summaryrefslogtreecommitdiff
path: root/include/linux/topology.h
AgeCommit message (Collapse)Author
2021-10-15sched: Add cluster scheduler level in core and related Kconfig for ARM64Barry Song
This patch adds scheduler level for clusters and automatically enables the load balance among clusters. It will directly benefit a lot of workload which loves more resources such as memory bandwidth, caches. Testing has widely been done in two different hardware configurations of Kunpeng920: 24 cores in one NUMA(6 clusters in each NUMA node); 32 cores in one NUMA(8 clusters in each NUMA node) Workload is running on either one NUMA node or four NUMA nodes, thus, this can estimate the effect of cluster spreading w/ and w/o NUMA load balance. * Stream benchmark: 4threads stream (on 1NUMA * 24cores = 24cores) stream stream w/o patch w/ patch MB/sec copy 29929.64 ( 0.00%) 32932.68 ( 10.03%) MB/sec scale 29861.10 ( 0.00%) 32710.58 ( 9.54%) MB/sec add 27034.42 ( 0.00%) 32400.68 ( 19.85%) MB/sec triad 27225.26 ( 0.00%) 31965.36 ( 17.41%) 6threads stream (on 1NUMA * 24cores = 24cores) stream stream w/o patch w/ patch MB/sec copy 40330.24 ( 0.00%) 42377.68 ( 5.08%) MB/sec scale 40196.42 ( 0.00%) 42197.90 ( 4.98%) MB/sec add 37427.00 ( 0.00%) 41960.78 ( 12.11%) MB/sec triad 37841.36 ( 0.00%) 42513.64 ( 12.35%) 12threads stream (on 1NUMA * 24cores = 24cores) stream stream w/o patch w/ patch MB/sec copy 52639.82 ( 0.00%) 53818.04 ( 2.24%) MB/sec scale 52350.30 ( 0.00%) 53253.38 ( 1.73%) MB/sec add 53607.68 ( 0.00%) 55198.82 ( 2.97%) MB/sec triad 54776.66 ( 0.00%) 56360.40 ( 2.89%) Thus, it could help memory-bound workload especially under medium load. Similar improvement is also seen in lkp-pbzip2: * lkp-pbzip2 benchmark 2-96 threads (on 4NUMA * 24cores = 96cores) lkp-pbzip2 lkp-pbzip2 w/o patch w/ patch Hmean tput-2 11062841.57 ( 0.00%) 11341817.51 * 2.52%* Hmean tput-5 26815503.70 ( 0.00%) 27412872.65 * 2.23%* Hmean tput-8 41873782.21 ( 0.00%) 43326212.92 * 3.47%* Hmean tput-12 61875980.48 ( 0.00%) 64578337.51 * 4.37%* Hmean tput-21 105814963.07 ( 0.00%) 111381851.01 * 5.26%* Hmean tput-30 150349470.98 ( 0.00%) 156507070.73 * 4.10%* Hmean tput-48 237195937.69 ( 0.00%) 242353597.17 * 2.17%* Hmean tput-79 360252509.37 ( 0.00%) 362635169.23 * 0.66%* Hmean tput-96 394571737.90 ( 0.00%) 400952978.48 * 1.62%* 2-24 threads (on 1NUMA * 24cores = 24cores) lkp-pbzip2 lkp-pbzip2 w/o patch w/ patch Hmean tput-2 11071705.49 ( 0.00%) 11296869.10 * 2.03%* Hmean tput-4 20782165.19 ( 0.00%) 21949232.15 * 5.62%* Hmean tput-6 30489565.14 ( 0.00%) 33023026.96 * 8.31%* Hmean tput-8 40376495.80 ( 0.00%) 42779286.27 * 5.95%* Hmean tput-12 61264033.85 ( 0.00%) 62995632.78 * 2.83%* Hmean tput-18 86697139.39 ( 0.00%) 86461545.74 ( -0.27%) Hmean tput-24 104854637.04 ( 0.00%) 104522649.46 * -0.32%* In the case of 6 threads and 8 threads, we see the greatest performance improvement. Similar improvement can be seen on lkp-pixz though the improvement is smaller: * lkp-pixz benchmark 2-24 threads lkp-pixz (on 1NUMA * 24cores = 24cores) lkp-pixz lkp-pixz w/o patch w/ patch Hmean tput-2 6486981.16 ( 0.00%) 6561515.98 * 1.15%* Hmean tput-4 11645766.38 ( 0.00%) 11614628.43 ( -0.27%) Hmean tput-6 15429943.96 ( 0.00%) 15957350.76 * 3.42%* Hmean tput-8 19974087.63 ( 0.00%) 20413746.98 * 2.20%* Hmean tput-12 28172068.18 ( 0.00%) 28751997.06 * 2.06%* Hmean tput-18 39413409.54 ( 0.00%) 39896830.55 * 1.23%* Hmean tput-24 49101815.85 ( 0.00%) 49418141.47 * 0.64%* * SPECrate benchmark 4,8,16 copies mcf_r(on 1NUMA * 32cores = 32cores) Base Base Run Time Rate ------- --------- 4 Copies w/o 580 (w/ 570) w/o 11.1 (w/ 11.3) 8 Copies w/o 647 (w/ 605) w/o 20.0 (w/ 21.4, +7%) 16 Copies w/o 844 (w/ 844) w/o 30.6 (w/ 30.6) 32 Copies(on 4NUMA * 32 cores = 128cores) [w/o patch] Base Base Base Benchmarks Copies Run Time Rate --------------- ------- --------- --------- 500.perlbench_r 32 584 87.2 * 502.gcc_r 32 503 90.2 * 505.mcf_r 32 745 69.4 * 520.omnetpp_r 32 1031 40.7 * 523.xalancbmk_r 32 597 56.6 * 525.x264_r 1 -- CE 531.deepsjeng_r 32 336 109 * 541.leela_r 32 556 95.4 * 548.exchange2_r 32 513 163 * 557.xz_r 32 530 65.2 * Est. SPECrate2017_int_base 80.3 [w/ patch] Base Base Base Benchmarks Copies Run Time Rate --------------- ------- --------- --------- 500.perlbench_r 32 580 87.8 (+0.688%) * 502.gcc_r 32 477 95.1 (+5.432%) * 505.mcf_r 32 644 80.3 (+13.574%) * 520.omnetpp_r 32 942 44.6 (+9.58%) * 523.xalancbmk_r 32 560 60.4 (+6.714%%) * 525.x264_r 1 -- CE 531.deepsjeng_r 32 337 109 (+0.000%) * 541.leela_r 32 554 95.6 (+0.210%) * 548.exchange2_r 32 515 163 (+0.000%) * 557.xz_r 32 524 66.0 (+1.227%) * Est. SPECrate2017_int_base 83.7 (+4.062%) On the other hand, it is slightly helpful to CPU-bound tasks like kernbench: * 24-96 threads kernbench (on 4NUMA * 24cores = 96cores) kernbench kernbench w/o cluster w/ cluster Min user-24 12054.67 ( 0.00%) 12024.19 ( 0.25%) Min syst-24 1751.51 ( 0.00%) 1731.68 ( 1.13%) Min elsp-24 600.46 ( 0.00%) 598.64 ( 0.30%) Min user-48 12361.93 ( 0.00%) 12315.32 ( 0.38%) Min syst-48 1917.66 ( 0.00%) 1892.73 ( 1.30%) Min elsp-48 333.96 ( 0.00%) 332.57 ( 0.42%) Min user-96 12922.40 ( 0.00%) 12921.17 ( 0.01%) Min syst-96 2143.94 ( 0.00%) 2110.39 ( 1.56%) Min elsp-96 211.22 ( 0.00%) 210.47 ( 0.36%) Amean user-24 12063.99 ( 0.00%) 12030.78 * 0.28%* Amean syst-24 1755.20 ( 0.00%) 1735.53 * 1.12%* Amean elsp-24 601.60 ( 0.00%) 600.19 ( 0.23%) Amean user-48 12362.62 ( 0.00%) 12315.56 * 0.38%* Amean syst-48 1921.59 ( 0.00%) 1894.95 * 1.39%* Amean elsp-48 334.10 ( 0.00%) 332.82 * 0.38%* Amean user-96 12925.27 ( 0.00%) 12922.63 ( 0.02%) Amean syst-96 2146.66 ( 0.00%) 2122.20 * 1.14%* Amean elsp-96 211.96 ( 0.00%) 211.79 ( 0.08%) Note this patch isn't an universal win, it might hurt those workload which can benefit from packing. Though tasks which want to take advantages of lower communication latency of one cluster won't necessarily been packed in one cluster while kernel is not aware of clusters, they have some chance to be randomly packed. But this patch will make them more likely spread. Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Tested-by: Yicong Yang <yangyicong@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2021-10-15topology: Represent clusters of CPUs within a dieJonathan Cameron
