summaryrefslogtreecommitdiff
path: root/include/linux
AgeCommit message (Collapse)Author
2019-05-14lib/list_sort: simplify and remove MAX_LIST_LENGTH_BITSGeorge Spelvin
Rather than a fixed-size array of pending sorted runs, use the ->prev links to keep track of things. This reduces stack usage, eliminates some ugly overflow handling, and reduces the code size. Also: * merge() no longer needs to handle NULL inputs, so simplify. * The same applies to merge_and_restore_back_links(), which is renamed to the less ponderous merge_final(). (It's a static helper function, so we don't need a super-descriptive name; comments will do.) * Document the actual return value requirements on the (*cmp)() function; some callers are already using this feature. x86-64 code size 1086 -> 739 bytes (-347) (Yes, I see checkpatch complaining about no space after comma in "__attribute__((nonnull(2,3,4,5)))". Checkpatch is wrong.) Feedback from Rasmus Villemoes, Andy Shevchenko and Geert Uytterhoeven. [akpm@linux-foundation.org: remove __pure usage due to mysterious warning] Link: http://lkml.kernel.org/r/f63c410e0ff76009c9b58e01027e751ff7fdb749.1552704200.git.lkml@sdf.org Signed-off-by: George Spelvin <lkml@sdf.org> Acked-by: Andrey Abramov <st5pub@yandex.ru> Acked-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Daniel Wagner <daniel.wagner@siemens.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: Don Mullis <don.mullis@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14lib/plist: rename DEBUG_PI_LIST to DEBUG_PLISTDavidlohr Bueso
This is a lot more appropriate than PI_LIST, which in the kernel one would assume that it has to do with priority-inheritance; which is not -- furthermore futexes make use of plists so this can be even more confusing, albeit the debug nature of the config option. Link: http://lkml.kernel.org/r/20190317185434.1626-1-dave@stgolabs.net Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14kernel/latencytop.c: rename clear_all_latency_tracing to ↵Lin Feng
clear_tsk_latency_tracing The name clear_all_latency_tracing is misleading, in fact which only clear per task's latency_record[], and we do have another function named clear_global_latency_tracing which clear the global latency_record[] buffer. Link: http://lkml.kernel.org/r/20190226114602.16902-1-linf@wangsu.com Signed-off-by: Lin Feng <linf@wangsu.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Fabian Frederick <fabf@skynet.be> Cc: Arjan van de Ven <arjan@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14compiler: allow all arches to enable CONFIG_OPTIMIZE_INLININGMasahiro Yamada
Commit 60a3cdd06394 ("x86: add optimized inlining") introduced CONFIG_OPTIMIZE_INLINING, but it has been available only for x86. The idea is obviously arch-agnostic. This commit moves the config entry from arch/x86/Kconfig.debug to lib/Kconfig.debug so that all architectures can benefit from it. This can make a huge difference in kernel image size especially when CONFIG_OPTIMIZE_FOR_SIZE is enabled. For example, I got 3.5% smaller arm64 kernel for v5.1-rc1. dec file 18983424 arch/arm64/boot/Image.before 18321920 arch/arm64/boot/Image.after This also slightly improves the "Kernel hacking" Kconfig menu as e61aca5158a8 ("Merge branch 'kconfig-diet' from Dave Hansen') suggested; this config option would be a good fit in the "compiler option" menu. Link: http://lkml.kernel.org/r/20190423034959.13525-12-yamada.masahiro@socionext.com Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Borislav Petkov <bp@suse.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Boris Brezillon <bbrezillon@kernel.org> Cc: Brian Norris <computersforpeace@gmail.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Marek Vasut <marek.vasut@gmail.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: Miquel Raynal <miquel.raynal@bootlin.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Weinberger <richard@nod.at> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Stefan Agner <stefan@agner.ch> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14treewide: remove SPDX "WITH Linux-syscall-note" from kernel-space headersMasahiro Yamada
The "WITH Linux-syscall-note" should be added to headers exported to the user-space. Some kernel-space headers have "WITH Linux-syscall-note", which seems a mistake. [1] arch/x86/include/asm/hyperv-tlfs.h Commit 5a4858032217 ("x86/hyper-v: move hyperv.h out of uapi") moved this file out of uapi, but missed to update the SPDX License tag. [2] include/asm-generic/shmparam.h Commit 76ce2a80a28e ("Rename include/{uapi => }/asm-generic/shmparam.h really") moved this file out of uapi, but missed to update the SPDX License tag. [3] include/linux/qcom-geni-se.h Commit eddac5af0654 ("soc: qcom: Add GENI based QUP Wrapper driver") added this file, but I do not see a good reason why its license tag must include "WITH Linux-syscall-note". Link: http://lkml.kernel.org/r/1554196104-3522-1-git-send-email-yamada.masahiro@socionext.com Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14fs/select: avoid clang stack usage warningArnd Bergmann
The select() implementation is carefully tuned to put a sensible amount of data on the stack for holding a copy of the user space fd_set, but not too large to risk overflowing the kernel stack. When building a 32-bit kernel with clang, we need a little more space than with gcc, which often triggers a warning: fs/select.c:619:5: error: stack frame size of 1048 bytes in function 'core_sys_select' [-Werror,-Wframe-larger-than=] int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp, I experimentally found that for 32-bit ARM, reducing the maximum stack usage by 64 bytes keeps us reliably under the warning limit again. Link: http://lkml.kernel.org/r/20190307090146.1874906-1-arnd@arndb.de Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Andi Kleen <ak@linux.intel.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Cc: Eric Dumazet <edumazet@google.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: maintain randomization of page free listsDan Williams
When freeing a page with an order >= shuffle_page_order randomly select the front or back of the list for insertion. While the mm tries to defragment physical pages into huge pages this can tend to make the page allocator more predictable over time. Inject the front-back randomness to preserve the initial randomness established by shuffle_free_memory() when the kernel was booted. The overhead of this manipulation is constrained by only being applied for MAX_ORDER sized pages by default. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/154899812788.3165233.9066631950746578517.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Robert Elliott <elliott@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: move buddy list manipulations into helpersDan Williams
In preparation for runtime randomization of the zone lists, take all (well, most of) the list_*() functions in the buddy allocator and put them in helper functions. Provide a common control point for injecting additional behavior when freeing pages. [dan.j.williams@intel.com: fix buddy list helpers] Link: http://lkml.kernel.org/r/155033679702.1773410.13041474192173212653.stgit@dwillia2-desk3.amr.corp.intel.com [vbabka@suse.cz: remove del_page_from_free_area() migratetype parameter] Link: http://lkml.kernel.org/r/4672701b-6775-6efd-0797-b6242591419e@suse.cz Link: http://lkml.kernel.org/r/154899812264.3165233.5219320056406926223.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: Keith Busch <keith.busch@intel.com> Cc: Robert Elliott <elliott@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: shuffle initial free memory to improve memory-side-cache utilizationDan Williams
