summaryrefslogtreecommitdiff
path: root/include/linux/bpf_local_storage.h
AgeCommit message (Collapse)Author
2023-03-25bpf: Use bpf_mem_cache_alloc/free for bpf_local_storageMartin KaFai Lau
This patch uses bpf_mem_cache_alloc/free for allocating and freeing bpf_local_storage for task and cgroup storage. The changes are similar to the previous patch. A few things that worth to mention for bpf_local_storage: The local_storage is freed when the last selem is deleted. Before deleting a selem from local_storage, it needs to retrieve the local_storage->smap because the bpf_selem_unlink_storage_nolock() may have set it to NULL. Note that local_storage->smap may have already been NULL when the selem created this local_storage has been removed. In this case, call_rcu will be used to free the local_storage. Also, the bpf_ma (true or false) value is needed before calling bpf_local_storage_free(). The bpf_ma can either be obtained from the local_storage->smap (if available) or any of its selem's smap. A new helper check_storage_bpf_ma() is added to obtain bpf_ma for a deleting bpf_local_storage. When bpf_local_storage_alloc getting a reused memory, all fields are either in the correct values or will be initialized. 'cache[]' must already be all NULLs. 'list' must be empty. Others will be initialized. Cc: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20230322215246.1675516-4-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-25bpf: Use bpf_mem_cache_alloc/free in bpf_local_storage_elemMartin KaFai Lau
This patch uses bpf_mem_alloc for the task and cgroup local storage that the bpf prog can easily get a hold of the storage owner's PTR_TO_BTF_ID. eg. bpf_get_current_task_btf() can be used in some of the kmalloc code path which will cause deadlock/recursion. bpf_mem_cache_alloc is deadlock free and will solve a legit use case in [1]. For sk storage, its batch creation benchmark shows a few percent regression when the sk create/destroy batch size is larger than 32. The sk creation/destruction happens much more often and depends on external traffic. Considering it is hypothetical to be able to cause deadlock with sk storage, it can cross the bridge to use bpf_mem_alloc till a legit (ie. useful) use case comes up. For inode storage, bpf_local_storage_destroy() is called before waiting for a rcu gp and its memory cannot be reused immediately. inode stays with kmalloc/kfree after the rcu [or tasks_trace] gp. A 'bool bpf_ma' argument is added to bpf_local_storage_map_alloc(). Only task and cgroup storage have 'bpf_ma == true' which means to use bpf_mem_cache_alloc/free(). This patch only changes selem to use bpf_mem_alloc for task and cgroup. The next patch will change the local_storage to use bpf_mem_alloc also for task and cgroup. Here is some more details on the changes: * memory allocation: After bpf_mem_cache_alloc(), the SDATA(selem)->data is zero-ed because bpf_mem_cache_alloc() could return a reused selem. It is to keep the existing bpf_map_kzalloc() behavior. Only SDATA(selem)->data is zero-ed. SDATA(selem)->data is the visible part to the bpf prog. No need to use zero_map_value() to do the zeroing because bpf_selem_free(..., reuse_now = true) ensures no bpf prog is using the selem before returning the selem through bpf_mem_cache_free(). For the internal fields of selem, they will be initialized when linking to the new smap and the new local_storage. When 'bpf_ma == false', nothing changes in this patch. It will stay with the bpf_map_kzalloc(). * memory free: The bpf_selem_free() and bpf_selem_free_rcu() are modified to handle the bpf_ma == true case. For the common selem free path where its owner is also being destroyed, the mem is freed in bpf_local_storage_destroy(), the owner (task and cgroup) has gone through a rcu gp. The memory can be reused immediately, so bpf_local_storage_destroy() will call bpf_selem_free(..., reuse_now = true) which will do bpf_mem_cache_free() for immediate reuse consideration. An exception is the delete elem code path. The delete elem code path is called from the helper bpf_*_storage_delete() and the syscall bpf_map_delete_elem(). This path is an unusual case for local storage because the common use case is to have the local storage staying with its owner life time so that the bpf prog and the user space does not have to monitor the owner's destruction. For the delete elem path, the selem cannot be reused immediately because there could be bpf prog using it. It will call bpf_selem_free(..., reuse_now = false) and it will wait for a rcu tasks trace gp before freeing the elem. The rcu callback is changed to do bpf_mem_cache_raw_free() instead of kfree(). When 'bpf_ma == false', it should be the same as before. __bpf_selem_free() is added to do the kfree_rcu and call_tasks_trace_rcu(). A few words on the 'reuse_now == true'. When 'reuse_now == true', it is still racing with bpf_local_storage_map_free which is under rcu protection, so it still needs to wait for a rcu gp instead of kfree(). Otherwise, the selem may be reused by slab for a totally different struct while the bpf_local_storage_map_free() is still using it (as a rcu reader). For the inode case, there may be other rcu readers also. In short, when bpf_ma == false and reuse_now == true => vanilla rcu. [1]: https://lore.kernel.org/bpf/20221118190109.1512674-1-namhyung@kernel.org/ Cc: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20230322215246.1675516-3-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-10bpf: Add bpf_selem_free()Martin KaFai Lau