Both ACPI and DT provide the ability to describe additional layers of topology between that of individual cores and higher level constructs such as the level at which the last level cache is shared. In ACPI this can be represented in PPTT as a Processor Hierarchy Node Structure [1] that is the parent of the CPU cores and in turn has a parent Processor Hierarchy Nodes Structure representing a higher level of topology. For example Kunpeng 920 has 6 or 8 clusters in each NUMA node, and each cluster has 4 cpus. All clusters share L3 cache data, but each cluster has local L3 tag. On the other hand, each clusters will share some internal system bus. +-----------------------------------+ +---------+ | +------+ +------+ +--------------------------+ | | | CPU0 | | cpu1 | | +-----------+ | | | +------+ +------+ | | | | | | +----+ L3 | | | | +------+ +------+ cluster | | tag | | | | | CPU2 | | CPU3 | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +----+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | L3 | | data | +-----------------------------------+ | | | +------+ +------+ | +-----------+ | | | | | | | | | | | | | +------+ +------+ +----+ L3 | | | | | | tag | | | | +------+ +------+ | | | | | | | | | | | +-----------+ | | | +------+ +------+ +--------------------------+ | +-----------------------------------| | | +-----------------------------------| | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | +----+ L3 | | | | +------+ +------+ | | tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +---+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | | | +-----------------------------------+ | | +-----------------------------------+ | | | +------+ +------+ +--------------------------+ | | | | | | | +-----------+ | | | +------+ +------+ | | | | | | | | L3 | | | | +------+ +------+ +--+ tag | | | | | | | | | | | | | | +------+ +------+ | +-----------+ | | | | +---------+ +-----------------------------------+ That means spreading tasks among clusters will bring more bandwidth while packing tasks within one cluster will lead to smaller cache synchronization latency. So both kernel and userspace will have a chance to leverage this topology to deploy tasks accordingly to achieve either smaller cache latency within one cluster or an even distribution of load among clusters for higher throughput. This patch exposes cluster topology to both kernel and userspace. Libraried like hwloc will know cluster by cluster_cpus and related sysfs attributes. PoC of HWLOC support at [2]. Note this patch only handle the ACPI case. Special consideration is needed for SMT processors, where it is necessary to move 2 levels up the hierarchy from the leaf nodes (thus skipping the processor core level). Note that arm64 / ACPI does not provide any means of identifying a die level in the topology but that may be unrelate to the cluster level. [1] ACPI Specification 6.3 - section 5.2.29.1 processor hierarchy node structure (Type 0) [2] https://github.com/hisilicon/hwloc/tree/linux-cluster Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Tian Tao <tiantao6@hisilicon.com> Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210924085104.44806-2-21cnbao@gmail.com
2021-01-27sched/topology: Make sched_init_numa() use a set for the deduplicating sortValentin Schneider
The deduplicating sort in sched_init_numa() assumes that the first line in the distance table contains all unique values in the entire table. I've been trying to pen what this exactly means for the topology, but it's not straightforward. For instance, topology.c uses this example: node 0 1 2 3 0: 10 20 20 30 1: 20 10 20 20 2: 20 20 10 20 3: 30 20 20 10 0 ----- 1 | / | | / | | / | 2 ----- 3 Which works out just fine. However, if we swap nodes 0 and 1: 1 ----- 0 | / | | / | | / | 2 ----- 3 we get this distance table: node 0 1 2 3 0: 10 20 20 20 1: 20 10 20 30 2: 20 20 10 20 3: 20 30 20 10 Which breaks the deduplicating sort (non-representative first line). In this case this would just be a renumbering exercise, but it so happens that we can have a deduplicating sort that goes through the whole table in O(n²) at the extra cost of a temporary memory allocation (i.e. any form of set). The ACPI spec (SLIT) mentions distances are encoded on 8 bits. Following this, implement the set as a 256-bits bitmap. Should this not be satisfactory (i.e. we want to support 32-bit values), then we'll have to go for some other sparse set implementation. This has the added benefit of letting us allocate just the right amount of memory for sched_domains_numa_distance[], rather than an arbitrary (nr_node_ids + 1). Note: DT binding equivalent (distance-map) decodes distances as 32-bit values. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210122123943.1217-2-valentin.schneider@arm.com