Patch series "mm: Randomize free memory", v10. This patch (of 3): Randomization of the page allocator improves the average utilization of a direct-mapped memory-side-cache. Memory side caching is a platform capability that Linux has been previously exposed to in HPC (high-performance computing) environments on specialty platforms. In that instance it was a smaller pool of high-bandwidth-memory relative to higher-capacity / lower-bandwidth DRAM. Now, this capability is going to be found on general purpose server platforms where DRAM is a cache in front of higher latency persistent memory [1]. Robert offered an explanation of the state of the art of Linux interactions with memory-side-caches [2], and I copy it here: It's been a problem in the HPC space: http://www.nersc.gov/research-and-development/knl-cache-mode-performance-coe/ A kernel module called zonesort is available to try to help: https://software.intel.com/en-us/articles/xeon-phi-software and this abandoned patch series proposed that for the kernel: https://lkml.kernel.org/r/20170823100205.17311-1-lukasz.daniluk@intel.com Dan's patch series doesn't attempt to ensure buffers won't conflict, but also reduces the chance that the buffers will. This will make performance more consistent, albeit slower than "optimal" (which is near impossible to attain in a general-purpose kernel). That's better than forcing users to deploy remedies like: "To eliminate this gradual degradation, we have added a Stream measurement to the Node Health Check that follows each job; nodes are rebooted whenever their measured memory bandwidth falls below 300 GB/s." A replacement for zonesort was merged upstream in commit cc9aec03e58f ("x86/numa_emulation: Introduce uniform split capability"). With this numa_emulation capability, memory can be split into cache sized ("near-memory" sized) numa nodes. A bind operation to such a node, and disabling workloads on other nodes, enables full cache performance. However, once the workload exceeds the cache size then cache conflicts are unavoidable. While HPC environments might be able to tolerate time-scheduling of cache sized workloads, for general purpose server platforms, the oversubscribed cache case will be the common case. The worst case scenario is that a server system owner benchmarks a workload at boot with an un-contended cache only to see that performance degrade over time, even below the average cache performance due to excessive conflicts. Randomization clips the peaks and fills in the valleys of cache utilization to yield steady average performance. Here are some performance impact details of the patches: 1/ An Intel internal synthetic memory bandwidth measurement tool, saw a 3X speedup in a contrived case that tries to force cache conflicts. The contrived cased used the numa_emulation capability to force an instance of the benchmark to be run in two of the near-memory sized numa nodes. If both instances were placed on the same emulated they would fit and cause zero conflicts. While on separate emulated nodes without randomization they underutilized the cache and conflicted unnecessarily due to the in-order allocation per node. 2/ A well known Java server application benchmark was run with a heap size that exceeded cache size by 3X. The cache conflict rate was 8% for the first run and degraded to 21% after page allocator aging. With randomization enabled the rate levelled out at 11%. 3/ A MongoDB workload did not observe measurable difference in cache-conflict rates, but the overall throughput dropped by 7% with randomization in one case. 4/ Mel Gorman ran his suite of performance workloads with randomization enabled on platforms without a memory-side-cache and saw a mix of some improvements and some losses [3]. While there is potentially significant improvement for applications that depend on low latency access across a wide working-set, the performance may be negligible to negative for other workloads. For this reason the shuffle capability defaults to off unless a direct-mapped memory-side-cache is detected. Even then, the page_alloc.shuffle=0 parameter can be specified to disable the randomization on those systems. Outside of memory-side-cache utilization concerns there is potentially security benefit from randomization. Some data exfiltration and return-oriented-programming attacks rely on the ability to infer the location of sensitive data objects. The kernel page allocator, especially early in system boot, has predictable first-in-first out behavior for physical pages. Pages are freed in physical address order when first onlined. Quoting Kees: "While we already have a base-address randomization (CONFIG_RANDOMIZE_MEMORY), attacks against the same hardware and memory layouts would certainly be using the predictability of allocation ordering (i.e. for attacks where the base address isn't important: only the relative positions between allocated memory). This is common in lots of heap-style attacks. They try to gain control over ordering by spraying allocations, etc. I'd really like to see this because it gives us something similar to CONFIG_SLAB_FREELIST_RANDOM but for the page allocator." While SLAB_FREELIST_RANDOM reduces the predictability of some local slab caches it leaves vast bulk of memory to be predictably in order allocated. However, it should be noted, the concrete security benefits are hard to quantify, and no known CVE is mitigated by this randomization. Introduce shuffle_free_memory(), and its helper shuffle_zone(), to perform a Fisher-Yates shuffle of the page allocator 'free_area' lists when they are initially populated with free memory at boot and at hotplug time. Do this based on either the presence of a page_alloc.shuffle=Y command line parameter, or autodetection of a memory-side-cache (to be added in a follow-on patch). The shuffling is done in terms of CONFIG_SHUFFLE_PAGE_ORDER sized free pages where the default CONFIG_SHUFFLE_PAGE_ORDER is MAX_ORDER-1 i.e. 10, 4MB this trades off randomization granularity for time spent shuffling. MAX_ORDER-1 was chosen to be minimally invasive to the page allocator while still showing memory-side cache behavior improvements, and the expectation that the security implications of finer granularity randomization is mitigated by CONFIG_SLAB_FREELIST_RANDOM. The performance impact of the shuffling appears to be in the noise compared to other memory initialization work. This initial randomization can be undone over time so a follow-on patch is introduced to inject entropy on page free decisions. It is reasonable to ask if the page free entropy is sufficient, but it is not enough due to the in-order initial freeing of pages. At the start of that process putting page1 in front or behind page0 still keeps them close together, page2 is still near page1 and has a high chance of being adjacent. As more pages are added ordering diversity improves, but there is still high page locality for the low address pages and this leads to no significant impact to the cache conflict rate. [1]: https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/ [2]: https://lkml.kernel.org/r/AT5PR8401MB1169D656C8B5E121752FC0F8AB120@AT5PR8401MB1169.NAMPRD84.PROD.OUTLOOK.COM [3]: https://lkml.org/lkml/2018/10/12/309 [dan.j.williams@intel.com: fix shuffle enable] Link: http://lkml.kernel.org/r/154943713038.3858443.4125180191382062871.stgit@dwillia2-desk3.amr.corp.intel.com [cai@lca.pw: fix SHUFFLE_PAGE_ALLOCATOR help texts] Link: http://lkml.kernel.org/r/20190425201300.75650-1-cai@lca.pw Link: http://lkml.kernel.org/r/154899811738.3165233.12325692939590944259.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Qian Cai <cai@lca.pw> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Robert Elliott <elliott@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14kernel/sched/psi.c: expose pressure metrics on root cgroupDan Schatzberg
Pressure metrics are already recorded and exposed in procfs for the entire system, but any tool which monitors cgroup pressure has to special case the root cgroup to read from procfs. This patch exposes the already recorded pressure metrics on the root cgroup. Link: http://lkml.kernel.org/r/20190510174938.3361741-1-dschatzberg@fb.com Signed-off-by: Dan Schatzberg <dschatzberg@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14psi: introduce psi monitorSuren Baghdasaryan
Psi monitor aims to provide a low-latency short-term pressure detection mechanism configurable by users. It allows users to monitor psi metrics growth and trigger events whenever a metric raises above user-defined threshold within user-defined time window. Time window and threshold are both expressed in usecs. Multiple psi resources with different thresholds and window sizes can be monitored concurrently. Psi monitors activate when system enters stall state for the monitored psi metric and deactivate upon exit from the stall state. While system is in the stall state psi signal growth is monitored at a rate of 10 times per tracking window. Min window size is 500ms, therefore the min monitoring interval is 50ms. Max window size is 10s with monitoring interval of 1s. When activated psi monitor stays active for at least the duration of one tracking window to avoid repeated activations/deactivations when psi signal is bouncing. Notifications to the users are rate-limited to one per tracking window. Link: http://lkml.kernel.org/r/20190319235619.260832-8-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14include/: refactor headers to allow kthread.h inclusion in psi_types.hSuren Baghdasaryan
