summaryrefslogtreecommitdiff
path: root/include
AgeCommit message (Collapse)Author
2020-03-08sched: act: allow user to specify type of HW stats for a filterJiri Pirko
Currently, user who is adding an action expects HW to report stats, however it does not have exact expectations about the stats types. That is aligned with TCA_ACT_HW_STATS_TYPE_ANY. Allow user to specify the type of HW stats for an action and require it. Pass the information down to flow_offload layer. Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-08flow_offload: introduce "disabled" HW stats type and allow it in mlxswJiri Pirko
Introduce new type for disabled HW stats and allow the value in mlxsw offload. Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-08flow_offload: introduce "delayed" HW stats type and allow it in mlx5Jiri Pirko
Introduce new type for delayed HW stats and allow the value in mlx5 offload. Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-08flow_offload: introduce "immediate" HW stats type and allow it in mlxswJiri Pirko
Introduce new type for immediate HW stats and allow the value in mlxsw offload. Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-08flow_offload: check for basic action hw stats typeJiri Pirko
Introduce flow_action_basic_hw_stats_types_check() helper and use it in drivers. That sanitizes the drivers which do not have support for action HW stats types. Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-08flow_offload: Introduce offload of HW stats typeJiri Pirko
Initially, pass "ANY" (struct is zeroed) to the drivers as that is the current implicit value coming down to flow_offload. Add a bool indicating that entries have mixed HW stats type. Signed-off-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-05PCI: Introduce pci_get_dsnJacob Keller
Several device drivers read their Device Serial Number from the PCIe extended config space. Introduce a new helper function, pci_get_dsn(). This function reads the eight bytes of the DSN and returns them as a u64. If the capability does not exist for the device, the function returns 0. Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Michael Chan <michael.chan@broadcom.com> Acked-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-05net: sched: Make FIFO Qdisc offloadablePetr Machata
Invoke ndo_setup_tc() as appropriate to signal init / replacement, destroying and dumping of pFIFO / bFIFO Qdisc. A lot of the FIFO logic is used for pFIFO_head_drop as well, but that's a semantically very different Qdisc that isn't really in the same boat as pFIFO / bFIFO. Split some of the functions to keep the Qdisc intact. Signed-off-by: Petr Machata <petrm@mellanox.com> Signed-off-by: Ido Schimmel <idosch@mellanox.com> Acked-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-05ethtool: add infrastructure for centralized checking of coalescing parametersJakub Kicinski
Linux supports 22 different interrupt coalescing parameters. No driver implements them all. Some drivers just ignore the ones they don't support, while others have to carry a long list of checks to reject unsupported settings. To simplify the drivers add the ability to specify inside ethtool_ops which parameters are supported and let the core reject attempts to set any other one. This commit makes the mechanism an opt-in, only drivers which set ethtool_opts->coalesce_types to a non-zero value will have the checks enforced. The same mask is used for global and per queue settings. v3: - move the (temporary) check if driver defines types earlier (Michal) - rename used_types -> nonzero_params, and coalesce_types -> supported_coalesce_params (Alex) - use EOPNOTSUPP instead of EINVAL (Andrew, Michal) Leaving the long series of ifs for now, it seems nice to be able to grep for the field and flag names. This will probably have to be revisited once netlink support lands. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Reviewed-by: Jacob Keller <jacob.e.keller@intel.com> Reviewed-by: Michal Kubecek <mkubecek@suse.cz> Reviewed-by: Andrew Lunn <andrew@lunn.ch> Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-04PCI: Add pci_status_get_and_clear_errorsHeiner Kallweit
Several drivers use the following code sequence: 1. Read PCI_STATUS 2. Mask out non-error bits 3. Action based on error bits set 4. Write back set error bits to clear them As this is a repeated pattern, add a helper to the PCI core. Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com> Acked-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-04PCI: Add constant PCI_STATUS_ERROR_BITSHeiner Kallweit
This collection of PCI error bits is used in more than one driver, so move it to the PCI core. Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com> Acked-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-04net: dsa: felix: Allow unknown unicast traffic towards the CPU port moduleVladimir Oltean
