summaryrefslogtreecommitdiff
path: root/include/linux/arch_topology.h
AgeCommit message (Collapse)Author
2021-10-15topology: Represent clusters of CPUs within a dieJonathan Cameron
Both ACPI and DT provide the ability to describe additional layers of topology between that of individual cores and higher level constructs such as the level at which the last level cache is shared. In ACPI this can be represented in PPTT as a Processor Hierarchy Node Structure [1] that is the parent of the CPU cores and in turn has a parent Processor Hierarchy Nodes Structure representing a higher level of topology. For example Kunpeng 920 has 6 or 8 clusters in each NUMA node, and each cluster has 4 cpus. All clusters share L3 cache data, but each cluster has local L3 tag. On the other hand, each clusters will share some internal system bus. +-----------------------------------+ +---------+ | +------+ +------+ +--------------------------+ | | | CPU0 | | cpu1 | | +-----------+ | | | +------+ +------+ | | | | | | +----+ L3 | | | | +------+ +------+ cluster | | tag | | | | | CPU2 | | CPU3 | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +----+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | L3 | | data | +-----------------------------------+ | | | +------+ +------+ | +-----------+ | | | | | | | | | | | | | +------+ +------+ +----+ L3 | | | | | | tag | | | | +------+ +------+ | | | | | | | | | | | +-----------+ | | | +------+ +------+ +--------------------------+ | +-----------------------------------| | | +-----------------------------------| | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | +----+ L3 | | | | +------+ +------+ | | tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +---+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +--+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | +---------+ +-----------------------------------+ That means spreading tasks among clusters will bring more bandwidth while packing tasks within one cluster will lead to smaller cache synchronization latency. So both kernel and userspace will have a chance to leverage this topology to deploy tasks accordingly to achieve either smaller cache latency within one cluster or an even distribution of load among clusters for higher throughput. This patch exposes cluster topology to both kernel and userspace. Libraried like hwloc will know cluster by cluster_cpus and related sysfs attributes. PoC of HWLOC support at [2]. Note this patch only handle the ACPI case. Special consideration is needed for SMT processors, where it is necessary to move 2 levels up the hierarchy from the leaf nodes (thus skipping the processor core level). Note that arm64 / ACPI does not provide any means of identifying a die level in the topology but that may be unrelate to the cluster level. [1] ACPI Specification 6.3 - section 5.2.29.1 processor hierarchy node structure (Type 0) [2] https://github.com/hisilicon/hwloc/tree/linux-cluster Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Tian Tao <tiantao6@hisilicon.com> Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210924085104.44806-2-21cnbao@gmail.com
2021-03-22cpufreq: CPPC: Add support for frequency invarianceViresh Kumar
The Frequency Invariance Engine (FIE) is providing a frequency scaling correction factor that helps achieve more accurate load-tracking. Normally, this scaling factor can be obtained directly with the help of the cpufreq drivers as they know the exact frequency the hardware is running at. But that isn't the case for CPPC cpufreq driver. Another way of obtaining that is using the arch specific counter support, which is already present in kernel, but that hardware is optional for platforms. This patch updates the CPPC driver to register itself with the topology core to provide its own implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which gets called by the scheduler on every tick. Note that the arch specific counters have higher priority than CPPC counters, if available, though the CPPC driver doesn't need to have any special handling for that. On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we reach here from hard-irq context), which then schedules a normal work item and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable based on the counter updates since the last tick. To allow platforms to disable this CPPC counter-based frequency invariance support, this is all done under CONFIG_ACPI_CPPC_CPUFREQ_FIE, which is enabled by default. This also exports sched_setattr_nocheck() as the CPPC driver can be built as a module. Cc: linux-acpi@vger.kernel.org Reviewed-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Acked-by: Rafael J. Wysocki <rafael@kernel.org> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