kthread.h can't be included in psi_types.h because it creates a circular inclusion with kthread.h eventually including psi_types.h and complaining on kthread structures not being defined because they are defined further in the kthread.h. Resolve this by removing psi_types.h inclusion from the headers included from kthread.h. Link: http://lkml.kernel.org/r/20190319235619.260832-7-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14psi: rename psi fields in preparation for psi trigger additionSuren Baghdasaryan
Rename psi_group structure member fields used for calculating psi totals and averages for clear distinction between them and for trigger-related fields that will be added by "psi: introduce psi monitor". [surenb@google.com: v6] Link: http://lkml.kernel.org/r/20190319235619.260832-4-surenb@google.com Link: http://lkml.kernel.org/r/20190124211518.244221-5-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14psi: introduce state_mask to represent stalled psi statesSuren Baghdasaryan
Patch series "psi: pressure stall monitors", v6. This is a respin of: https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/ Android is adopting psi to detect and remedy memory pressure that results in stuttering and decreased responsiveness on mobile devices. Psi gives us the stall information, but because we're dealing with latencies in the millisecond range, periodically reading the pressure files to detect stalls in a timely fashion is not feasible. Psi also doesn't aggregate its averages at a high-enough frequency right now. This patch series extends the psi interface such that users can configure sensitive latency thresholds and use poll() and friends to be notified when these are breached. As high-frequency aggregation is costly, it implements an aggregation method that is optimized for fast, short-interval averaging, and makes the aggregation frequency adaptive, such that high-frequency updates only happen while monitored stall events are actively occurring. With these patches applied, Android can monitor for, and ward off, mounting memory shortages before they cause problems for the user. For example, using memory stall monitors in userspace low memory killer daemon (lmkd) we can detect mounting pressure and kill less important processes before device becomes visibly sluggish. In our memory stress testing psi memory monitors produce roughly 10x less false positives compared to vmpressure signals. Having ability to specify multiple triggers for the same psi metric allows other parts of Android framework to monitor memory state of the device and act accordingly. The new interface is straight-forward. The user opens one of the pressure files for writing and writes a trigger description into the file descriptor that defines the stall state - some or full, and the maximum stall time over a given window of time. E.g.: /* Signal when stall time exceeds 100ms of a 1s window */ char trigger[] = "full 100000 1000000" fd = open("/proc/pressure/memory") write(fd, trigger, sizeof(trigger)) while (poll() >= 0) { ... }; close(fd); When the monitored stall state is entered, psi adapts its aggregation frequency according to what the configured time window requires in order to emit event signals in a timely fashion. Once the stalling subsides, aggregation reverts back to normal. The trigger is associated with the open file descriptor. To stop monitoring, the user only needs to close the file descriptor and the trigger is discarded. Patches 1-6 prepare the psi code for polling support. Patch 7 implements the adaptive polling logic, the pressure growth detection optimized for short intervals, and hooks up write() and poll() on the pressure files. The patches were developed in collaboration with Johannes Weiner. This patch (of 7): The psi monitoring patches will need to determine the same states as record_times(). To avoid calculating them twice, maintain a state mask that can be consulted cheaply. Do this in a separate patch to keep the churn in the main feature patch at a minimum. This adds 4-byte state_mask member into psi_group_cpu struct which results in its first cacheline-aligned part becoming 52 bytes long. Add explicit values to enumeration element counters that affect psi_group_cpu struct size. Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhostLinus Torvalds
Pull virtio updates from Michael Tsirkin: - enable packed ring support for s390 - several fixes * tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost: virtio/s390: enable packed ring virtio/s390: DMA support for virtio-ccw virtio/s390: use vring_create_virtqueue virtio/virtio_ring: do some comment fixes vhost-scsi: remove incorrect memory barrier tools/virtio/ringtest: Remove bogus definition of BUG_ON() virtio_ring: Fix potential mem leak in virtqueue_add_indirect_packed
2019-05-14Merge tag 'modules-for-v5.2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux Pull modules updates from Jessica Yu: - Use a separate table to store symbol types instead of hijacking fields in struct Elf_Sym - Trivial code cleanups * tag 'modules-for-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux: module: add stubs for within_module functions kallsyms: store type information in its own array vmlinux.lds.h: drop unused __vermagic
2019-05-14Merge tag 'backlight-next-5.2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/lee/backlight Pull backlight updates from Lee Jones: "Fix-ups: - Remove unused BACKLIGHT_LCD_SUPPORT symbol - Remove unused BACKLIGHT_CLASS_DEVICE dependencies - Add DT support to lm3630a_bl Bug Fixes: - Fix error path issues in lm3630a_bl" * tag 'backlight-next-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/backlight: backlight: lm3630a: Add firmware node support dt-bindings: backlight: Add lm3630a bindings backlight: lm3630a: Return 0 on success in update_status functions video: lcd: Remove useless BACKLIGHT_CLASS_DEVICE dependencies video: backlight: Remove useless BACKLIGHT_LCD_SUPPORT kernel symbol
2019-05-14Merge tag 'mfd-next-5.2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd Pull MFD updates from Lee Jones: "Core Framework: - Document (kerneldoc) core mfd_add_devices() API New Drivers: - Altera SOCFPGA System Manager - Maxim MAX77650/77651 PMIC - Maxim MAX77663 PMIC - ST Multi-Function eXpander (STMFX) New Device Support: - LEDs support in Intel Cherry Trail Whiskey Cove PMIC - RTC support in SAMSUNG Electronics S2MPA01 PMIC - SAM9X60 support in Atmel HLCDC (High-end LCD Controller) - USB X-Powers AXP 8xx PMICs - Integrated Sensor Hub (ISH) in ChromeOS EC - USB PD Logger in ChromeOS EC - AXP223 in X-Powers AXP series PMICs - Power Supply in X-Powers AXP 803 PMICs - Comet Lake in Intel Low Power Subsystem - Fingerprint MCU in ChromeOS EC - Touchpad MCU in ChromeOS EC - Move TI LM3532 support to LED New Functionality: - max77650, max77620: Add/extend DT support - max77620 power-off - syscon clocking - croc_ec host sleep event Fix-ups: - Trivial; Formatting, spelling, etc; Kconfig, sec-core, ab8500-debugfs - Remove unused functionality; rk808, da9063-* - SPDX conversion; da9063-*, atmel-*, - Adapt/add new register definitions; cs47l35-tables, cs47l90-tables, imx6q-iomuxc-gpr - Fix-up DT bindings; ti-lmu, cirrus,lochnagar - Simply obtaining driver data; ssbi, t7l66xb, tc6387xb, tc6393xb Bug Fixes: - Fix incorrect defined values; max77620, da9063 - Fix device initialisation; twl6040 - Reset device on init; intel-lpss - Fix build warnings when !OF; sun6i-prcm - Register OF match tables; tps65912-spi - Fix DMI matching; intel_quark_i2c_gpio" * tag 'mfd-next-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd: (65 commits) mfd: Use dev_get_drvdata() directly mfd: cros_ec: Instantiate properly CrOS Touchpad MCU device mfd: cros_ec: Instantiate properly CrOS FP MCU device mfd: cros_ec: Update the EC feature codes mfd: intel-lpss: Add Intel Comet Lake PCI IDs mfd: lochnagar: Add links to binding docs for sound and hwmon mfd: ab8500-debugfs: Fix a typo ("deubgfs") mfd: imx6sx: Add MQS register definition for iomuxc gpr dt-bindings: mfd: LMU: Fix lm3632 dt binding example mfd: intel_quark_i2c_gpio: Adjust IOT2000 matching mfd: da9063: Fix OTP control register names to match datasheets for DA9063/63L mfd: tps65912-spi: Add missing of table registration mfd: axp20x: Add USB power supply mfd cell to AXP803 mfd: sun6i-prcm: Fix build warning for non-OF configurations mfd: intel-lpss: Set the device in reset state when init platform/chrome: Add support for v1 of host sleep event mfd: cros_ec: Add host_sleep_event_v1 command mfd: cros_ec: Instantiate the CrOS USB PD logger driver mfd: cs47l90: Make DAC_AEC_CONTROL_2 readable mfd: cs47l35: Make DAC_AEC_CONTROL_2 readable ...