2020-09-16sched/topology: Allow archs to override cpu_smt_maskSrikar Dronamraju
cpu_smt_mask tracks topology_sibling_cpumask. This would be good for most architectures. One of the users of cpu_smt_mask(), would be to identify idle-cores. On Power9, a pair of SMT4 cores can be presented by the firmware as a SMT8 core for backward compatibility reasons. powerpc allows LPARs to be live migrated from Power8 to Power9. Do note Power8 had only SMT8 cores. Existing software which has been developed/configured for Power8 would expect to see SMT8 core. Maintaining the illusion of SMT8 core is a requirement to make that work. In order to maintain above userspace backward compatibility with previous versions of processor, Power9 onwards there is option to the firmware to advertise a pair of SMT4 cores as a fused cores aka SMT8 core. On Power9 this pair shares the L2 cache as well. However, from the scheduler's point of view, a core should be determined by SMT4, since its a completely independent unit of compute. Hence allow powerpc architecture to override the default cpu_smt_mask() to point to the SMT4 cores in a SMT8 mode. This will ensure the scheduler is always given the right information. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200807074517.27957-1-srikar@linux.vnet.ibm.com
2020-04-02revert "topology: add support for node_to_mem_node() to determine the ↵Vlastimil Babka
fallback node" This reverts commit ad2c8144418c6a81cefe65379fd47bbe8344cef2. The function node_to_mem_node() was introduced by that commit for use in SLUB on systems with memoryless nodes, but it turned out to be unreliable on some architectures/configurations and a simpler solution exists than fixing it up. Thus commit 0715e6c516f1 ("mm, slub: prevent kmalloc_node crashes and memory leaks") removed the only user of node_to_mem_node() and we can revert the commit that introduced the function. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Bharata B Rao <bharata@linux.ibm.com> Cc: Christopher Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nathan Lynch <nathanl@linux.ibm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: PUVICHAKRAVARTHY RAMACHANDRAN <puvichakravarthy@in.ibm.com> Cc: Sachin Sant <sachinp@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/20200320115533.9604-2-vbabka@suse.cz Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-16Merge branch 'sched-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - MAINTAINERS: Add Mark Rutland as perf submaintainer, Juri Lelli and Vincent Guittot as scheduler submaintainers. Add Dietmar Eggemann, Steven Rostedt, Ben Segall and Mel Gorman as scheduler reviewers. As perf and the scheduler is getting bigger and more complex, document the status quo of current responsibilities and interests, and spread the review pain^H^H^H^H fun via an increase in the Cc: linecount generated by scripts/get_maintainer.pl. :-) - Add another series of patches that brings the -rt (PREEMPT_RT) tree closer to mainline: split the monolithic CONFIG_PREEMPT dependencies into a new CONFIG_PREEMPTION category that will allow the eventual introduction of CONFIG_PREEMPT_RT. Still a few more hundred patches to go though. - Extend the CPU cgroup controller with uclamp.min and uclamp.max to allow the finer shaping of CPU bandwidth usage. - Micro-optimize energy-aware wake-ups from O(CPUS^2) to O(CPUS). - Improve the behavior of high CPU count, high thread count applications running under cpu.cfs_quota_us constraints. - Improve balancing with SCHED_IDLE (SCHED_BATCH) tasks present. - Improve CPU isolation housekeeping CPU allocation NUMA locality. - Fix deadline scheduler bandwidth calculations and logic when cpusets rebuilds the topology, or when it gets deadline-throttled while it's being offlined. - Convert the cpuset_mutex to percpu_rwsem, to allow it to be used from setscheduler() system calls without creating global serialization. Add new synchronization between cpuset topology-changing events and the deadline acceptance tests in setscheduler(), which were broken before. - Rework the active_mm state machine to be less confusing and more optimal. - Rework (simplify) the pick_next_task() slowpath. - Improve load-balancing on AMD EPYC systems. - ... and misc cleanups, smaller fixes and improvements - please see the Git log for more details. * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits) sched/psi: Correct overly pessimistic size calculation sched/fair: Speed-up energy-aware wake-ups sched/uclamp: Always use 'enum uclamp_id' for clamp_id values sched/uclamp: Update CPU's refcount on TG's clamp changes sched/uclamp: Use TG's clamps to restrict TASK's clamps sched/uclamp: Propagate system defaults to the root group sched/uclamp: Propagate parent clamps sched/uclamp: Extend CPU's cgroup controller sched/topology: Improve load balancing on AMD EPYC systems arch, ia64: Make NUMA select SMP sched, perf: MAINTAINERS update, add submaintainers and reviewers sched/fair: Use rq_lock/unlock in online_fair_sched_group cpufreq: schedutil: fix equation in comment sched: Rework pick_next_task() slow-path sched: Allow put_prev_task() to drop rq->lock sched/fair: Expose newidle_balance() sched: Add task_struct pointer to sched_class::set_curr_task sched: Rework CPU hotplug task selection sched/{rt,deadline}: Fix set_next_task vs pick_next_task sched: Fix kerneldoc comment for ia64_set_curr_task ...