2021-03-10arch_topology: Allow multiple entities to provide sched_freq_tick() callbackViresh Kumar
This patch attempts to make it generic enough so other parts of the kernel can also provide their own implementation of scale_freq_tick() callback, which is called by the scheduler periodically to update the per-cpu arch_freq_scale variable. The implementations now need to provide 'struct scale_freq_data' for the CPUs for which they have hardware counters available, and a callback gets registered for each possible CPU in a per-cpu variable. The arch specific (or ARM AMU) counters are updated to adapt to this and they take the highest priority if they are available, i.e. they will be used instead of CPPC based counters for example. The special code to rebuild the sched domains, in case invariance status change for the system, is moved out of arm64 specific code and is added to arch_topology.c. Note that this also defines SCALE_FREQ_SOURCE_CPUFREQ but doesn't use it and it is added to show that cpufreq is also acts as source of information for FIE and will be used by default if no other counters are supported for a platform. Reviewed-by: Ionela Voinescu <ionela.voinescu@arm.com> Tested-by: Ionela Voinescu <ionela.voinescu@arm.com> Acked-by: Will Deacon <will@kernel.org> # for arm64 Tested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
2021-03-10arch_topology: Rename freq_scale as arch_freq_scaleViresh Kumar
Rename freq_scale to a less generic name, as it will get exported soon for modules. Since x86 already names its own implementation of this as arch_freq_scale, lets stick to that. Suggested-by: Will Deacon <will@kernel.org> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
2020-10-08cpufreq,arm,arm64: restructure definitions of arch_set_freq_scale()Ionela Voinescu
Compared to other arch_* functions, arch_set_freq_scale() has an atypical weak definition that can be replaced by a strong architecture specific implementation. The more typical support for architectural functions involves defining an empty stub in a header file if the symbol is not already defined in architecture code. Some examples involve: - #define arch_scale_freq_capacity topology_get_freq_scale - #define arch_scale_freq_invariant topology_scale_freq_invariant - #define arch_scale_cpu_capacity topology_get_cpu_scale - #define arch_update_cpu_topology topology_update_cpu_topology - #define arch_scale_thermal_pressure topology_get_thermal_pressure - #define arch_set_thermal_pressure topology_set_thermal_pressure Bring arch_set_freq_scale() in line with these functions by renaming it to topology_set_freq_scale() in the arch topology driver, and by defining the arch_set_freq_scale symbol to point to the new function for arm and arm64. While there are other users of the arch_topology driver, this patch defines arch_set_freq_scale for arm and arm64 only, due to their existing definitions of arch_scale_freq_capacity. This is the getter function of the frequency invariance scale factor and without a getter function, the setter function - arch_set_freq_scale() has not purpose. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Sudeep Holla <sudeep.holla@arm.com> (BL_SWITCHER and topology parts) Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-09-18arch_topology, arm, arm64: define arch_scale_freq_invariant()Valentin Schneider
arch_scale_freq_invariant() is used by schedutil to determine whether the scheduler's load-tracking signals are frequency invariant. Its definition is overridable, though by default it is hardcoded to 'true' if arch_scale_freq_capacity() is defined ('false' otherwise). This behaviour is not overridden on arm, arm64 and other users of the generic arch topology driver, which is somewhat precarious: arch_scale_freq_capacity() will always be defined, yet not all cpufreq drivers are guaranteed to drive the frequency invariance scale factor setting. In other words, the load-tracking signals may very well *not* be frequency invariant. Now that cpufreq can be queried on whether the current driver is driving the Frequency Invariance (FI) scale setting, the current situation can be improved. This combines the query of whether cpufreq supports the setting of the frequency scale factor, with whether all online CPUs are