2019-05-14Merge tag 'pci-v5.2-changes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci Pull PCI updates from Bjorn Helgaas: "Enumeration changes: - Add _HPX Type 3 settings support, which gives firmware more influence over device configuration (Alexandru Gagniuc) - Support fixed bus numbers from bridge Enhanced Allocation capabilities (Subbaraya Sundeep) - Add "external-facing" DT property to identify cases where we require IOMMU protection against untrusted devices (Jean-Philippe Brucker) - Enable PCIe services for host controller drivers that use managed host bridge alloc (Jean-Philippe Brucker) - Log PCIe port service messages with pci_dev, not the pcie_device (Frederick Lawler) - Convert pciehp from pciehp_debug module parameter to generic dynamic debug (Frederick Lawler) Peer-to-peer DMA: - Add whitelist of Root Complexes that support peer-to-peer DMA between Root Ports (Christian König) Native controller drivers: - Add PCI host bridge DMA ranges for bridges that can't DMA everywhere, e.g., iProc (Srinath Mannam) - Add Amazon Annapurna Labs PCIe host controller driver (Jonathan Chocron) - Fix Tegra MSI target allocation so DMA doesn't generate unwanted MSIs (Vidya Sagar) - Fix of_node reference leaks (Wen Yang) - Fix Hyper-V module unload & device removal issues (Dexuan Cui) - Cleanup R-Car driver (Marek Vasut) - Cleanup Keystone driver (Kishon Vijay Abraham I) - Cleanup i.MX6 driver (Andrey Smirnov) Significant bug fixes: - Reset Lenovo ThinkPad P50 GPU so nouveau works after reboot (Lyude Paul) - Fix Switchtec firmware update performance issue (Wesley Sheng) - Work around Pericom switch link retraining erratum (Stefan Mätje)" * tag 'pci-v5.2-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (141 commits) MAINTAINERS: Add Karthikeyan Mitran and Hou Zhiqiang for Mobiveil PCI PCI: pciehp: Remove pointless MY_NAME definition PCI: pciehp: Remove pointless PCIE_MODULE_NAME definition PCI: pciehp: Remove unused dbg/err/info/warn() wrappers PCI: pciehp: Log messages with pci_dev, not pcie_device PCI: pciehp: Replace pciehp_debug module param with dyndbg PCI: pciehp: Remove pciehp_debug uses PCI/AER: Log messages with pci_dev, not pcie_device PCI/DPC: Log messages with pci_dev, not pcie_device PCI/PME: Replace dev_printk(KERN_DEBUG) with dev_info() PCI/AER: Replace dev_printk(KERN_DEBUG) with dev_info() PCI: Replace dev_printk(KERN_DEBUG) with dev_info(), etc PCI: Replace printk(KERN_INFO) with pr_info(), etc PCI: Use dev_printk() when possible PCI: Cleanup setup-bus.c comments and whitespace PCI: imx6: Allow asynchronous probing PCI: dwc: Save root bus for driver remove hooks PCI: dwc: Use devm_pci_alloc_host_bridge() to simplify code PCI: dwc: Free MSI in dw_pcie_host_init() error path PCI: dwc: Free MSI IRQ page in dw_pcie_free_msi() ...
2019-05-14Merge branch 'akpm' (patches from Andrew)Linus Torvalds
Merge misc updates from Andrew Morton: - a few misc things and hotfixes - ocfs2 - almost all of MM * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (139 commits) kernel/memremap.c: remove the unused device_private_entry_fault() export mm: delete find_get_entries_tag mm/huge_memory.c: make __thp_get_unmapped_area static mm/mprotect.c: fix compilation warning because of unused 'mm' variable mm/page-writeback: introduce tracepoint for wait_on_page_writeback() mm/vmscan: simplify trace_reclaim_flags and trace_shrink_flags mm/Kconfig: update "Memory Model" help text mm/vmscan.c: don't disable irq again when count pgrefill for memcg mm: memblock: make keeping memblock memory opt-in rather than opt-out hugetlbfs: always use address space in inode for resv_map pointer mm/z3fold.c: support page migration mm/z3fold.c: add structure for buddy handles mm/z3fold.c: improve compression by extending search mm/z3fold.c: introduce helper functions mm/page_alloc.c: remove unnecessary parameter in rmqueue_pcplist mm/hmm: add ARCH_HAS_HMM_MIRROR ARCH_HAS_HMM_DEVICE Kconfig mm/vmscan.c: simplify shrink_inactive_list() fs/sync.c: sync_file_range(2) may use WB_SYNC_ALL writeback xen/privcmd-buf.c: convert to use vm_map_pages_zero() xen/gntdev.c: convert to use vm_map_pages() ...