2019-09-03sched/topology: Improve load balancing on AMD EPYC systemsMatt Fleming
SD_BALANCE_{FORK,EXEC} and SD_WAKE_AFFINE are stripped in sd_init() for any sched domains with a NUMA distance greater than 2 hops (RECLAIM_DISTANCE). The idea being that it's expensive to balance across domains that far apart. However, as is rather unfortunately explained in: commit 32e45ff43eaf ("mm: increase RECLAIM_DISTANCE to 30") the value for RECLAIM_DISTANCE is based on node distance tables from 2011-era hardware. Current AMD EPYC machines have the following NUMA node distances: node distances: node 0 1 2 3 4 5 6 7 0: 10 16 16 16 32 32 32 32 1: 16 10 16 16 32 32 32 32 2: 16 16 10 16 32 32 32 32 3: 16 16 16 10 32 32 32 32 4: 32 32 32 32 10 16 16 16 5: 32 32 32 32 16 10 16 16 6: 32 32 32 32 16 16 10 16 7: 32 32 32 32 16 16 16 10 where 2 hops is 32. The result is that the scheduler fails to load balance properly across NUMA nodes on different sockets -- 2 hops apart. For example, pinning 16 busy threads to NUMA nodes 0 (CPUs 0-7) and 4 (CPUs 32-39) like so, $ numactl -C 0-7,32-39 ./spinner 16 causes all threads to fork and remain on node 0 until the active balancer kicks in after a few seconds and forcibly moves some threads to node 4. Override node_reclaim_distance for AMD Zen. Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Suravee.Suthikulpanit@amd.com Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas.Lendacky@amd.com Cc: Tony Luck <tony.luck@intel.com> Link: https://lkml.kernel.org/r/20190808195301.13222-3-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-22cpu-topology: Move cpu topology code to common code.Atish Patra
Both RISC-V & ARM64 are using cpu-map device tree to describe their cpu topology. It's better to move the relevant code to a common place instead of duplicate code. To: Will Deacon <will.deacon@arm.com> To: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Atish Patra <atish.patra@wdc.com> [Tested on QDF2400] Tested-by: Jeffrey Hugo <jhugo@codeaurora.org> [Tested on Juno and other embedded platforms.] Tested-by: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Paul Walmsley <paul.walmsley@sifive.com>
2019-05-23topology: Create core_cpus and die_cpus sysfs attributesLen Brown
Create CPU topology sysfs attributes: "core_cpus" and "core_cpus_list" These attributes represent all of the logical CPUs that share the same core. These attriutes is synonymous with the existing "thread_siblings" and "thread_siblings_list" attribute, which will be deprecated. Create CPU topology sysfs attributes: "die_cpus" and "die_cpus_list". These attributes represent all of the logical CPUs that share the same die. Suggested-by: Brice Goglin <Brice.Goglin@inria.fr> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/071c23a298cd27ede6ed0b6460cae190d193364f.1557769318.git.len.brown@intel.com
2019-05-23cpu/topology: Export die_idLen Brown
Export die_id in cpu topology, for the benefit of hardware that has multiple-die/package. Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: linux-doc@vger.kernel.org Link: https://lkml.kernel.org/r/e7d1caaf4fbd24ee40db6d557ab28d7d83298900.1557769318.git.len.brown@intel.com
2016-07-28mm: convert zone_reclaim to node_reclaimMel Gorman
As reclaim is now per-node based, convert zone_reclaim to be node_reclaim. It is possible that a node will be reclaimed multiple times if it has multiple zones but this is unavoidable without caching all nodes traversed so far. The documentation and interface to userspace is the same from a configuration perspective and will will be similar in behaviour unless the node-local allocation requests were also limited to lower zones. Link: http://lkml.kernel.org/r/1467970510-21195-24-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-18numa: remove stale node_has_online_mem() defineChris Metcalf
This isn't used anywhere, so delete it. Looks like the last usage (in x86-specific code) was removed by Tejun in 2011 in commit bd6709a91a59 ("x86, NUMA: Make 32bit use common NUMA init path"). Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com>
2015-05-27sched/topology: Rename topology_thread_cpumask() to topology_sibling_cpumask()Bartosz Golaszewski
Rename topology_thread_cpumask() to topology_sibling_cpumask() for more consistency with scheduler code. Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Russell King <rmk+kernel@arm.linux.org.uk> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Benoit Cousson <bcousson@baylibre.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Jean Delvare <jdelvare@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Drokin <oleg.drokin@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Russell King <linux@arm.linux.org.uk> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: http://lkml.kernel.org/r/1432645896-12588-2-git-send-email-bgolaszewski@baylibre.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-09topology: add support for node_to_mem_node() to determine the fallback nodeJoonsoo Kim
Anton noticed (http://www.spinics.net/lists/linux-mm/msg67489.html) that on ppc LPARs with memoryless nodes, a large amount of memory was consumed by slabs and was marked unreclaimable. He tracked it down to slab deactivations in the SLUB core when we allocate remotely, leading to poor efficiency always when memoryless nodes are present. After much discussion, Joonsoo provided a few patches that help significantly. They don't resolve the problem altogether: - memory hotplug still needs testing, that is when a memoryless node becomes memory-ful, we want to dtrt - there are other reasons for going off-node than memoryless nodes, e.g., fully exhausted local nodes Neither case is resolved with this series, but I don't think that should block their acceptance, as they can be explored/resolved with follow-on patches. The series consists of: [1/3] topology: add support for node_to_mem_node() to determine the fallback node [2/3] slub: fallback to node_to_mem_node() node if allocating on memoryless node - Joonsoo's patches to cache the nearest node with memory for each NUMA node [3/3] Partial revert of 81c98869faa5 (""kthread: ensure locality of task_struct allocations") - At Tejun's request, keep the knowledge of memoryless node fallback to the allocator core. This patch (of 3): We need to determine the fallback node in slub allocator if the allocation target node is memoryless node. Without it, the SLUB wrongly select the node which has no memory and can't use a partial slab, because of node mismatch. Introduced function, node_to_mem_node(X), will return a node Y with memory that has the nearest distance. If X is memoryless node, it will return nearest distance node, but, if X is normal node, it will return itself. We will use this function in following patch to determine the fallback node. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Han Pingtian <hanpt@linux.vnet.ibm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Anton Blanchard <anton@samba.org> Cc: Christoph Lameter <cl@linux.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04mm: disable zone_reclaim_mode by defaultMel Gorman