Compared to other DSA switches, in the Ocelot cores, the RX filtering is a much more important concern. Firstly, the primary use case for Ocelot is non-DSA, so there isn't any secondary Ethernet MAC [the DSA master's one] to implicitly drop frames having a DMAC we are not interested in. So the switch driver itself needs to install FDB entries towards the CPU port module (PGID_CPU) for the MAC address of each switch port, in each VLAN installed on the port. Every address that is not whitelisted is implicitly dropped. This is in order to achieve a behavior similar to N standalone net devices. Secondly, even in the secondary use case of DSA, such as illustrated by Felix with the NPI port mode, that secondary Ethernet MAC is present, but its RX filter is bypassed. This is because the DSA tags themselves are placed before Ethernet, so the DMAC that the switch ports see is not seen by the DSA master too (since it's shifter to the right). So RX filtering is pretty important. A good RX filter won't bother the CPU in case the switch port receives a frame that it's not interested in, and there exists no other line of defense. Ocelot is pretty strict when it comes to RX filtering: non-IP multicast and broadcast traffic is allowed to go to the CPU port module, but unknown unicast isn't. This means that traffic reception for any other MAC addresses than the ones configured on each switch port net device won't work. This includes use cases such as macvlan or bridging with a non-Ocelot (so-called "foreign") interface. But this seems to be fine for the scenarios that the Linux system embedded inside an Ocelot switch is intended for - it is simply not interested in unknown unicast traffic, as explained in Allan Nielsen's presentation [0]. On the other hand, the Felix DSA switch is integrated in more general-purpose Linux systems, so it can't afford to drop that sort of traffic in hardware, even if it will end up doing so later, in software. Actually, unknown unicast means more for Felix than it does for Ocelot. Felix doesn't attempt to perform the whitelisting of switch port MAC addresses towards PGID_CPU at all, mainly because it is too complicated to be feasible: while the MAC addresses are unique in Ocelot, by default in DSA all ports are equal and inherited from the DSA master. This adds into account the question of reference counting MAC addresses (delayed ocelot_mact_forget), not to mention reference counting for the VLAN IDs that those MAC addresses are installed in. This reference counting should be done in the DSA core, and the fact that it wasn't needed so far is due to the fact that the other DSA switches don't have the DSA tag placed before Ethernet, so the DSA master is able to whitelist the MAC addresses in hardware. So this means that even regular traffic termination on a Felix switch port happens through flooding (because neither Felix nor Ocelot learn source MAC addresses from CPU-injected frames). So far we've explained that whitelisting towards PGID_CPU: - helps to reduce the likelihood of spamming the CPU with frames it won't process very far anyway - is implemented in the ocelot driver - is sufficient for the ocelot use cases - is not feasible in DSA - breaks use cases in DSA, in the current status (whitelisting enabled but no MAC address whitelisted) So the proposed patch allows unknown unicast frames to be sent to the CPU port module. This is done for the Felix DSA driver only, as Ocelot seems to be happy without it. [0]: https://www.youtube.com/watch?v=B1HhxEcU7Jg Suggested-by: Allan W. Nielsen <allan.nielsen@microchip.com> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Allan W. Nielsen <allan.nielsen@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-04net: mscc: ocelot: eliminate confusion between CPU and NPI portVladimir Oltean
Ocelot has the concept of a CPU port. The CPU port is represented in the forwarding and the queueing system, but it is not a physical device. The CPU port can either be accessed via register-based injection/extraction (which is the case of Ocelot), via Frame-DMA (similar to the first one), or "connected" to a physical Ethernet port (called NPI in the datasheet) which is the case of the Felix DSA switch. In Ocelot the CPU port is at index 11. In Felix the CPU port is at index 6. The CPU bit is treated special in the forwarding, as it is never cleared from the forwarding port mask (once added to it). Other than that, it is treated the same as a normal front port. Both Felix and Ocelot should use the CPU port in the same way. This means that Felix should not use the NPI port directly when forwarding to the CPU, but instead use the CPU port. This patch is fixing this such that Felix will use port 6 as its CPU port, and just use the NPI port to carry the traffic. Therefore, eliminate the "ocelot->cpu" variable which was holding the index of the NPI port for Felix, and the index of the CPU port module for Ocelot, so the variable was actually configuring different things for different drivers and causing at least part of the confusion. Also remove the "ocelot->num_cpu_ports" variable, which is the result of another confusion. The 2 CPU ports mentioned in the datasheet are because there are two frame extraction channels (register based or DMA based). This is of no relevance to the driver at the moment, and invisible to the analyzer module. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Suggested-by: Allan W. Nielsen <allan.nielsen@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-04pie: realign commentLeslie Monis
Realign a comment after the change introduced by the previous patch. Signed-off-by: Leslie Monis <lesliemonis@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-04pie: remove pie_vars->accu_prob_overflowsLeslie Monis