counter-based FI enabled. While cpufreq FI enablement applies at system level, for all CPUs, counter-based FI support could also be used for only a subset of CPUs to set the invariance scale factor. Therefore, if cpufreq-based FI support is present, we consider the system to be invariant. If missing, we require all online CPUs to be counter-based FI enabled in order for the full system to be considered invariant. If the system ends up not being invariant, a new condition is needed in the counter initialization code that disables all scale factor setting based on counters. Precedence of counters over cpufreq use is not important here. The invariant status is only given to the system if all CPUs have at least one method of setting the frequency scale factor. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-09-18arch_topology, cpufreq: constify arch_* cpumasksValentin Schneider
The passed cpumask arguments to arch_set_freq_scale() and arch_freq_counters_available() are only iterated over, so reflect this in the prototype. This also allows to pass system cpumasks like cpu_online_mask without getting a warning. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-07-22arch_topology, sched/core: Cleanup thermal pressure definitionValentin Schneider
The following commit: 14533a16c46d ("thermal/cpu-cooling, sched/core: Move the arch_set_thermal_pressure() API to generic scheduler code") moved the definition of arch_set_thermal_pressure() to sched/core.c, but kept its declaration in linux/arch_topology.h. When building e.g. an x86 kernel with CONFIG_SCHED_THERMAL_PRESSURE=y, cpufreq_cooling.c ends up getting the declaration of arch_set_thermal_pressure() from include/linux/arch_topology.h, which is somewhat awkward. On top of this, sched/core.c unconditionally defines o The thermal_pressure percpu variable o arch_set_thermal_pressure() while arch_scale_thermal_pressure() does nothing unless redefined by the architecture. arch_*() functions are meant to be defined by architectures, so revert the aforementioned commit and re-implement it in a way that keeps arch_set_thermal_pressure() architecture-definable, and doesn't define the thermal pressure percpu variable for kernels that don't need it (CONFIG_SCHED_THERMAL_PRESSURE=n). Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200712165917.9168-2-valentin.schneider@arm.com
2020-03-31Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "The bulk is in-kernel pointer authentication, activity monitors and lots of asm symbol annotations. I also queued the sys_mremap() patch commenting the asymmetry in the address untagging. Summary: - In-kernel Pointer Authentication support (previously only offered to user space). - ARM Activity Monitors (AMU) extension support allowing better CPU utilisation numbers for the scheduler (frequency invariance). - Memory hot-remove support for arm64. - Lots of asm annotations (SYM_*) in preparation for the in-kernel Branch Target Identification (BTI) support. - arm64 perf updates: ARMv8.5-PMU 64-bit counters, refactoring the PMU init callbacks, support for new DT compatibles. - IPv6 header checksum optimisation. - Fixes: SDEI (software delegated exception interface) double-lock on hibernate with shared events. - Minor clean-ups and refactoring: cpu_ops accessor, cpu_do_switch_mm() converted to C, cpufeature finalisation helper. - sys_mremap() comment explaining the asymmetric address untagging behaviour" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (81 commits) mm/mremap: Add comment explaining the untagging behaviour of mremap() arm64: head: Convert install_el2_stub to SYM_INNER_LABEL arm64: Introduce get_cpu_ops() helper function arm64: Rename cpu_read_ops() to init_cpu_ops() arm64: Declare ACPI parking protocol CPU operation if needed arm64: move kimage_vaddr to .rodata arm64: use mov_q instead of literal ldr arm64: Kconfig: verify binutils support for ARM64_PTR_AUTH lkdtm: arm64: test kernel pointer authentication arm64: compile the kernel with ptrauth return address signing kconfig: Add support for 'as-option' arm64: suspend: restore the kernel ptrauth keys arm64: __show_regs: strip PAC from lr in printk arm64: unwind: strip PAC from kernel addresses arm64: mask PAC bits of __builtin_return_address arm64: initialize ptrauth keys for kernel booting task arm64: initialize and switch ptrauth kernel keys arm64: enable ptrauth earlier arm64: cpufeature: handle conflicts based on capability arm64: cpufeature: Move cpu capability helpers inside C file ...