When it was introduced, zone_reclaim_mode made sense as NUMA distances punished and workloads were generally partitioned to fit into a NUMA node. NUMA machines are now common but few of the workloads are NUMA-aware and it's routine to see major performance degradation due to zone_reclaim_mode being enabled but relatively few can identify the problem. Those that require zone_reclaim_mode are likely to be able to detect when it needs to be enabled and tune appropriately so lets have a sensible default for the bulk of users. This patch (of 2): zone_reclaim_mode causes processes to prefer reclaiming memory from local node instead of spilling over to other nodes. This made sense initially when NUMA machines were almost exclusively HPC and the workload was partitioned into nodes. The NUMA penalties were sufficiently high to justify reclaiming the memory. On current machines and workloads it is often the case that zone_reclaim_mode destroys performance but not all users know how to detect this. Favour the common case and disable it by default. Users that are sophisticated enough to know they need zone_reclaim_mode will detect it. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-07sched: Rework sched_domain topology definitionVincent Guittot
We replace the old way to configure the scheduler topology with a new method which enables a platform to declare additionnal level (if needed). We still have a default topology table definition that can be used by platform that don't want more level than the SMT, MC, CPU and NUMA ones. This table can be overwritten by an arch which either wants to add new level where a load balance make sense like BOOK or powergating level or wants to change the flags configuration of some levels. For each level, we need a function pointer that returns cpumask for each cpu, a function pointer that returns the flags for the level and a name. Only flags that describe topology, can be set by an architecture. The current topology flags are: SD_SHARE_CPUPOWER SD_SHARE_PKG_RESOURCES SD_NUMA SD_ASYM_PACKING Then, each level must be a subset on the next one. The build sequence of the sched_domain will take care of removing useless levels like those with 1 CPU and those with the same CPU span and no more relevant information for load balancing than its children. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Christoph Lameter <cl@linux.com> Cc: David S. Miller <davem@davemloft.net> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hanjun Guo <hanjun.guo@linaro.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Jason Low <jason.low2@hp.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: linux390@de.ibm.com Cc: linux-ia64@vger.kernel.org Cc: linux-s390@vger.kernel.org Link: http://lkml.kernel.org/r/1397209481-28542-2-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-07mm: use raw_cpu ops for determining current NUMA nodeChristoph Lameter
With the preempt checking logic for __this_cpu_ops we will get false positives from locations in the code that use numa_node_id. Before the __this_cpu ops where introduced there were no checks for preemption present either. smp_raw_processor_id() was used. See http://www.spinics.net/lists/linux-numa/msg00641.html Therefore we need to use raw_cpu_read here to avoid false postives. Note that this issue has been discussed in prior years. If the process changes nodes after retrieving the current numa node then that is acceptable since most uses of numa_node etc are for optimization and not for correctness. There were suggestions to implement a raw_numa_node_id in order to do preempt checks for numa_node_id as well. But I think we better defer that to another patch since that would mean investigating how numa_node_id() is used throughout the kernel which would increase the scope of this patchset significantly. After all preemption was never checked before when numa_node_id() was used. Some sample traces: __this_cpu_read operation in preemptible [00000000] code: login/1456 caller is __this_cpu_preempt_check+0x2b/0x2d CPU: 0 PID: 1456 Comm: login Not tainted 3.12.0-rc4-cl-00062-g2fe80d3-dirty #185 Call Trace: dump_stack+0x4e/0x82 check_preemption_disabled+0xc5/0xe0 __this_cpu_preempt_check+0x2b/0x2d get_task_policy+0x1d/0x49 get_vma_policy+0x14/0x76 alloc_pages_vma+0x35/0xff handle_mm_fault+0x290/0x73b __do_page_fault+0x3fe/0x44d do_page_fault+0x9/0xc page_fault+0x22/0x30 generic_file_aio_read+0x38e/0x624 do_sync_read+0x54/0x73 vfs_read+0x9d/0x12a SyS_read+0x47/0x7e cstar_dispatch+0x7/0x23 caller is __this_cpu_preempt_check+0x2b/0x2d CPU: 0 PID: 1456 Comm: login Not tainted 3.12.0-rc4-cl-00062-g2fe80d3-dirty #185 Call Trace: dump_stack+0x4e/0x82 check_preemption_disabled+0xc5/0xe0 __this_cpu_preempt_check+0x2b/0x2d alloc_pages_current+0x8f/0xbc __page_cache_alloc+0xb/0xd __do_page_cache_readahead+0xf4/0x219 ra_submit+0x1c/0x20 ondemand_readahead+0x28c/0x2b4 page_cache_sync_readahead+0x38/0x3a generic_file_aio_read+0x261/0x624 do_sync_read+0x54/0x73 vfs_read+0x9d/0x12a SyS_read+0x47/0x7e cstar_dispatch+0x7/0x23 Signed-off-by: Christoph Lameter <cl@linux.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Alex Shi <alex.shi@intel.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-20sched/balancing: Periodically decay max cost of idle balanceJason Low
This patch builds on patch 2 and periodically decays that max value to do idle balancing per sched domain by approximately 1% per second. Also decay the rq's max_idle_balance_cost value. Signed-off-by: Jason Low <jason.low2@hp.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1379096813-3032-4-git-send-email-jason.low2@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-20sched/balancing: Consider max cost of idle balance per sched domainJason Low
In this patch, we keep track of the max cost we spend doing idle load balancing for each sched domain. If the avg time the CPU remains idle is less then the time we have already spent on idle balancing + the max cost of idle balancing in the sched domain, then we don't continue to attempt the balance. We also keep a per rq variable, max_idle_balance_cost, which keeps track of the max time spent on newidle load balances throughout all its domains so that we can determine the avg_idle's max value. By using the max, we avoid overrunning the average. This further reduces the chance we attempt balancing when the CPU is not idle for longer than the cost to balance. Signed-off-by: Jason Low <jason.low2@hp.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1379096813-3032-3-git-send-email-jason.low2@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-08-13sched: recover SD_WAKE_AFFINE in select_task_rq_fair and code clean upAlex Shi
Since power saving code was removed from sched now, the implement code is out of service in this function, and even pollute other logical. like, 'want_sd' never has chance to be set '0', that remove the effect of SD_WAKE_AFFINE here. So, clean up the obsolete code, includes SD_PREFER_LOCAL. Signed-off-by: Alex Shi <alex.shi@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/5028F431.6000306@intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2012-07-26sched/numa: Add SD_PERFER_SIBLING to CPU domainAlex Shi
