~~~~~~~~~~~ The main problem is that the "locked/unlocked" (ciphertext/plaintext) status of encrypted files is global, but the fscrypt keys are not. fscrypt only looks for keys in the keyring(s) the process accessing the filesystem is subscribed to: the thread keyring, process keyring, and session keyring, where the session keyring may contain the user keyring. Therefore, userspace has to put fscrypt keys in the keyrings for individual users or sessions. But this means that when a process with a different keyring tries to access encrypted files, whether they appear "unlocked" or not is nondeterministic. This is because it depends on whether the files are currently present in the inode cache. Fixing this by consistently providing each process its own view of the filesystem depending on whether it has the key or not isn't feasible due to how the VFS caches work. Furthermore, while sometimes users expect this behavior, it is misguided for two reasons. First, it would be an OS-level access control mechanism largely redundant with existing access control mechanisms such as UNIX file permissions, ACLs, LSMs, etc. Encryption is actually for protecting the data at rest. Second, almost all users of fscrypt actually do need the keys to be global. The largest users of fscrypt, Android and Chromium OS, achieve this by having PID 1 create a "session keyring" that is inherited by every process. This works, but it isn't scalable because it prevents session keyrings from being used for any other purpose. On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't similarly abuse the session keyring, so to make 'sudo' work on all systems it has to link all the user keyrings into root's user keyring [2]. This is ugly and raises security concerns. Moreover it can't make the keys available to system services, such as sshd trying to access the user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to read certificates from the user's home directory (see [5]); or to Docker containers (see [6], [7]). By having an API to add a key to the *filesystem* we'll be able to fix the above bugs, remove userspace workarounds, and clearly express the intended semantics: the locked/unlocked status of an encrypted directory is global, and encryption is orthogonal to OS-level access control. Why not use the add_key() syscall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use an ioctl for this API rather than the existing add_key() system call because the ioctl gives us the flexibility needed to implement fscrypt-specific semantics that will be introduced in later patches: - Supporting key removal with the semantics such that the secret is removed immediately and any unused inodes using the key are evicted; also, the eviction of any in-use inodes can be retried. - Calculating a key-dependent cryptographic identifier and returning it to userspace. - Allowing keys to be added and removed by non-root users, but only keys for v2 encryption policies; and to prevent denial-of-service attacks, users can only remove keys they themselves have added, and a key is only really removed after all users who added it have removed it. Trying to shoehorn these semantics into the keyrings syscalls would be very difficult, whereas the ioctls make things much easier. However, to reuse code the implementation still uses the keyrings service internally. Thus we get lockless RCU-mode key lookups without having to re-implement it, and the keys automatically show up in /proc/keys for debugging purposes. References: [1] https://github.com/google/fscrypt [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939 [4] https://github.com/google/fscrypt/issues/116 [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715 [6] https://github.com/google/fscrypt/issues/128 [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>