2020-03-30Merge branch 'sched-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: "The main changes in this cycle are: - Various NUMA scheduling updates: harmonize the load-balancer and NUMA placement logic to not work against each other. The intended result is better locality, better utilization and fewer migrations. - Introduce Thermal Pressure tracking and optimizations, to improve task placement on thermally overloaded systems. - Implement frequency invariant scheduler accounting on (some) x86 CPUs. This is done by observing and sampling the 'recent' CPU frequency average at ~tick boundaries. The CPU provides this data via the APERF/MPERF MSRs. This hopefully makes our capacity estimates more precise and keeps tasks on the same CPU better even if it might seem overloaded at a lower momentary frequency. (As usual, turbo mode is a complication that we resolve by observing the maximum frequency and renormalizing to it.) - Add asymmetric CPU capacity wakeup scan to improve capacity utilization on asymmetric topologies. (big.LITTLE systems) - PSI fixes and optimizations. - RT scheduling capacity awareness fixes & improvements. - Optimize the CONFIG_RT_GROUP_SCHED constraints code. - Misc fixes, cleanups and optimizations - see the changelog for details" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits) threads: Update PID limit comment according to futex UAPI change sched/fair: Fix condition of avg_load calculation sched/rt: cpupri_find: Trigger a full search as fallback kthread: Do not preempt current task if it is going to call schedule() sched/fair: Improve spreading of utilization sched: Avoid scale real weight down to zero psi: Move PF_MEMSTALL out of task->flags MAINTAINERS: Add maintenance information for psi psi: Optimize switching tasks inside shared cgroups psi: Fix cpu.pressure for cpu.max and competing cgroups sched/core: Distribute tasks within affinity masks sched/fair: Fix enqueue_task_fair warning thermal/cpu-cooling, sched/core: Move the arch_set_thermal_pressure() API to generic scheduler code sched/rt: Remove unnecessary push for unfit tasks sched/rt: Allow pulling unfitting task sched/rt: Optimize cpupri_find() on non-heterogenous systems sched/rt: Re-instate old behavior in select_task_rq_rt() sched/rt: cpupri_find: Implement fallback mechanism for !fit case sched/fair: Fix reordering of enqueue/dequeue_task_fair() sched/fair: Fix runnable_avg for throttled cfs ...
2020-03-06arm64: use activity monitors for frequency invarianceIonela Voinescu
The Frequency Invariance Engine (FIE) is providing a frequency scaling correction factor that helps achieve more accurate load-tracking. So far, for arm and arm64 platforms, this scale factor has been obtained based on the ratio between the current frequency and the maximum supported frequency recorded by the cpufreq policy. The setting of this scale factor is triggered from cpufreq drivers by calling arch_set_freq_scale. The current frequency used in computation is the frequency requested by a governor, but it may not be the frequency that was implemented by the platform. This correction factor can also be obtained using a core counter and a constant counter to get information on the performance (frequency based only) obtained in a period of time. This will more accurately reflect the actual current frequency of the CPU, compared with the alternative implementation that reflects the request of a performance level from the OS. Therefore, implement arch_scale_freq_tick to use activity monitors, if present, for the computation of the frequency scale factor. The use of AMU counters depends on: - CONFIG_ARM64_AMU_EXTN - depents on the AMU extension being present - CONFIG_CPU_FREQ - the current frequency obtained using counter information is divided by the maximum frequency obtained from the cpufreq policy. While it is possible to have a combination of CPUs in the system with and without support for activity monitors, the use of counters for frequency invariance is only enabled for a CPU if all related CPUs (CPUs in the same frequency domain) support and have enabled the core and constant activity monitor counters. In this way, there is a clear separation between the policies for which arch_set_freq_scale (cpufreq based FIE) is used, and the policies for which arch_scale_freq_tick (counter based FIE) is used to set the frequency scale factor. For this purpose, a late_initcall_sync is registered to trigger validation work for policies that will enable or disable the use of AMU counters for frequency invariance. If CONFIG_CPU_FREQ is not defined, the use of counters is enabled on all CPUs only if all possible CPUs correctly support the necessary counters. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Reviewed-by: Lukasz Luba <lukasz.luba@arm.com> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-03-06drivers/base/arch_topology: Add infrastructure to store and update ↵Thara Gopinath