Commit 8e7fbcbc22c ("sched: Remove stale power aware scheduling remnants and dysfunctional knobs") removed SD_PERFER_SIBLING from the CPU domain. On NUMA machines this causes that load_balance() doesn't perfer LCPU in same physical CPU package. It causes some actual performance regressions on our NUMA machines from Core2 to NHM and SNB. Adding this domain flag again recovers the performance drop. This change doesn't have any bad impact on any of my benchmarks: specjbb, kbuild, fio, hackbench .. etc, on all my machines. Signed-off-by: Alex Shi <alex.shi@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1342765190-21540-1-git-send-email-alex.shi@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-05-22Merge branch 'sched-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler changes from Ingo Molnar: "The biggest change is the cleanup/simplification of the load-balancer: instead of the current practice of architectures twiddling scheduler internal data structures and providing the scheduler domains in colorfully inconsistent ways, we now have generic scheduler code in kernel/sched/core.c:sched_init_numa() that looks at the architecture's node_distance() parameters and (while not fully trusting it) deducts a NUMA topology from it. This inevitably changes balancing behavior - hopefully for the better. There are various smaller optimizations, cleanups and fixlets as well" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched: Taint kernel with TAINT_WARN after sleep-in-atomic bug sched: Remove stale power aware scheduling remnants and dysfunctional knobs sched/debug: Fix printing large integers on 32-bit platforms sched/fair: Improve the ->group_imb logic sched/nohz: Fix rq->cpu_load[] calculations sched/numa: Don't scale the imbalance sched/fair: Revert sched-domain iteration breakage sched/x86: Rewrite set_cpu_sibling_map() sched/numa: Fix the new NUMA topology bits sched/numa: Rewrite the CONFIG_NUMA sched domain support sched/fair: Propagate 'struct lb_env' usage into find_busiest_group sched/fair: Add some serialization to the sched_domain load-balance walk sched/fair: Let minimally loaded cpu balance the group sched: Change rq->nr_running to unsigned int x86/numa: Check for nonsensical topologies on real hw as well x86/numa: Hard partition cpu topology masks on node boundaries x86/numa: Allow specifying node_distance() for numa=fake x86/sched: Make mwait_usable() heed to "idle=" kernel parameters properly sched: Update documentation and comments sched_rt: Avoid unnecessary dequeue and enqueue of pushable tasks in set_cpus_allowed_rt()
2012-05-17sched: Remove stale power aware scheduling remnants and dysfunctional knobsPeter Zijlstra
It's been broken forever (i.e. it's not scheduling in a power aware fashion), as reported by Suresh and others sending patches, and nobody cares enough to fix it properly ... so remove it to make space free for something better. There's various problems with the code as it stands today, first and foremost the user interface which is bound to topology levels and has multiple values per level. This results in a state explosion which the administrator or distro needs to master and almost nobody does. Furthermore large configuration state spaces aren't good, it means the thing doesn't just work right because it's either under so many impossibe to meet constraints, or even if there's an achievable state workloads have to be aware of it precisely and can never meet it for dynamic workloads. So pushing this kind of decision to user-space was a bad idea even with a single knob - it's exponentially worse with knobs on every node of the topology. There is a proposal to replace the user interface with a single 3 state knob: sched_balance_policy := { performance, power, auto } where 'auto' would be the preferred default which looks at things like Battery/AC mode and possible cpufreq state or whatever the hw exposes to show us power use expectations - but there's been no progress on it in the past many months. Aside from that, the actual implementation of the various knobs is known to be broken. There have been sporadic attempts at fixing things but these always stop short of reaching a mergable state. Therefore this wholesale removal with the hopes of spurring people who care to come forward once again and work on a coherent replacement. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/1326104915.2442.53.camel@twins Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-05-14x86: replace percpu_xxx funcs with this_cpu_xxxAlex Shi
Since percpu_xxx() serial functions are duplicated with this_cpu_xxx(). Removing percpu_xxx() definition and replacing them by this_cpu_xxx() in code. There is no function change in this patch, just preparation for later percpu_xxx serial function removing. On x86 machine the this_cpu_xxx() serial functions are same as __this_cpu_xxx() without no unnecessary premmpt enable/disable. Thanks for Stephen Rothwell, he found and fixed a i386 build error in the patch. Also thanks for Andrew Morton, he kept updating the patchset in Linus' tree. Signed-off-by: Alex Shi <alex.shi@intel.com> Acked-by: Christoph Lameter <cl@gentwo.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Tejun Heo <tj@kernel.org>
2012-05-09sched/numa: Rewrite the CONFIG_NUMA sched domain supportPeter Zijlstra
The current code groups up to 16 nodes in a level and then puts an ALLNODES domain spanning the entire tree on top of that. This doesn't reflect the numa topology and esp for the smaller not-fully-connected machines out there today this might make a difference. Therefore, build a proper numa topology based on node_distance(). Since there's no fixed numa layers anymore, the static SD_NODE_INIT and SD_ALLNODES_INIT aren't usable anymore, the new code tries to construct something similar and scales some values either on the number of cpus in the domain and/or the node_distance() ratio. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Anton Blanchard <anton@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: David Howells <dhowells@redhat.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: linux-alpha@vger.kernel.org Cc: linux-ia64@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: linux-mips@linux-mips.org Cc: linuxppc-dev@lists.ozlabs.org Cc: linux-sh@vger.kernel.org Cc: Matt Turner <mattst88@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Henderson <rth@twiddle.net> Cc: sparclinux@vger.kernel.org Cc: Tony Luck <tony.luck@intel.com> Cc: x86@kernel.org Cc: Dimitri Sivanich <sivanich@sgi.com> Cc: Greg Pearson <greg.pearson@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: bob.picco@oracle.com Cc: chris.mason@oracle.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/n/tip-r74n3n8hhuc2ynbrnp3vt954@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2011-09-20sched: Allow SD_NODES_PER_DOMAIN to be overriddenAnton Blanchard
We want to override the default value of SD_NODES_PER_DOMAIN on ppc64, so move it into linux/topology.h. Signed-off-by: Anton Blanchard <anton@samba.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-06-15mm: increase RECLAIM_DISTANCE to 30KOSAKI Motohiro
Recently, Robert Mueller reported (http://lkml.org/lkml/2010/9/12/236) that zone_reclaim_mode doesn't work properly on his new NUMA server (Dual Xeon E5520 + Intel S5520UR MB). He is using Cyrus IMAPd and it's built on a very traditional single-process model. * a master process which reads config files and manages the other process * multiple imapd processes, one per connection * multiple pop3d processes, one per connection * multiple lmtpd processes, one per connection * periodical "cleanup" processes. There are thousands of independent processes. The problem is, recent Intel motherboard turn on zone_reclaim_mode by default and traditional prefork model software don't work well on it. Unfortunatelly, such models are still typical even in the 21st century. We can't ignore them. This patch raises the zone_reclaim_mode threshold to 30. 