The variable pie_vars->accu_prob is used as an accumulator for probability values. Since probabilty values are scaled using the MAX_PROB macro denoting (2^64 - 1), pie_vars->accu_prob is likely to overflow as it is of type u64. The variable pie_vars->accu_prob_overflows counts the number of times the variable pie_vars->accu_prob overflows. The MAX_PROB macro needs to be equal to at least (2^39 - 1) in order to do precise calculations without any underflow. Thus MAX_PROB can be reduced to (2^56 - 1) without affecting the precision in calculations drastically. Doing so will eliminate the need for the variable pie_vars->accu_prob_overflows as the variable pie_vars->accu_prob will never overflow. Removing the variable pie_vars->accu_prob_overflows also reduces the size of the structure pie_vars to exactly 64 bytes. Signed-off-by: Mohit P. Tahiliani <tahiliani@nitk.edu.in> Signed-off-by: Gautam Ramakrishnan <gautamramk@gmail.com> Signed-off-by: Leslie Monis <lesliemonis@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-04pie: use term backlog instead of qlenLeslie Monis
Remove ambiguity by using the term backlog instead of qlen when representing the queue length in bytes. Signed-off-by: Mohit P. Tahiliani <tahiliani@nitk.edu.in> Signed-off-by: Gautam Ramakrishnan <gautamramk@gmail.com> Signed-off-by: Leslie Monis <lesliemonis@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-03net: dsa: felix: Wire up the ocelot cls_flower methodsVladimir Oltean
Export the cls_flower methods from the ocelot driver and hook them up to the DSA passthrough layer. Tables for the VCAP IS2 parameters, as well as half key packing (field offsets and lengths) need to be defined for the VSC9959 core, as they are different from Ocelot, mainly due to the different port count. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-03net: dsa: Add bypass operations for the flower classifier-action filterVladimir Oltean
Due to the immense variety of classification keys and actions available for tc-flower, as well as due to potentially very different DSA switch capabilities, it doesn't make a lot of sense for the DSA mid layer to even attempt to interpret these. So just pass them on to the underlying switch driver. DSA implements just the standard boilerplate for binding and unbinding flow blocks to ports, since nobody wants to deal with that. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-03net: mscc: ocelot: parameterize the vcap_is2 propertiesVladimir Oltean
Remove the definitions for the VCAP IS2 table from ocelot_ace.c, since it is specific to VSC7514. The VSC9959 VCAP IS2 table supports more rules (1024 instead of 64) and has a different width for the action (89 bits instead of 99). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-03net: mscc: ocelot: remove port_pcs_init indirection for VSC7514Vladimir Oltean
The Felix driver is now using its own PHYLINK instance, not calling into ocelot_adjust_link. So the port_pcs_init function pointer is an unnecessary indirection. Remove it. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> Reviewed-by: Allan W. Nielsen <allan.nielsen@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-03net: mscc: ocelot: don't rely on preprocessor for vcap key/action packingVladimir Oltean
The IGR_PORT_MASK key width is different between the 11-port VSC7514 and the 6-port VSC9959 switches. And since IGR_PORT_MASK is one of the first fields of a VCAP key entry, it means that all further field offset/length pairs are shifted between the 2. The ocelot driver performs packing of VCAP half keys with the help of some preprocessor macros: - A set of macros for defining the HKO (Half Key Offset) and HKL (Half Key Length) of each possible key field. The offset of each field is defined as the sum between the offset and the sum of the previous field. - A set of accessors on top of vcap_key_set for shorter (aka less typing) access to the HKO and HKL of each key field. Since the field offsets and lengths are different between switches, defining them through the preprocessor isn't going to fly. So introduce a structure holding (offset, length) pairs and instantiate it in ocelot_board.c for VSC7514. In a future patch, a similar structure will be instantiated in felix_vsc9959.c for NXP LS1028A. The accessors also need to go. They are based on macro name concatenation, which is horrible to understand and follow. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-03net: mscc: ocelot: simplify tc-flower offload structuresVladimir Oltean
The ocelot tc-flower offload binds a second flow block callback (apart from the one for matchall) just because it uses a different block private structure (ocelot_port_private for matchall, ocelot_port_block for flower). But ocelot_port_block just appears to be boilerplate, and doesn't help with anything in particular at all, it's just useless glue between the (global!) struct ocelot_acl_block *block pointer, and a per-netdevice struct ocelot_port_private *priv. So let's just simplify that, and make struct ocelot_port_private be the private structure for the block offload. This makes us able to use the same flow callback as in the case of matchall. This also reveals that the struct ocelot_acl_block *block is used rather strangely, as mentioned above: it is defined globally, allocated at probe time, and freed at unbind time. So just move the structure to the main ocelot structure, which gives further opportunity for simplification. Also get rid of backpointers from struct ocelot_acl_block and struct ocelot_ace_rule back to struct ocelot, by reworking the function prototypes, where necessary, to use a more DSA-friendly "struct ocelot *ocelot, int port" format. And finally, remove the debugging prints that were added during development, since they provide no useful information at this point. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Tested-by: Horatiu Vultur <horatiu.vultur@microchip.com> Reviewed-by: Allan W. Nielsen <allan.nielsen@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-03devlink: Introduce devlink port flavour virtualParav Pandit