This patch refactors the selem freeing logic into bpf_selem_free(). It is a preparation work for a later patch using bpf_mem_cache_alloc/free. The other kfree(selem) cases are also changed to bpf_selem_free(..., reuse_now = true). Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20230308065936.1550103-10-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-10bpf: Repurpose use_trace_rcu to reuse_now in bpf_local_storageMartin KaFai Lau
This patch re-purpose the use_trace_rcu to mean if the freed memory can be reused immediately or not. The use_trace_rcu is renamed to reuse_now. Other than the boolean test is reversed, it should be a no-op. The following explains the reason for the rename and how it will be used in a later patch. In a later patch, bpf_mem_cache_alloc/free will be used in the bpf_local_storage. The bpf mem allocator will reuse the freed memory immediately. Some of the free paths in bpf_local_storage does not support memory to be reused immediately. These paths are the "delete" elem cases from the bpf_*_storage_delete() helper and the map_delete_elem() syscall. Note that "delete" elem before the owner's (sk/task/cgrp/inode) lifetime ended is not the common usage for the local storage. The common free path, bpf_local_storage_destroy(), can reuse the memory immediately. This common path means the storage stays with its owner until the owner is destroyed. The above mentioned "delete" elem paths that cannot reuse immediately always has the 'use_trace_rcu == true'. The cases that is safe for immediate reuse always have 'use_trace_rcu == false'. Instead of adding another arg in a later patch, this patch re-purpose this arg to reuse_now and have the test logic reversed. In a later patch, 'reuse_now == true' will free to the bpf_mem_cache_free() where the memory can be reused immediately. 'reuse_now == false' will go through the call_rcu_tasks_trace(). Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20230308065936.1550103-7-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-10bpf: Remember smap in bpf_local_storageMartin KaFai Lau
This patch remembers which smap triggers the allocation of a 'struct bpf_local_storage' object. The local_storage is allocated during the very first selem added to the owner. The smap pointer is needed when using the bpf_mem_cache_free in a later patch because it needs to free to the correct smap's bpf_mem_alloc object. When a selem is being removed, it needs to check if it is the selem that triggers the creation of the local_storage. If it is, the local_storage->smap pointer will be reset to NULL. This NULL reset is done under the local_storage->lock in bpf_selem_unlink_storage_nolock() when a selem is being removed. Also note that the local_storage may not go away even local_storage->smap is NULL because there may be other selem still stored in the local_storage. Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20230308065936.1550103-6-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-10bpf: Refactor codes into bpf_local_storage_destroyMartin KaFai Lau
This patch first renames bpf_local_storage_unlink_nolock to bpf_local_storage_destroy(). It better reflects that it is only used when the storage's owner (sk/task/cgrp/inode) is being kfree(). All bpf_local_storage_destroy's caller is taking the spin lock and then free the storage. This patch also moves these two steps into the bpf_local_storage_destroy. This is a preparation work for a later patch that uses bpf_mem_cache_alloc/free in the bpf_local_storage. Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20230308065936.1550103-3-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-10bpf: Move a few bpf_local_storage functions to static scopeMartin KaFai Lau
This patch moves the bpf_local_storage_free_rcu() and bpf_selem_unlink_map() to static because they are not used outside of bpf_local_storage.c. Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20230308065936.1550103-2-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-07bpf, net: bpf_local_storage memory usageYafang Shao
A new helper is introduced into bpf_local_storage map to calculate the memory usage. This helper is also used by other maps like bpf_cgrp_storage, bpf_inode_storage, bpf_task_storage and etc. Note that currently the dynamically allocated storage elements are not counted in the usage, since it will take extra runtime overhead in the elements update or delete path. So let's put it aside now, and implement it in the future when someone really need it. Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Link: https://lore.kernel.org/r/20230305124615.12358-15-laoar.shao@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-10-25bpf: Refactor some inode/task/sk storage functions for reuseYonghong Song
Refactor codes so that inode/task/sk storage implementation can maximally share the same code. I also added some comments in new function bpf_local_storage_unlink_nolock() to make codes easy to understand. There is no functionality change. Acked-by: David Vernet <void@manifault.com> Signed-off-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/r/20221026042845.672944-1-yhs@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-04-19bpf: Fix usage of trace RCU in local storage.KP Singh