30 doesn't have any specific meaning. but 20 means that one-hop QPI/Hypertransport and such relatively cheap 2-4 socket machine are often used for traditional servers as above. The intention is that these machines don't use zone_reclaim_mode. Note: ia64 and Power have arch specific RECLAIM_DISTANCE definitions. This patch doesn't change such high-end NUMA machine behavior. Dave Hansen said: : I know specifically of pieces of x86 hardware that set the information : in the BIOS to '21' *specifically* so they'll get the zone_reclaim_mode : behavior which that implies. : : They've done performance testing and run very large and scary benchmarks : to make sure that they _want_ this turned on. What this means for them : is that they'll probably be de-optimized, at least on newer versions of : the kernel. : : If you want to do this for particular systems, maybe _that_'s what we : should do. Have a list of specific configurations that need the : defaults overridden either because they're buggy, or they have an : unusual hardware configuration not really reflected in the distance : table. And later said: : The original change in the hardware tables was for the benefit of a : benchmark. Said benchmark isn't going to get run on mainline until the : next batch of enterprise distros drops, at which point the hardware where : this was done will be irrelevant for the benchmark. I'm sure any new : hardware will just set this distance to another yet arbitrary value to : make the kernel do what it wants. :) : : Also, when the hardware got _set_ to this initially, I complained. So, I : guess I'm getting my way now, with this patch. I'm cool with it. Reported-by: Robert Mueller <robm@fastmail.fm> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Acked-by: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-09sched: Add book scheduling domainHeiko Carstens
On top of the SMT and MC scheduling domains this adds the BOOK scheduling domain. This is useful for NUMA like machines which do not have an interface which tells which piece of memory is attached to which node or where the hardware performs striping. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20100831082844.253053798@de.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-08-09topology: alternate fix for ia64 tiger_defconfig build breakageLee Schermerhorn
Define stubs for the numa_*_id() generic percpu related functions for non-NUMA configurations in <asm-generic/topology.h> where the other non-numa stubs live. Fixes ia64 !NUMA build breakage -- e.g., tiger_defconfig Back out now unneeded '#ifndef CONFIG_NUMA' guards from ia64 smpboot.c Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Tested-by: Tony Luck <tony.luck@intel.com> Acked-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-06-29sched: Fix spelling of siblingMichael Neuling
No logic changes, only spelling. Signed-off-by: Michael Neuling <mikey@neuling.org> Cc: linuxppc-dev@ozlabs.org Cc: David Howells <dhowells@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> LKML-Reference: <15249.1277776921@neuling.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-06-09sched: Add asymmetric group packing option for sibling domainMichael Neuling
Check to see if the group is packed in a sched doman. This is primarily intended to used at the sibling level. Some cores like POWER7 prefer to use lower numbered SMT threads. In the case of POWER7, it can move to lower SMT modes only when higher threads are idle. When in lower SMT modes, the threads will perform better since they share less core resources. Hence when we have idle threads, we want them to be the higher ones. This adds a hook into f_b_g() called check_asym_packing() to check the packing. This packing function is run on idle threads. It checks to see if the busiest CPU in this domain (core in the P7 case) has a higher CPU number than what where the packing function is being run on. If it is, calculate the imbalance and return the higher busier thread as the busiest group to f_b_g(). Here we are assuming a lower CPU number will be equivalent to a lower SMT thread number. It also creates a new SD_ASYM_PACKING flag to enable this feature at any scheduler domain level. It also creates an arch hook to enable this feature at the sibling level. The default function doesn't enable this feature. Based heavily on patch from Peter Zijlstra. Fixes from Srivatsa Vaddagiri. Signed-off-by: Michael Neuling <mikey@neuling.org> Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> LKML-Reference: <20100608045702.2936CCC897@localhost.localdomain> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-05-27numa: introduce numa_mem_id()- effective local memory node idLee Schermerhorn
Introduce numa_mem_id(), based on generic percpu variable infrastructure to track "nearest node with memory" for archs that support memoryless nodes. Define API in <linux/topology.h> when CONFIG_HAVE_MEMORYLESS_NODES defined, else stubs. Architectures will define HAVE_MEMORYLESS_NODES if/when they support them. Archs can override definitions of: numa_mem_id() - returns node number of "local memory" node set_numa_mem() - initialize [this cpus'] per cpu variable 'numa_mem' cpu_to_mem() - return numa_mem for specified cpu; may be used as lvalue Generic initialization of 'numa_mem' occurs in __build_all_zonelists(). This will initialize the boot cpu at boot time, and all cpus on change of numa_zonelist_order, or when node or memory hot-plug requires zonelist rebuild. Archs that support memoryless nodes will need to initialize 'numa_mem' for secondary cpus as they're brought on-line. [akpm@linux-foundation.org: fix build] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Tejun Heo <tj@kernel.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <npiggin@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27numa: add generic percpu var numa_node_id() implementationLee Schermerhorn
Rework the generic version of the numa_node_id() function to use the new generic percpu variable infrastructure. Guard the new implementation with a new config option: CONFIG_USE_PERCPU_NUMA_NODE_ID. Archs which support this new implemention will default this option to 'y' when NUMA is configured. This config option could be removed if/when all archs switch over to the generic percpu implementation of numa_node_id(). Arch support involves: 1) converting any existing per cpu variable implementations to use this implementation. x86_64 is an instance of such an arch. 2) archs that don't use a per cpu variable for numa_node_id() will need to initialize the new per cpu variable "numa_node" as cpus are brought on-line. ia64 is an example. 3) Defining USE_PERCPU_NUMA_NODE_ID in arch dependent Kconfig--e.g., when NUMA is configured. This is required because I have retained the old implementation by default to allow archs to be modified incrementally, as desired. Subsequent patches will convert x86_64 and ia64 to use this implemenation. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Tejun Heo <tj@kernel.org> Cc: Mel Gorman <mel@csn.ul.ie> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <npiggin@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Eric Whitney <eric.whitney@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-01-21sched: Fix vmark regression on big machinesMike Galbraith
SD_PREFER_SIBLING is set at the CPU domain level if power saving isn't enabled, leading to many cache misses on large machines as we traverse looking for an idle shared cache to wake to. Change the enabler of select_idle_sibling() to SD_SHARE_PKG_RESOURCES, and enable same at the sibling domain level. Reported-by: Lin Ming <ming.m.lin@intel.com> Signed-off-by: Mike Galbraith <efault@gmx.de> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1262612696.15495.15.camel@marge.simson.net> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-10-14sched: Disable SD_PREFER_LOCAL for MC/CPU domainsPeter Zijlstra
Yanmin reported that both tbench and hackbench were significantly hurt by trying to keep tasks local on these domains, esp on small cache machines. So disable it in order to promote spreading outside of the cache domains. Reported-by: "Zhang, Yanmin" <yanmin_zhang@linux.intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> CC: Mike Galbraith <efault@gmx.de> LKML-Reference: <1255083400.8802.15.camel@laptop> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-24cpumask: remove obsolete topology_core_siblings and ↵Rusty Russell