Currently mlx5 PCI PF and VF devlink devices register their ports as physical port in non-representors mode. Introduce a new port flavour as virtual so that virtual devices can register 'virtual' flavour to make it more clear to users. An example of one PCI PF and 2 PCI virtual functions, each having one devlink port. $ devlink port show pci/0000:06:00.0/1: type eth netdev ens2f0 flavour physical port 0 pci/0000:06:00.2/1: type eth netdev ens2f2 flavour virtual port 0 pci/0000:06:00.3/1: type eth netdev ens2f3 flavour virtual port 0 Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: Parav Pandit <parav@mellanox.com> Acked-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-03net/sched: act_ct: Create nf flow table per zonePaul Blakey
Use the NF flow tables infrastructure for CT offload. Create a nf flow table per zone. Next patches will add FT entries to this table, and do the software offload. Signed-off-by: Paul Blakey <paulb@mellanox.com> Reviewed-by: Jiri Pirko <jiri@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-02net: inet_sock: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-02net: ip6_fib: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-02net: ip_fib: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-02drop_monitor: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-02net: mip6: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-02netdevice: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29arcnet: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29neighbour: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29net: flow_offload: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29net: dn_fib: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29ndisc: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29net: ipv6: mld: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29net: lwtunnel: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29net: ip6_route: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29net: nexthop: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Reviewed-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29net: sctp: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29net: sock_reuseport: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29ethtool: Factored out similar ethtool link settings for virtual devices to coreCris Forno
Three virtual devices (ibmveth, virtio_net, and netvsc) all have similar code to set link settings and validate ethtool command. To eliminate duplication of code, it is factored out into core/ethtool.c. Signed-off-by: Cris Forno <cforno12@linux.vnet.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29net: sched: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-29Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextDavid S. Miller
Alexei Starovoitov says: ==================== pull-request: bpf-next 2020-02-28 The following pull-request contains BPF updates for your *net-next* tree. We've added 41 non-merge commits during the last 7 day(s) which contain a total of 49 files changed, 1383 insertions(+), 499 deletions(-). The main changes are: 1) BPF and Real-Time nicely co-exist. 2) bpftool feature improvements. 3) retrieve bpf_sk_storage via INET_DIAG. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-28net: datagram: drop 'destructor' argument from several helpersPaolo Abeni
The only users for such argument are the UDP protocol and the UNIX socket family. We can safely reclaim the accounted memory directly from the UDP code and, after the previous patch, we can do scm stats accounting outside the datagram helpers. Overall this cleans up a bit some datagram-related helpers, and avoids an indirect call per packet in the UDP receive path. v1 -> v2: - call scm_stat_del() only when not peeking - Kirill - fix build issue with CONFIG_INET_ESPINTCP Signed-off-by: Paolo Abeni <pabeni@redhat.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-28unix: uses an atomic type for scm files accountingPaolo Abeni
So the scm_stat_{add,del} helper can be invoked with no additional lock held. This clean-up the code a bit and will make the next patch easier. Signed-off-by: Paolo Abeni <pabeni@redhat.com> Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-28af_unix: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-28bonding: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-28net: dccp: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-28net: mpls: Replace zero-length array with flexible-array memberGustavo A. R. Silva
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> Signed-off-by: David S. Miller <davem@davemloft.net>