2019-05-14mm: delete find_get_entries_tagMatthew Wilcox (Oracle)
I removed the only user of this and hadn't noticed it was now unused. Link: http://lkml.kernel.org/r/20190430152929.21813-1-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Ross Zwisler <zwisler@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/page-writeback: introduce tracepoint for wait_on_page_writeback()Yafang Shao
Recently there have been some hung tasks on our server due to wait_on_page_writeback(), and we want to know the details of this PG_writeback, i.e. this page is writing back to which device. But it is not so convenient to get the details. I think it would be better to introduce a tracepoint for diagnosing the writeback details. Link: http://lkml.kernel.org/r/1556274402-19018-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: memblock: make keeping memblock memory opt-in rather than opt-outMike Rapoport
Most architectures do not need the memblock memory after the page allocator is initialized, but only few enable ARCH_DISCARD_MEMBLOCK in the arch Kconfig. Replacing ARCH_DISCARD_MEMBLOCK with ARCH_KEEP_MEMBLOCK and inverting the logic makes it clear which architectures actually use memblock after system initialization and skips the necessity to add ARCH_DISCARD_MEMBLOCK to the architectures that are still missing that option. Link: http://lkml.kernel.org/r/1556102150-32517-1-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Burton <paul.burton@mips.com> Cc: James Hogan <jhogan@kernel.org> Cc: Ley Foon Tan <lftan@altera.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: introduce new vm_map_pages() and vm_map_pages_zero() APISouptick Joarder
Patch series "mm: Use vm_map_pages() and vm_map_pages_zero() API", v5. This patch (of 5): Previouly drivers have their own way of mapping range of kernel pages/memory into user vma and this was done by invoking vm_insert_page() within a loop. As this pattern is common across different drivers, it can be generalized by creating new functions and using them across the drivers. vm_map_pages() is the API which can be used to map kernel memory/pages in drivers which have considered vm_pgoff vm_map_pages_zero() is the API which can be used to map a range of kernel memory/pages in drivers which have not considered vm_pgoff. vm_pgoff is passed as default 0 for those drivers. We _could_ then at a later "fix" these drivers which are using vm_map_pages_zero() to behave according to the normal vm_pgoff offsetting simply by removing the _zero suffix on the function name and if that causes regressions, it gives us an easy way to revert. Tested on Rockchip hardware and display is working, including talking to Lima via prime. Link: http://lkml.kernel.org/r/751cb8a0f4c3e67e95c58a3b072937617f338eea.1552921225.git.jrdr.linux@gmail.com Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com> Suggested-by: Russell King <linux@armlinux.org.uk> Suggested-by: Matthew Wilcox <willy@infradead.org> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Tested-by: Heiko Stuebner <heiko@sntech.de> Cc: Michal Hocko <mhocko@suse.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@surriel.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Robin Murphy <robin.murphy@arm.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Thierry Reding <treding@nvidia.com> Cc: Kees Cook <keescook@chromium.org> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Stefan Richter <stefanr@s5r6.in-berlin.de> Cc: Sandy Huang <hjc@rock-chips.com> Cc: David Airlie <airlied@linux.ie> Cc: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Pawel Osciak <pawel@osciak.com> Cc: Kyungmin Park <kyungmin.park@samsung.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/memory_hotplug: make __remove_pages() and arch_remove_memory() never failDavid Hildenbrand
All callers of arch_remove_memory() ignore errors. And we should really try to remove any errors from the memory removal path. No more errors are reported from __remove_pages(). BUG() in s390x code in case arch_remove_memory() is triggered. We may implement that properly later. WARN in case powerpc code failed to remove the section mapping, which is better than ignoring the error completely right now. Link: http://lkml.kernel.org/r/20190409100148.24703-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Rich Felker <dalias@libc.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Stefan Agner <stefan@agner.ch> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Arun KS <arunks@codeaurora.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Rob Herring <robh@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Qian Cai <cai@lca.pw> Cc: Mathieu Malaterre <malat@debian.org> Cc: Andrew Banman <andrew.banman@hpe.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Mike Travis <mike.travis@hpe.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/memory_hotplug: make unregister_memory_section() never failDavid Hildenbrand
Failing while removing memory is mostly ignored and cannot really be handled. Let's treat errors in unregister_memory_section() in a nice way, warning, but continuing. Link: http://lkml.kernel.org/r/20190409100148.24703-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Rafael J. Wysocki" <rafael@kernel.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Banman <andrew.banman@hpe.com> Cc: Mike Travis <mike.travis@hpe.com> Cc: David Hildenbrand <david@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Qian Cai <cai@lca.pw> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Arun KS <arunks@codeaurora.org> Cc: Mathieu Malaterre <malat@debian.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oscar Salvador <osalvador@suse.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh@kernel.org> Cc: Stefan Agner <stefan@agner.ch> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm, memory_hotplug: provide a more generic restrictions for memory hotplugMichal Hocko
arch_add_memory, __add_pages take a want_memblock which controls whether the newly added memory should get the sysfs memblock user API (e.g. ZONE_DEVICE users do not want/need this interface). Some callers even want to control where do we allocate the memmap from by configuring altmap. Add a more generic hotplug context for arch_add_memory and __add_pages. struct mhp_restrictions contains flags which contains additional features to be enabled by the memory hotplug (MHP_MEMBLOCK_API currently) and altmap for alternative memmap allocator. This patch shouldn't introduce any functional change. [akpm@linux-foundation.org: build fix] Link: http://lkml.kernel.org/r/20190408082633.2864-3-osalvador@suse.de Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Oscar Salvador <osalvador@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm, memory_hotplug: cleanup memory offline pathMichal Hocko
check_pages_isolated_cb currently accounts the whole pfn range as being offlined if test_pages_isolated suceeds on the range. This is based on the assumption that all pages in the range are freed which is currently the case in most cases but it won't be with later changes, as pages marked as vmemmap won't be isolated. Move the offlined pages counting to offline_isolated_pages_cb and rely on __offline_isolated_pages to return the correct value. check_pages_isolated_cb will still do it's primary job and check the pfn range. While we are at it remove check_pages_isolated and offline_isolated_pages and use directly walk_system_ram_range as do in online_pages. Link: http://lkml.kernel.org/r/20190408082633.2864-2-osalvador@suse.de Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Oscar Salvador <osalvador@suse.de> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: initialize MAX_ORDER_NR_PAGES at a time instead of doing larger sectionsAlexander Duyck
Add yet another iterator, for_each_free_mem_range_in_zone_from, and then use it to support initializing and freeing pages in groups no larger than MAX_ORDER_NR_PAGES. By doing this we can greatly improve the cache locality of the pages while we do several loops over them in the init and freeing process. We are able to tighten the loops further as a result of the "from" iterator as we can perform the initial checks for first_init_pfn in our first call to the iterator, and continue without the need for those checks via the "from" iterator. I have added this functionality in the function called deferred_init_mem_pfn_range_in_zone that primes the iterator and causes us to exit if we encounter any failure. On my x86_64 test system with 384GB of memory per node I saw a reduction in initialization time from 1.85s to 1.38s as a result of this patch. Link: http://lkml.kernel.org/r/20190405221231.12227.85836.stgit@localhost.localdomain Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: <yi.z.zhang@linux.intel.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David S. Miller <davem@davemloft.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: implement new zone specific memblock iteratorAlexander Duyck
Introduce a new iterator for_each_free_mem_pfn_range_in_zone. This iterator will take care of making sure a given memory range provided is in fact contained within a zone. It takes are of all the bounds checking we were doing in deferred_grow_zone, and deferred_init_memmap. In addition it should help to speed up the search a bit by iterating until the end of a range is greater than the start of the zone pfn range, and will exit completely if the start is beyond the end of the zone. Link: http://lkml.kernel.org/r/20190405221225.12227.22573.stgit@localhost.localdomain Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <yi.z.zhang@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: use mm_zero_struct_page from SPARC on all 64b architecturesAlexander Duyck