topology_thread_siblings: core There were replaced by topology_core_cpumask and topology_thread_cpumask. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2009-09-16sched: Disable wakeup balancingPeter Zijlstra
Sysbench thinks SD_BALANCE_WAKE is too agressive and kbuild doesn't really mind too much, SD_BALANCE_NEWIDLE picks up most of the slack. On a dual socket, quad core, dual thread nehalem system: sysbench (--num_threads=16): SD_BALANCE_WAKE-: 13982 tx/s SD_BALANCE_WAKE+: 15688 tx/s kbuild (-j16): SD_BALANCE_WAKE-: 47.648295846 seconds time elapsed ( +- 0.312% ) SD_BALANCE_WAKE+: 47.608607360 seconds time elapsed ( +- 0.026% ) (same within noise) Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-16sched: Add SD_PREFER_LOCALPeter Zijlstra
And turn it on for NUMA and MC domains. This improves locality in balancing decisions by keeping up to capacity amount of tasks local before looking for idle CPUs. (and twice the capacity if SD_POWERSAVINGS_BALANCE is set.) Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-15sched: Reduce forkexec_idxPeter Zijlstra
If we're looking to place a new task, we might as well find the idlest position _now_, not 1 tick ago. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-15sched: Improve latencies and throughputMike Galbraith
Make the idle balancer more agressive, to improve a x264 encoding workload provided by Jason Garrett-Glaser: NEXT_BUDDY NO_LB_BIAS encoded 600 frames, 252.82 fps, 22096.60 kb/s encoded 600 frames, 250.69 fps, 22096.60 kb/s encoded 600 frames, 245.76 fps, 22096.60 kb/s NO_NEXT_BUDDY LB_BIAS encoded 600 frames, 344.44 fps, 22096.60 kb/s encoded 600 frames, 346.66 fps, 22096.60 kb/s encoded 600 frames, 352.59 fps, 22096.60 kb/s NO_NEXT_BUDDY NO_LB_BIAS encoded 600 frames, 425.75 fps, 22096.60 kb/s encoded 600 frames, 425.45 fps, 22096.60 kb/s encoded 600 frames, 422.49 fps, 22096.60 kb/s Peter pointed out that this is better done via newidle_idx, not via LB_BIAS, newidle balancing should look for where there is load _now_, not where there was load 2 ticks ago. Worst-case latencies are improved as well as no buddies means less vruntime spread. (as per prior lkml discussions) This change improves kbuild-peak parallelism as well. Reported-by: Jason Garrett-Glaser <darkshikari@gmail.com> Signed-off-by: Mike Galbraith <efault@gmx.de> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <1253011667.9128.16.camel@marge.simson.net> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-15sched: Fix some domain tuningsPeter Zijlstra
CPU level should have WAKE_AFFINE, whereas ALLNODES is dubious. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-15sched: Tweak wake_idxPeter Zijlstra
When merging select_task_rq_fair() and sched_balance_self() we lost the use of wake_idx, restore that and set them to 0 to make wake balancing more aggressive. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-15sched: Merge select_task_rq_fair() and sched_balance_self()Peter Zijlstra
The problem with wake_idle() is that is doesn't respect things like cpu_power, which means it doesn't deal well with SMT nor the recent RT interaction. To cure this, it needs to do what sched_balance_self() does, which leads to the possibility of merging select_task_rq_fair() and sched_balance_self(). Modify sched_balance_self() to: - update_shares() when walking up the domain tree, (it only called it for the top domain, but it should have done this anyway), which allows us to remove this ugly bit from try_to_wake_up(). - do wake_affine() on the smallest domain that contains both this (the waking) and the prev (the wakee) cpu for WAKE invocations. Then use the top-down balance steps it had to replace wake_idle(). This leads to the dissapearance of SD_WAKE_BALANCE and SD_WAKE_IDLE_FAR, with SD_WAKE_IDLE replaced with SD_BALANCE_WAKE. SD_WAKE_AFFINE needs SD_BALANCE_WAKE to be effective. Touch all topology bits to replace the old with new SD flags -- platforms might need re-tuning, enabling SD_BALANCE_WAKE conditionally on a NUMA distance seems like a good additional feature, magny-core and small nehalem systems would want this enabled, systems with slow interconnects would not. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-07sched: enable SD_WAKE_IDLEPeter Zijlstra
Now that SD_WAKE_IDLE doesn't make pipe-test suck anymore, enable it by default for MC, CPU and NUMA domains. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-04sched: Turn on SD_BALANCE_NEWIDLEIngo Molnar
Start the re-tuning of the balancer by turning on newidle. It improves hackbench performance and parallelism on a 4x4 box. The "perf stat --repeat 10" measurements give us: domain0 domain1 ....................................... -SD_BALANCE_NEWIDLE -SD_BALANCE_NEWIDLE: 2041.273208 task-clock-msecs # 9.354 CPUs ( +- 0.363% ) +SD_BALANCE_NEWIDLE -SD_BALANCE_NEWIDLE: 2086.326925 task-clock-msecs # 11.934 CPUs ( +- 0.301% ) +SD_BALANCE_NEWIDLE +SD_BALANCE_NEWIDLE: 2115.289791 task-clock-msecs # 12.158 CPUs ( +- 0.263% ) Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Gautham R Shenoy <ego@in.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-04sched: Clean up topology.hIngo Molnar
Re-organize the flag settings so that it's visible at a glance which sched-domains flags are set and which not. With the new balancer code we'll need to re-tune these details anyway, so make it cleaner to make fewer mistakes down the road ;-) Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Andreas Herrmann <andreas.herrmann3@amd.com> Cc: Gautham R Shenoy <ego@in.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-04sched: Add smt_gainPeter Zijlstra
The idea is that multi-threading a core yields more work capacity than a single thread, provide a way to express a static gain for threads. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Tested-by: Andreas Herrmann <andreas.herrmann3@amd.com> Acked-by: Andreas Herrmann <andreas.herrmann3@amd.com> Acked-by: Gautham R Shenoy <ego@in.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> LKML-Reference: <20090901083826.073345955@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-13numa, cpumask: move numa_node_id default implementation to topology.hRusty Russell
Impact: cleanup, potential bugfix Not sure what changed to expose this, but clearly that numa_node_id() doesn't belong in mmzone.h (the inline in gfp.h is probably overkill, too). In file included from include/linux/topology.h:34, from arch/x86/mm/numa.c:2: /home/rusty/patches-cpumask/linux-2.6/arch/x86/include/asm/topology.h:64:1: warning: "numa_node_id" redefined In file included from include/linux/topology.h:32, from arch/x86/mm/numa.c:2: include/linux/mmzone.h:770:1: warning: this is the location of the previous definition Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Cc: Mike Travis <travis@sgi.com> LKML-Reference: <200903132343.37661.rusty@rustcorp.com.au> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-03-13cpumask: replace node_to_cpumask with cpumask_of_node.Rusty Russell
Impact: cleanup node_to_cpumask (and the blecherous node_to_cpumask_ptr which contained a declaration) are replaced now everyone implements cpumask_of_node. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2009-01-11cpumask: Use topology_core_cpumask()/topology_thread_cpumask()Rusty Russell
Impact: reduce stack usage, use new cpumask API. This actually uses topology_core_cpumask() and topology_thread_cpumask(), removing the only users of topology_core_siblings() and topology_thread_siblings() Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Mike Travis <travis@sgi.com> Cc: linux-net-drivers@solarflare.com