summaryrefslogtreecommitdiff
path: root/kernel/bpf/btf.c
AgeCommit message (Collapse)Author
2022-12-07Merge "do not rely on ALLOW_ERROR_INJECTION for fmod_ret" into bpf-nextAlexei Starovoitov
Merge commit 5b481acab4ce ("bpf: do not rely on ALLOW_ERROR_INJECTION for fmod_ret") from hid tree into bpf-next. Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-07bpf: do not rely on ALLOW_ERROR_INJECTION for fmod_retBenjamin Tissoires
The current way of expressing that a non-bpf kernel component is willing to accept that bpf programs can be attached to it and that they can change the return value is to abuse ALLOW_ERROR_INJECTION. This is debated in the link below, and the result is that it is not a reasonable thing to do. Reuse the kfunc declaration structure to also tag the kernel functions we want to be fmodret. This way we can control from any subsystem which functions are being modified by bpf without touching the verifier. Link: https://lore.kernel.org/all/20221121104403.1545f9b5@gandalf.local.home/ Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/r/20221206145936.922196-2-benjamin.tissoires@redhat.com
2022-12-04bpf: Do not mark certain LSM hook arguments as trustedYonghong Song
Martin mentioned that the verifier cannot assume arguments from LSM hook sk_alloc_security being trusted since after the hook is called, the sk ref_count is set to 1. This will overwrite the ref_count changed by the bpf program and may cause ref_count underflow later on. I then further checked some other hooks. For example, for bpf_lsm_file_alloc() hook in fs/file_table.c, f->f_cred = get_cred(cred); error = security_file_alloc(f); if (unlikely(error)) { file_free_rcu(&f->f_rcuhead); return ERR_PTR(error); } atomic_long_set(&f->f_count, 1); The input parameter 'f' to security_file_alloc() cannot be trusted as well. Specifically, I investiaged bpf_map/bpf_prog/file/sk/task alloc/free lsm hooks. Except bpf_map_alloc and task_alloc, arguments for all other hooks should not be considered as trusted. This may not be a complete list, but it covers common usage for sk and task. Fixes: 3f00c5239344 ("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs") Signed-off-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/r/20221203204954.2043348-1-yhs@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-24bpf: Don't mark arguments to fentry/fexit programs as trusted.Alexei Starovoitov
The PTR_TRUSTED flag should only be applied to pointers where the verifier can guarantee that such pointers are valid. The fentry/fexit/fmod_ret programs are not in this category. Only arguments of SEC("tp_btf") and SEC("iter") programs are trusted (which have BPF_TRACE_RAW_TP and BPF_TRACE_ITER attach_type correspondingly) This bug was masked because convert_ctx_accesses() was converting trusted loads into BPF_PROBE_MEM loads. Fix it as well. The loads from trusted pointers don't need exception handling. Fixes: 3f00c5239344 ("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20221124215314.55890-1-alexei.starovoitov@gmail.com
2022-11-24bpf: Add kfunc bpf_rcu_read_lock/unlock()Yonghong Song
Add two kfunc's bpf_rcu_read_lock() and bpf_rcu_read_unlock(). These two kfunc's can be used for all program types. The following is an example about how rcu pointer are used w.r.t. bpf_rcu_read_lock()/bpf_rcu_read_unlock(). struct task_struct { ... struct task_struct *last_wakee; struct task_struct __rcu *real_parent; ... }; Let us say prog does 'task = bpf_get_current_task_btf()' to get a 'task' pointer. The basic rules are: - 'real_parent = task->real_parent' should be inside bpf_rcu_read_lock region. This is to simulate rcu_dereference() operation. The 'real_parent' is marked as MEM_RCU only if (1). task->real_parent is inside bpf_rcu_read_lock region, and (2). task is a trusted ptr. So MEM_RCU marked ptr can be 'trusted' inside the bpf_rcu_read_lock region. - 'last_wakee = real_parent->last_wakee' should be inside bpf_rcu_read_lock region since it tries to access rcu protected memory. - the ptr 'last_wakee' will be marked as PTR_UNTRUSTED since in general it is not clear whether the object pointed by 'last_wakee' is valid or not even inside bpf_rcu_read_lock region. The verifier will reset all rcu pointer register states to untrusted at bpf_rcu_read_unlock() kfunc call site, so any such rcu pointer won't be trusted any more outside the bpf_rcu_read_lock() region. The current implementation does not support nested rcu read lock region in the prog. Acked-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/r/20221124053217.2373910-1-yhs@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-24bpf: Unify and simplify btf_func_proto_check error handlingStanislav Fomichev
Replace 'err = x; break;' with 'return x;'. Suggested-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20221124002838.2700179-1-sdf@google.com
2022-11-24bpf: Prevent decl_tag from being referenced in func_proto argStanislav Fomichev