Patch series "Deferred page init improvements", v7. This patchset is essentially a refactor of the page initialization logic that is meant to provide for better code reuse while providing a significant improvement in deferred page initialization performance. In my testing on an x86_64 system with 384GB of RAM I have seen the following. In the case of regular memory initialization the deferred init time was decreased from 3.75s to 1.38s on average. This amounts to a 172% improvement for the deferred memory initialization performance. I have called out the improvement observed with each patch. This patch (of 4): Use the same approach that was already in use on Sparc on all the architectures that support a 64b long. This is mostly motivated by the fact that 7 to 10 store/move instructions are likely always going to be faster than having to call into a function that is not specialized for handling page init. An added advantage to doing it this way is that the compiler can get away with combining writes in the __init_single_page call. As a result the memset call will be reduced to only about 4 write operations, or at least that is what I am seeing with GCC 6.2 as the flags, LRU pointers, and count/mapcount seem to be cancelling out at least 4 of the 8 assignments on my system. One change I had to make to the function was to reduce the minimum page size to 56 to support some powerpc64 configurations. This change should introduce no change on SPARC since it already had this code. In the case of x86_64 I saw a reduction from 3.75s to 2.80s when initializing 384GB of RAM per node. Pavel Tatashin tested on a system with Broadcom's Stingray CPU and 48GB of RAM and found that __init_single_page() takes 19.30ns / 64-byte struct page before this patch and with this patch it takes 17.33ns / 64-byte struct page. Mike Rapoport ran a similar test on a OpenPower (S812LC 8348-21C) with Power8 processor and 128GB or RAM. His results per 64-byte struct page were 4.68ns before, and 4.59ns after this patch. Link: http://lkml.kernel.org/r/20190405221213.12227.9392.stgit@localhost.localdomain Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <yi.z.zhang@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/mmu_notifier: mmu_notifier_range_update_to_read_only() helperJérôme Glisse
Helper to test if a range is updated to read only (it is still valid to read from the range). This is useful for device driver or anyone who wish to optimize out update when they know that they already have the range map read only. Link: http://lkml.kernel.org/r/20190326164747.24405-9-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/mmu_notifier: pass down vma and reasons why mmu notifier is happeningJérôme Glisse
CPU page table update can happens for many reasons, not only as a result of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as a result of kernel activities (memory compression, reclaim, migration, ...). Users of mmu notifier API track changes to the CPU page table and take specific action for them. While current API only provide range of virtual address affected by the change, not why the changes is happening This patch is just passing down the new informations by adding it to the mmu_notifier_range structure. Link: http://lkml.kernel.org/r/20190326164747.24405-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/mmu_notifier: contextual information for event triggering invalidationJérôme Glisse
CPU page table update can happens for many reasons, not only as a result of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as a result of kernel activities (memory compression, reclaim, migration, ...). Users of mmu notifier API track changes to the CPU page table and take specific action for them. While current API only provide range of virtual address affected by the change, not why the changes is happening. This patchset do the initial mechanical convertion of all the places that calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP event as well as the vma if it is know (most invalidation happens against a given vma). Passing down the vma allows the users of mmu notifier to inspect the new vma page protection. The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier should assume that every for the range is going away when that event happens. A latter patch do convert mm call path to use a more appropriate events for each call. This is done as 2 patches so that no call site is forgotten especialy as it uses this following coccinelle patch: %<---------------------------------------------------------------------- @@ identifier I1, I2, I3, I4; @@ static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1, +enum mmu_notifier_event event, +unsigned flags, +struct vm_area_struct *vma, struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... } @@ @@ -#define mmu_notifier_range_init(range, mm, start, end) +#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end) @@ expression E1, E3, E4; identifier I1; @@ <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, I1, I1->vm_mm, E3, E4) ...> @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(..., struct vm_area_struct *VMA, ...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(...) { struct vm_area_struct *VMA; <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN; @@ FN(...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, NULL, E2, E3, E4) ...> } ---------------------------------------------------------------------->% Applied with: spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place spatch --sp-file mmu-notifier.spatch --dir mm --in-place Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/mmu_notifier: contextual information for event enumsJérôme Glisse
CPU page table update can happens for many reasons, not only as a result of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as a result of kernel activities (memory compression, reclaim, migration, ...). This patch introduce a set of enums that can be associated with each of the events triggering a mmu notifier. Latter patches take advantages of those enum values. - UNMAP: munmap() or mremap() - CLEAR: page table is cleared (migration, compaction, reclaim, ...) - PROTECTION_VMA: change in access protections for the range - PROTECTION_PAGE: change in access protections for page in the range - SOFT_DIRTY: soft dirtyness tracking Being able to identify munmap() and mremap() from other reasons why the page table is cleared is important to allow user of mmu notifier to update their own internal tracking structure accordingly (on munmap or mremap it is not longer needed to track range of virtual address as it becomes invalid). Link: http://lkml.kernel.org/r/20190326164747.24405-5-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/mmu_notifier: convert mmu_notifier_range->blockable to a flagsJérôme Glisse
Use an unsigned field for flags other than blockable and convert the blockable field to be one of those flags. Link: http://lkml.kernel.org/r/20190326164747.24405-4-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/mmu_notifier: helper to test if a range invalidation is blockableJérôme Glisse
Patch series "mmu notifier provide context informations", v6. Here I am not posting users of this, they already have been posted to appropriate mailing list [6] and will be merge through the appropriate tree once this patchset is upstream. Note that this serie does not change any behavior for any existing code. It just pass down more information to mmu notifier listener. The rationale for this patchset: CPU page table update can happens for many reasons, not only as a result of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as a result of kernel activities (memory compression, reclaim, migration, ...). This patchset introduce a set of enums that can be associated with each of the events triggering a mmu notifier: - UNMAP: munmap() or mremap() - CLEAR: page table is cleared (migration, compaction, reclaim, ...) - PROTECTION_VMA: change in access protections for the range - PROTECTION_PAGE: change in access protections for page in the range - SOFT_DIRTY: soft dirtyness tracking Being able to identify munmap() and mremap() from other reasons why the page table is cleared is important to allow user of mmu notifier to update their own internal tracking structure accordingly (on munmap or mremap it is not longer needed to track range of virtual address as it becomes invalid). Without this serie, driver are force to assume that every notification is an munmap which triggers useless trashing within drivers that associate structure with range of virtual address. Each driver is force to free up its tracking structure and then restore it on next device page fault. With this series we can also optimize device page table update. Patches to use this are at https://lkml.org/lkml/2019/1/23/833 https://lkml.org/lkml/2019/1/23/834 https://lkml.org/lkml/2019/1/23/832 https://lkml.org/lkml/2019/1/23/831 Moreover this can also be used to optimize out some page table updates such as for KVM where we can update the secondary MMU directly from the callback instead of clearing it. ACKS AMD/RADEON https://lkml.org/lkml/2019/2/1/395 ACKS RDMA https://lkml.org/lkml/2018/12/6/1473 This patch (of 8): Simple helpers to test if range invalidation is blockable. Latter patches use cocinnelle to convert all direct dereference of range-> blockable to use this function instead so that we can convert the blockable field to an unsigned for more flags. Link: http://lkml.kernel.org/r/20190326164747.24405-2-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: convert various hmm_pfn_* to device_entry which is a better nameJérôme Glisse