instantaneous thermal pressure Add architecture specific APIs to update and track thermal pressure on a per CPU basis. A per CPU variable thermal_pressure is introduced to keep track of instantaneous per CPU thermal pressure. Thermal pressure is the delta between maximum capacity and capped capacity due to a thermal event. topology_get_thermal_pressure can be hooked into the scheduler specified arch_scale_thermal_pressure to retrieve instantaneous thermal pressure of a CPU. arch_set_thermal_pressure can be used to update the thermal pressure. Considering topology_get_thermal_pressure reads thermal_pressure and arch_set_thermal_pressure writes into thermal_pressure, one can argue for some sort of locking mechanism to avoid a stale value. But considering topology_get_thermal_pressure can be called from a system critical path like scheduler tick function, a locking mechanism is not ideal. This means that it is possible the thermal_pressure value used to calculate average thermal pressure for a CPU can be stale for up to 1 tick period. Signed-off-by: Thara Gopinath <thara.gopinath@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20200222005213.3873-4-thara.gopinath@linaro.org
2020-02-14drivers base/arch_topology: Reformat topology_get_[cpu/freq]_scale() ↵Dietmar Eggemann
function name The storage class and inline definition as well as the return type, function name and parameter list fit all into one line. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Link: https://lore.kernel.org/r/20200211181515.32570-3-dietmar.eggemann@arm.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-14drivers base/arch_topology: Remove 'struct sched_domain' forward declarationDietmar Eggemann
The sched domain pointer argument from topology_get_freq_scale() and topology_get_cpu_scale() got removed by commit 7673c8a4c75d ("sched/cpufreq: Remove arch_scale_freq_capacity()'s 'sd' parameter") and commit 8ec59c0f5f49 ("sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()"). So the 'struct sched_domain' forward declaration is no longer needed. Remove it. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Link: https://lore.kernel.org/r/20200211181515.32570-2-dietmar.eggemann@arm.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-14cpu-topology: declare parse_acpi_topology in <linux/arch_topology.h>Ben Dooks (Codethink)
The parse_acpi_topology() is not declared anywhere which causes the following sparse warning: drivers/base/arch_topology.c:522:19: warning: symbol 'parse_acpi_topology' was not declared. Should it be static? Signed-off-by: Ben Dooks (Codethink) <ben.dooks@codethink.co.uk> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Link: https://lore.kernel.org/r/20191022084323.13594-1-ben.dooks@codethink.co.uk Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-22arm: Use common cpu_topology structure and functions.Atish Patra
Currently, ARM32 and ARM64 uses different data structures to represent their cpu topologies. Since, we are moving the ARM64 topology to common code to be used by other architectures, we can reuse that for ARM32 as well. Take this opprtunity to remove the redundant functions from ARM32 and reuse the common code instead. To: Russell King <linux@armlinux.org.uk> Signed-off-by: Atish Patra <atish.patra@wdc.com> Tested-by: Sudeep Holla <sudeep.holla@arm.com> (on TC2) Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Paul Walmsley <paul.walmsley@sifive.com>
2019-07-22cpu-topology: Move cpu topology code to common code.Atish Patra
Both RISC-V & ARM64 are using cpu-map device tree to describe their cpu topology. It's better to move the relevant code to a common place instead of duplicate code. To: Will Deacon <will.deacon@arm.com> To: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Atish Patra <atish.patra@wdc.com> [Tested on QDF2400] Tested-by: Jeffrey Hugo <jhugo@codeaurora.org> [Tested on Juno and other embedded platforms.] Tested-by: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Paul Walmsley <paul.walmsley@sifive.com>
2019-06-24sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()Vincent Guittot
The 'struct sched_domain *sd' parameter to arch_scale_cpu_capacity() is unused since commit: 765d0af19f5f ("sched/topology: Remove the ::smt_gain field from 'struct sched_domain'") Remove it. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: gregkh@linuxfoundation.org Cc: linux@armlinux.org.uk Cc: quentin.perret@arm.com Cc: rafael@kernel.org Link: https://lkml.kernel.org/r/1560783617-5827-1-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-09-10sched/topology, drivers/base/arch_topology: Rebuild the sched_domain ↵Morten Rasmussen