bpf_{sk,task,inode}_storage_free() do not need to use call_rcu_tasks_trace as no BPF program should be accessing the owner as it's being destroyed. The only other reader at this point is bpf_local_storage_map_free() which uses normal RCU. The only path that needs trace RCU are: * bpf_local_storage_{delete,update} helpers * map_{delete,update}_elem() syscalls Fixes: 0fe4b381a59e ("bpf: Allow bpf_local_storage to be used by sleepable programs") Signed-off-by: KP Singh <kpsingh@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20220418155158.2865678-1-kpsingh@kernel.org
2022-03-20bpf: Enable non-atomic allocations in local storageJoanne Koong
Currently, local storage memory can only be allocated atomically (GFP_ATOMIC). This restriction is too strict for sleepable bpf programs. In this patch, the verifier detects whether the program is sleepable, and passes the corresponding GFP_KERNEL or GFP_ATOMIC flag as a 5th argument to bpf_task/sk/inode_storage_get. This flag will propagate down to the local storage functions that allocate memory. Please note that bpf_task/sk/inode_storage_update_elem functions are invoked by userspace applications through syscalls. Preemption is disabled before bpf_task/sk/inode_storage_update_elem is called, which means they will always have to allocate memory atomically. Signed-off-by: Joanne Koong <joannelkoong@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: KP Singh <kpsingh@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20220318045553.3091807-2-joannekoong@fb.com
2021-12-29bpf: Allow bpf_local_storage to be used by sleepable programsKP Singh
Other maps like hashmaps are already available to sleepable programs. Sleepable BPF programs run under trace RCU. Allow task, sk and inode storage to be used from sleepable programs. This allows sleepable and non-sleepable programs to provide shareable annotations on kernel objects. Sleepable programs run in trace RCU where as non-sleepable programs run in a normal RCU critical section i.e. __bpf_prog_enter{_sleepable} and __bpf_prog_exit{_sleepable}) (rcu_read_lock or rcu_read_lock_trace). In order to make the local storage maps accessible to both sleepable and non-sleepable programs, one needs to call both call_rcu_tasks_trace and call_rcu to wait for both trace and classical RCU grace periods to expire before freeing memory. Paul's work on call_rcu_tasks_trace allows us to have per CPU queueing for call_rcu_tasks_trace. This behaviour can be achieved by setting rcupdate.rcu_task_enqueue_lim=<num_cpus> boot parameter. In light of these new performance changes and to keep the local storage code simple, avoid adding a new flag for sleepable maps / local storage to select the RCU synchronization (trace / classical). Also, update the dereferencing of the pointers to use rcu_derference_check (with either the trace or normal RCU locks held) with a common bpf_rcu_lock_held helper method. Signed-off-by: KP Singh <kpsingh@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20211224152916.1550677-2-kpsingh@kernel.org
2021-12-29net: Don't include filter.h from net/sock.hJakub Kicinski
sock.h is pretty heavily used (5k objects rebuilt on x86 after it's touched). We can drop the include of filter.h from it and add a forward declaration of struct sk_filter instead. This decreases the number of rebuilt objects when bpf.h is touched from ~5k to ~1k. There's a lot of missing includes this was masking. Primarily in networking tho, this time. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Marc Kleine-Budde <mkl@pengutronix.de> Acked-by: Florian Fainelli <f.fainelli@gmail.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Acked-by: Stefano Garzarella <sgarzare@redhat.com> Link: https://lore.kernel.org/bpf/20211229004913.513372-1-kuba@kernel.org
2021-05-24bpf: Fix spelling mistakesZhen Lei
Fix some spelling mistakes in comments: aother ==> another Netiher ==> Neither desribe ==> describe intializing ==> initializing funciton ==> function wont ==> won't and move the word 'the' at the end to the next line accross ==> across pathes ==> paths triggerred ==> triggered excute ==> execute ether ==> either conervative ==> conservative convetion ==> convention markes ==> marks interpeter ==> interpreter Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210525025659.8898-2-thunder.leizhen@huawei.com
2021-02-26bpf: Prevent deadlock from recursive bpf_task_storage_[get|delete]Song Liu
BPF helpers bpf_task_storage_[get|delete] could hold two locks: bpf_local_storage_map_bucket->lock and bpf_local_storage->lock. Calling these helpers from fentry/fexit programs on functions in bpf_*_storage.c may cause deadlock on either locks. Prevent such deadlock with a per cpu counter, bpf_task_storage_busy. We need this counter to be global, because the two locks here belong to two different objects: bpf_local_storage_map and bpf_local_storage. If we pick one of them as the owner of the counter, it is still possible to trigger deadlock on the other lock. For example, if bpf_local_storage_map owns the counters, it cannot prevent deadlock on bpf_local_storage->lock when two maps are used. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20210225234319.336131-3-songliubraving@fb.com
2020-08-25bpf: Split bpf_local_storage to bpf_sk_storageKP Singh
A purely mechanical change: bpf_sk_storage.c = bpf_sk_storage.c + bpf_local_storage.c bpf_sk_storage.h = bpf_sk_storage.h + bpf_local_storage.h Signed-off-by: KP Singh <kpsingh@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20200825182919.1118197-5-kpsingh@chromium.org