Convert hmm_pfn_* to device_entry_* as here we are dealing with device driver specific entry format and hmm provide helpers to allow differents components (including HMM) to create/parse device entry. We keep wrapper with the old name so that we can convert driver to use the new API in stages in each device driver tree. This will get remove once all driver are converted. Link: http://lkml.kernel.org/r/20190403193318.16478-13-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: add a helper function that fault pages and map them to a deviceJérôme Glisse
This is a all in one helper that fault pages in a range and map them to a device so that every single device driver do not have to re-implement this common pattern. This is taken from ODP RDMA in preparation of ODP RDMA convertion. It will be use by nouveau and other drivers. [jglisse@redhat.com: Was using wrong field and wrong enum] Link: http://lkml.kernel.org/r/20190409175340.26614-1-jglisse@redhat.com Link: http://lkml.kernel.org/r/20190403193318.16478-12-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: add helpers to test if mm is still alive or notJérôme Glisse
The device driver can have kernel thread or worker doing work against a process mm and it is useful for those to test wether the mm is dead or alive to avoid doing useless work. Add an helper to test that so that driver can bail out early if a process is dying. Note that the helper does not perform any lock synchronization and thus is just a hint ie a process might be dying but the helper might still return the process as alive. All HMM functions are safe to use in that case as HMM internal properly protect itself with lock. If driver use this helper with non HMM functions it should ascertain that it is safe to do so. Link: http://lkml.kernel.org/r/20190403193318.16478-11-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: mirror hugetlbfs (snapshoting, faulting and DMA mapping)Jérôme Glisse
HMM mirror is a device driver helpers to mirror range of virtual address. It means that the process jobs running on the device can access the same virtual address as the CPU threads of that process. This patch adds support for hugetlbfs mapping (ie range of virtual address that are mmap of a hugetlbfs). [rcampbell@nvidia.com: fix initial PFN for hugetlbfs pages] Link: http://lkml.kernel.org/r/20190419233536.8080-1-rcampbell@nvidia.com Link: http://lkml.kernel.org/r/20190403193318.16478-9-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: add default fault flags to avoid the need to pre-fill pfns arraysJérôme Glisse
The HMM mirror API can be use in two fashions. The first one where the HMM user coalesce multiple page faults into one request and set flags per pfns for of those faults. The second one where the HMM user want to pre-fault a range with specific flags. For the latter one it is a waste to have the user pre-fill the pfn arrays with a default flags value. This patch adds a default flags value allowing user to set them for a range without having to pre-fill the pfn array. Link: http://lkml.kernel.org/r/20190403193318.16478-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: improve driver API to work and wait over a rangeJérôme Glisse
A common use case for HMM mirror is user trying to mirror a range and before they could program the hardware it get invalidated by some core mm event. Instead of having user re-try right away to mirror the range provide a completion mechanism for them to wait for any active invalidation affecting the range. This also changes how hmm_range_snapshot() and hmm_range_fault() works by not relying on vma so that we can drop the mmap_sem when waiting and lookup the vma again on retry. Link: http://lkml.kernel.org/r/20190403193318.16478-7-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: improve and rename hmm_vma_fault() to hmm_range_fault()Jérôme Glisse
Minor optimization around hmm_pte_need_fault(). Rename for consistency between code, comments and documentation. Also improves the comments on all the possible returns values. Improve the function by returning the number of populated entries in pfns array. Link: http://lkml.kernel.org/r/20190403193318.16478-6-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: improve and rename hmm_vma_get_pfns() to hmm_range_snapshot()Jérôme Glisse
Rename for consistency between code, comments and documentation. Also improves the comments on all the possible returns values. Improve the function by returning the number of populated entries in pfns array. Link: http://lkml.kernel.org/r/20190403193318.16478-5-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: use reference counting for HMM structJérôme Glisse
Every time I read the code to check that the HMM structure does not vanish before it should thanks to the many lock protecting its removal i get a headache. Switch to reference counting instead it is much easier to follow and harder to break. This also remove some code that is no longer needed with refcounting. Link: http://lkml.kernel.org/r/20190403193318.16478-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14hugetlb: use same fault hash key for shared and private mappingsMike Kravetz
hugetlb uses a fault mutex hash table to prevent page faults of the same pages concurrently. The key for shared and private mappings is different. Shared keys off address_space and file index. Private keys off mm and virtual address. Consider a private mappings of a populated hugetlbfs file. A fault will map the page from the file and if needed do a COW to map a writable page. Hugetlbfs hole punch uses the fault mutex to prevent mappings of file pages. It uses the address_space file index key. However, private mappings will use a different key and could race with this code to map the file page. This causes problems (BUG) for the page cache remove code as it expects the page to be unmapped. A sample stack is: page dumped because: VM_BUG_ON_PAGE(page_mapped(page)) kernel BUG at mm/filemap.c:169! ... RIP: 0010:unaccount_page_cache_page+0x1b8/0x200 ... Call Trace: __delete_from_page_cache+0x39/0x220 delete_from_page_cache+0x45/0x70 remove_inode_hugepages+0x13c/0x380 ? __add_to_page_cache_locked+0x162/0x380 hugetlbfs_fallocate+0x403/0x540 ? _cond_resched+0x15/0x30 ? __inode_security_revalidate+0x5d/0x70 ? selinux_file_permission+0x100/0x130 vfs_fallocate+0x13f/0x270 ksys_fallocate+0x3c/0x80 __x64_sys_fallocate+0x1a/0x20 do_syscall_64+0x5b/0x180 entry_SYSCALL_64_after_hwframe+0x44/0xa9 There seems to be another potential COW issue/race with this approach of different private and shared keys as noted in commit 8382d914ebf7 ("mm, hugetlb: improve page-fault scalability"). Since every hugetlb mapping (even anon and private) is actually a file mapping, just use the address_space index key for all mappings. This results in potentially more hash collisions. However, this should not be the common case. Link: http://lkml.kernel.org/r/20190328234704.27083-3-mike.kravetz@oracle.com Link: http://lkml.kernel.org/r/20190412165235.t4sscoujczfhuiyt@linux-r8p5 Fixes: b5cec28d36f5 ("hugetlbfs: truncate_hugepages() takes a range of pages") Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Davidlohr Bueso <dbueso@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14include/linux/balloon_compaction.h: drop unused function stubsDavid Hildenbrand
These are leftovers from the pre-"general non-lru movable page" era. Link: http://lkml.kernel.org/r/20190329122649.28404-1-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mukesh Ojha <mojha@codeaurora.org> Acked-by: Michael S. Tsirkin <mst@redhat.com> Acked-by: Pankaj Gupta <pagupta@redhat.com> Acked-by: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: introduce put_user_page*(), placeholder versionsJohn Hubbard