hierarchy when capacities change The setting of SD_ASYM_CPUCAPACITY depends on the per-CPU capacities. These might not have their final values when the hierarchy is initially built as the values depend on cpufreq to be initialized or the values being set through sysfs. To ensure that the flags are set correctly we need to rebuild the sched_domain hierarchy whenever the reported per-CPU capacity (arch_scale_cpu_capacity()) changes. This patch ensure that a full sched_domain rebuild happens when CPU capacity changes occur. Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: valentin.schneider@arm.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1532093554-30504-3-git-send-email-morten.rasmussen@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-10sched/cpufreq: Remove arch_scale_freq_capacity()'s 'sd' parameterJuri Lelli
The 'sd' parameter is never used in arch_scale_freq_capacity() (and it's hard to see where information coming from scheduling domains might help doing frequency invariance scaling). Remove it; also in anticipation of moving arch_scale_freq_capacity() outside CONFIG_SMP. Signed-off-by: Juri Lelli <juri.lelli@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: alessio.balsini@arm.com Cc: bristot@redhat.com Cc: claudio@evidence.eu.com Cc: dietmar.eggemann@arm.com Cc: joelaf@google.com Cc: juri.lelli@redhat.com Cc: luca.abeni@santannapisa.it Cc: mathieu.poirier@linaro.org Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Cc: rjw@rjwysocki.net Cc: rostedt@goodmis.org Cc: tkjos@android.com Cc: tommaso.cucinotta@santannapisa.it Cc: vincent.guittot@linaro.org Cc: viresh.kumar@linaro.org Link: http://lkml.kernel.org/r/20171204102325.5110-7-juri.lelli@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-13Merge branch 'pm-cpufreq'Rafael J. Wysocki
* pm-cpufreq: (22 commits) cpufreq: stats: Handle the case when trans_table goes beyond PAGE_SIZE cpufreq: arm_big_little: make cpufreq_arm_bL_ops structures const cpufreq: arm_big_little: make function arguments and structure pointer const cpufreq: pxa: convert to clock API cpufreq: speedstep-lib: mark expected switch fall-through cpufreq: ti-cpufreq: add missing of_node_put() cpufreq: dt: Remove support for Exynos4212 SoCs cpufreq: imx6q: Move speed grading check to cpufreq driver cpufreq: ti-cpufreq: kfree opp_data when failure cpufreq: SPEAr: pr_err() strings should end with newlines cpufreq: powernow-k8: pr_err() strings should end with newlines cpufreq: dt-platdev: drop socionext,uniphier-ld6b from whitelist arm64: wire cpu-invariant accounting support up to the task scheduler arm64: wire frequency-invariant accounting support up to the task scheduler arm: wire cpu-invariant accounting support up to the task scheduler arm: wire frequency-invariant accounting support up to the task scheduler drivers base/arch_topology: allow inlining cpu-invariant accounting support drivers base/arch_topology: provide frequency-invariant accounting support cpufreq: dt: invoke frequency-invariance setter function cpufreq: arm_big_little: invoke frequency-invariance setter function ...
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-03drivers base/arch_topology: allow inlining cpu-invariant accounting supportDietmar Eggemann
Allow inlining of topology_get_cpu_scale() into the task scheduler fast path (e.g. __update_load_avg_se()) by coding it as a static inline function in the arch topology header file. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-10-03drivers base/arch_topology: provide frequency-invariant accounting supportDietmar Eggemann
Implements the arch-specific (arm and arm64) frequency-invariance setter function arch_set_freq_scale() which provides the following frequency scaling factor: current_freq(cpu) << SCHED_CAPACITY_SHIFT / max_supported_freq(cpu) One possible consumer of the frequency-invariance getter function topology_get_freq_scale() is the Per-Entity Load Tracking (PELT) mechanism of the task scheduler. Allow inlining of topology_get_freq_scale() into the task scheduler fast path (e.g. __update_load_avg_se()) by coding it as a static inline function in the arch topology header file. Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-07-17arch_topology: Change return type of topology_parse_cpu_capacity() to boolViresh Kumar
topology_parse_cpu_capacity() returns 1 on success and 0 on errors. Make it return bool instead of int as that suits the purpose better. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Reviewed-by: Juri Lelli <juri.lelli@arm.com> Tested-by: Juri Lelli <juri.lelli@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-03arm,arm64,drivers: add a prefix to drivers arch_topology interfacesJuri Lelli
Now that some functions that deal with arch topology information live under drivers, there is a clash of naming that might create confusion. Tidy things up by creating a topology namespace for interfaces used by arch code; achieve this by prepending a 'topology_' prefix to driver interfaces. Signed-off-by: Juri Lelli <juri.lelli@arm.com> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-03arm,arm64,drivers: move externs in a new header fileJuri Lelli
Create a new header file (include/linux/arch_topology.h) and put there declarations of interfaces used by arm, arm64 and drivers code. Signed-off-by: Juri Lelli <juri.lelli@arm.com> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>