summaryrefslogtreecommitdiff
path: root/include/linux/local_lock.h
AgeCommit message (Collapse)Author
2025-04-11locking/local_lock, mm: replace localtry_ helpers with local_trylock_t typeAlexei Starovoitov
Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-27locking/local_lock: Introduce localtry_lock_tSebastian Andrzej Siewior
In !PREEMPT_RT local_lock_irqsave() disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave() for exclusive access. Introduce localtry_lock_t and localtry_lock_irqsave() that disables interrupts and sets acquired=1, so localtry_lock_irqsave() from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map localtry_lock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Acked-by: Davidlohr Bueso <dave@stgolabs.net> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Link: https://lore.kernel.org/r/20250222024427.30294-2-alexei.starovoitov@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-06-24locking/local_lock: Add local nested BH locking infrastructure.Sebastian Andrzej Siewior
Add local_lock_nested_bh() locking. It is based on local_lock_t and the naming follows the preempt_disable_nested() example. For !PREEMPT_RT + !LOCKDEP it is a per-CPU annotation for locking assumptions based on local_bh_disable(). The macro is optimized away during compilation. For !PREEMPT_RT + LOCKDEP the local_lock_nested_bh() is reduced to the usual lock-acquire plus lockdep_assert_in_softirq() - ensuring that BH is disabled. For PREEMPT_RT local_lock_nested_bh() acquires the specified per-CPU lock. It does not disable CPU migration because it relies on local_bh_disable() disabling CPU migration. With LOCKDEP it performans the usual lockdep checks as with !PREEMPT_RT. Due to include hell the softirq check has been moved spinlock.c. The intention is to use this locking in places where locking of a per-CPU variable relies on BH being disabled. Instead of treating disabled bottom halves as a big per-CPU lock, PREEMPT_RT can use this to reduce the locking scope to what actually needs protecting. A side effect is that it also documents the protection scope of the per-CPU variables. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Link: https://patch.msgid.link/20240620132727.660738-3-bigeasy@linutronix.de Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-06-24locking/local_lock: Introduce guard definition for local_lock.Sebastian Andrzej Siewior
Introduce lock guard definition for local_lock_t. There are no users yet. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Link: https://patch.msgid.link/20240620132727.660738-2-bigeasy@linutronix.de Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-05-28locking: Introduce local_lock()Thomas Gleixner
preempt_disable() and local_irq_disable/save() are in principle per CPU big kernel locks. This has several downsides: - The protection scope is unknown - Violation of protection rules is hard to detect by instrumentation - For PREEMPT_RT such sections, unless in low level critical code, can violate the preemptability constraints. To address this PREEMPT_RT introduced the concept of local_locks which are strictly per CPU. The lock operations map to preempt_disable(), local_irq_disable/save() and the enabling counterparts on non RT enabled kernels. If lockdep is enabled local locks gain a lock map which tracks the usage context. This will catch cases where an area is protected by preempt_disable() but the access also happens from interrupt context. local locks have identified quite a few such issues over the years, the most recent example is: b7d5dc21072cd ("random: add a spinlock_t to struct batched_entropy") Aside of the lockdep coverage this also improves code readability as it precisely annotates the protection scope. PREEMPT_RT substitutes these local locks with 'sleeping' spinlocks to protect such sections while maintaining preemtability and CPU locality. local locks can replace: - preempt_enable()/disable() pairs - local_irq_disable/enable() pairs - local_irq_save/restore() pairs They are also used to replace code which implicitly disables preemption like: - get_cpu()/put_cpu() - get_cpu_var()/put_cpu_var() with PREEMPT_RT friendly constructs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20200527201119.1692513-2-bigeasy@linutronix.de