A discussion of the overall problem is below. As mentioned in patch 0001, the steps are to fix the problem are: 1) Provide put_user_page*() routines, intended to be used for releasing pages that were pinned via get_user_pages*(). 2) Convert all of the call sites for get_user_pages*(), to invoke put_user_page*(), instead of put_page(). This involves dozens of call sites, and will take some time. 3) After (2) is complete, use get_user_pages*() and put_user_page*() to implement tracking of these pages. This tracking will be separate from the existing struct page refcounting. 4) Use the tracking and identification of these pages, to implement special handling (especially in writeback paths) when the pages are backed by a filesystem. Overview ======== Some kernel components (file systems, device drivers) need to access memory that is specified via process virtual address. For a long time, the API to achieve that was get_user_pages ("GUP") and its variations. However, GUP has critical limitations that have been overlooked; in particular, GUP does not interact correctly with filesystems in all situations. That means that file-backed memory + GUP is a recipe for potential problems, some of which have already occurred in the field. GUP was first introduced for Direct IO (O_DIRECT), allowing filesystem code to get the struct page behind a virtual address and to let storage hardware perform a direct copy to or from that page. This is a short-lived access pattern, and as such, the window for a concurrent writeback of GUP'd page was small enough that there were not (we think) any reported problems. Also, userspace was expected to understand and accept that Direct IO was not synchronized with memory-mapped access to that data, nor with any process address space changes such as munmap(), mremap(), etc. Over the years, more GUP uses have appeared (virtualization, device drivers, RDMA) that can keep the pages they get via GUP for a long period of time (seconds, minutes, hours, days, ...). This long-term pinning makes an underlying design problem more obvious. In fact, there are a number of key problems inherent to GUP: Interactions with file systems ============================== File systems expect to be able to write back data, both to reclaim pages, and for data integrity. Allowing other hardware (NICs, GPUs, etc) to gain write access to the file memory pages means that such hardware can dirty the pages, without the filesystem being aware. This can, in some cases (depending on filesystem, filesystem options, block device, block device options, and other variables), lead to data corruption, and also to kernel bugs of the form: kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899! backtrace: ext4_writepage __writepage write_cache_pages ext4_writepages do_writepages __writeback_single_inode writeback_sb_inodes __writeback_inodes_wb wb_writeback wb_workfn process_one_work worker_thread kthread ret_from_fork ...which is due to the file system asserting that there are still buffer heads attached: ({ \ BUG_ON(!PagePrivate(page)); \ ((struct buffer_head *)page_private(page)); \ }) Dave Chinner's description of this is very clear: "The fundamental issue is that ->page_mkwrite must be called on every write access to a clean file backed page, not just the first one. How long the GUP reference lasts is irrelevant, if the page is clean and you need to dirty it, you must call ->page_mkwrite before it is marked writeable and dirtied. Every. Time." This is just one symptom of the larger design problem: real filesystems that actually write to a backing device, do not actually support get_user_pages() being called on their pages, and letting hardware write directly to those pages--even though that pattern has been going on since about 2005 or so. Long term GUP ============= Long term GUP is an issue when FOLL_WRITE is specified to GUP (so, a writeable mapping is created), and the pages are file-backed. That can lead to filesystem corruption. What happens is that when a file-backed page is being written back, it is first mapped read-only in all of the CPU page tables; the file system then assumes that nobody can write to the page, and that the page content is therefore stable. Unfortunately, the GUP callers generally do not monitor changes to the CPU pages tables; they instead assume that the following pattern is safe (it's not): get_user_pages() Hardware can keep a reference to those pages for a very long time, and write to it at any time. Because "hardware" here means "devices that are not a CPU", this activity occurs without any interaction with the kernel's file system code. for each page set_page_dirty put_page() In fact, the GUP documentation even recommends that pattern. Anyway, the file system assumes that the page is stable (nothing is writing to the page), and that is a problem: stable page content is necessary for many filesystem actions during writeback, such as checksum, encryption, RAID striping, etc. Furthermore, filesystem features like COW (copy on write) or snapshot also rely on being able to use a new page for as memory for that memory range inside the file. Corruption during write back is clearly possible here. To solve that, one idea is to identify pages that have active GUP, so that we can use a bounce page to write stable data to the filesystem. The filesystem would work on the bounce page, while any of the active GUP might write to the original page. This would avoid the stable page violation problem, but note that it is only part of the overall solution, because other problems remain. Other filesystem features that need to replace the page with a new one can be inhibited for pages that are GUP-pinned. This will, however, alter and limit some of those filesystem features. The only fix for that would be to require GUP users to monitor and respond to CPU page table updates. Subsystems such as ODP and HMM do this, for example. This aspect of the problem is still under discussion. Direct IO ========= Direct IO can cause corruption, if userspace does Direct-IO that writes to a range of virtual addresses that are mmap'd to a file. The pages written to are file-backed pages that can be under write back, while the Direct IO is taking place. Here, Direct IO races with a write back: it calls GUP before page_mkclean() has replaced the CPU pte with a read-only entry. The race window is pretty small, which is probably why years have gone by before we noticed this problem: Direct IO is generally very quick, and tends to finish up before the filesystem gets around to do anything with the page contents. However, it's still a real problem. The solution is to never let GUP return pages that are under write back, but instead, force GUP to take a write fault on those pages. That way, GUP will properly synchronize with the active write back. This does not change the required GUP behavior, it just avoids that race. Details ======= Introduces put_user_page(), which simply calls put_page(). This provides a way to update all get_user_pages*() callers, so that they call put_user_page(), instead of put_page(). Also introduces put_user_pages(), and a few dirty/locked variations, as a replacement for release_pages(), and also as a replacement for open-coded loops that release multiple pages. These may be used for subsequent performance improvements, via batching of pages to be released. This is the first step of fixing a problem (also described in [1] and [2]) with interactions between get_user_pages ("gup") and filesystems. Problem description: let's start with a bug report. Below, is what happens sometimes, under memory pressure, when a driver pins some pages via gup, and then marks those pages dirty, and releases them. Note that the gup documentation actually recommends that pattern. The problem is that the filesystem may do a writeback while the pages were gup-pinned, and then the filesystem believes that the pages are clean. So, when the driver later marks the pages as dirty, that conflicts with the filesystem's page tracking and results in a BUG(), like this one that I experienced: kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899! backtrace: ext4_writepage __writepage write_cache_pages ext4_writepages do_writepages __writeback_single_inode writeback_sb_inodes __writeback_inodes_wb wb_writeback wb_workfn process_one_work worker_thread kthread ret_from_fork ...which is due to the file system asserting that there are still buffer heads attached: ({ \ BUG_ON(!PagePrivate(page)); \ ((struct buffer_head *)page_private(page)); \ }) Dave Chinner's description of this is very clear: "The fundamental issue is that ->page_mkwrite must be called on every write access to a clean file backed page, not just the first one. How long the GUP reference lasts is irrelevant, if the page is clean and you need to dirty it, you must call ->page_mkwrite before it is marked writeable and dirtied. Every. Time." This is just one symptom of the larger design problem: real filesystems that actually write to a backing device, do not actually support get_user_pages() being called on their pages, and letting hardware write directly to those pages--even though that pattern has been going on since about 2005 or so. The steps are to fix it are: 1) (This patch): provide put_user_page*() routines, intended to be used for releasing pages that were pinned via get_user_pages*(). 2) Convert all of the call sites for get_user_pages*(), to invoke put_user_page*(), instead of put_page(). This involves dozens of call sites, and will take some time. 3) After (2) is complete, use get_user_pages*() and put_user_page*() to implement tracking of these pages. This tracking will be separate from the existing struct page refcounting. 4) Use the tracking and identification of these pages, to implement special handling (especially in writeback paths) when the pages are backed by a filesystem. [1] https://lwn.net/Articles/774411/ : "DMA and get_user_pages()" [2] https://lwn.net/Articles/753027/ : "The Trouble with get_user_pages()" Link: http://lkml.kernel.org/r/20190327023632.13307-2-jhubbard@nvidia.com Signed-off-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> [docs] Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Christoph Lameter <cl@linux.com> Tested-by: Ira Weiny <ira.weiny@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14hugetlb: allow to free gigantic pages regardless of the configurationAlexandre Ghiti
On systems without CONTIG_ALLOC activated but that support gigantic pages, boottime reserved gigantic pages can not be freed at all. This patch simply enables the possibility to hand back those pages to memory allocator. Link: http://lkml.kernel.org/r/20190327063626.18421-5-alex@ghiti.fr Signed-off-by: Alexandre Ghiti <alex@ghiti.fr> Acked-by: David S. Miller <davem@davemloft.net> [sparc] Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>