Syzkaller managed to hit another decl_tag issue: btf_func_proto_check kernel/bpf/btf.c:4506 [inline] btf_check_all_types kernel/bpf/btf.c:4734 [inline] btf_parse_type_sec+0x1175/0x1980 kernel/bpf/btf.c:4763 btf_parse kernel/bpf/btf.c:5042 [inline] btf_new_fd+0x65a/0xb00 kernel/bpf/btf.c:6709 bpf_btf_load+0x6f/0x90 kernel/bpf/syscall.c:4342 __sys_bpf+0x50a/0x6c0 kernel/bpf/syscall.c:5034 __do_sys_bpf kernel/bpf/syscall.c:5093 [inline] __se_sys_bpf kernel/bpf/syscall.c:5091 [inline] __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5091 do_syscall_64+0x54/0x70 arch/x86/entry/common.c:48 This seems similar to commit ea68376c8bed ("bpf: prevent decl_tag from being referenced in func_proto") but for the argument. Reported-by: syzbot+8dd0551dda6020944c5d@syzkaller.appspotmail.com Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20221123035422.872531-2-sdf@google.com
2022-11-20bpf: Add a kfunc to type cast from bpf uapi ctx to kernel ctxYonghong Song
Implement bpf_cast_to_kern_ctx() kfunc which does a type cast of a uapi ctx object to the corresponding kernel ctx. Previously if users want to access some data available in kctx but not in uapi ctx, bpf_probe_read_kernel() helper is needed. The introduction of bpf_cast_to_kern_ctx() allows direct memory access which makes code simpler and easier to understand. Signed-off-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/r/20221120195432.3113982-1-yhs@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-20bpf: Add support for kfunc set with common btf_idsYonghong Song
Later on, we will introduce kfuncs bpf_cast_to_kern_ctx() and bpf_rdonly_cast() which apply to all program types. Currently kfunc set only supports individual prog types. This patch added support for kfunc applying to all program types. Signed-off-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/r/20221120195426.3113828-1-yhs@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-20bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncsDavid Vernet
Kfuncs currently support specifying the KF_TRUSTED_ARGS flag to signal to the verifier that it should enforce that a BPF program passes it a "safe", trusted pointer. Currently, "safe" means that the pointer is either PTR_TO_CTX, or is refcounted. There may be cases, however, where the kernel passes a BPF program a safe / trusted pointer to an object that the BPF program wishes to use as a kptr, but because the object does not yet have a ref_obj_id from the perspective of the verifier, the program would be unable to pass it to a KF_ACQUIRE | KF_TRUSTED_ARGS kfunc. The solution is to expand the set of pointers that are considered trusted according to KF_TRUSTED_ARGS, so that programs can invoke kfuncs with these pointers without getting rejected by the verifier. There is already a PTR_UNTRUSTED flag that is set in some scenarios, such as when a BPF program reads a kptr directly from a map without performing a bpf_kptr_xchg() call. These pointers of course can and should be rejected by the verifier. Unfortunately, however, PTR_UNTRUSTED does not cover all the cases for safety that need to be addressed to adequately protect kfuncs. Specifically, pointers obtained by a BPF program "walking" a struct are _not_ considered PTR_UNTRUSTED according to BPF. For example, say that we were to add a kfunc called bpf_task_acquire(), with KF_ACQUIRE | KF_TRUSTED_ARGS, to acquire a struct task_struct *. If we only used PTR_UNTRUSTED to signal that a task was unsafe to pass to a kfunc, the verifier would mistakenly allow the following unsafe BPF program to be loaded: SEC("tp_btf/task_newtask") int BPF_PROG(unsafe_acquire_task, struct task_struct *task, u64 clone_flags) { struct task_struct *acquired, *nested; nested = task->last_wakee; /* Would not be rejected by the verifier. */ acquired = bpf_task_acquire(nested); if (!acquired) return 0; bpf_task_release(acquired); return 0; } To address this, this patch defines a new type flag called PTR_TRUSTED which tracks whether a PTR_TO_BTF_ID pointer is safe to pass to a KF_TRUSTED_ARGS kfunc or a BPF helper function. PTR_TRUSTED pointers are passed directly from the kernel as a tracepoint or struct_ops callback argument. Any nested pointer that is obtained from walking a PTR_TRUSTED pointer is no longer PTR_TRUSTED. From the example above, the struct task_struct *task argument is PTR_TRUSTED, but the 'nested' pointer obtained from 'task->last_wakee' is not PTR_TRUSTED. A subsequent patch will add kfuncs for storing a task kfunc as a kptr, and then another patch will add selftests to validate. Signed-off-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/r/20221120051004.3605026-3-void@manifault.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17bpf: Add comments for map BTF matching requirement for bpf_list_headKumar Kartikeya Dwivedi
The old behavior of bpf_map_meta_equal was that it compared timer_off to be equal (but not spin_lock_off, because that was not allowed), and did memcmp of kptr_off_tab. Now, we memcmp the btf_record of two bpf_map structs, which has all fields. We preserve backwards compat as we kzalloc the array, so if only spin lock and timer exist in map, we only compare offset while the rest of unused members in the btf_field struct are zeroed out. In case of kptr, btf and everything else is of vmlinux or module, so as long type is same it will match, since kernel btf, module, dtor pointer will be same across maps. Now with list_head in the mix, things are a bit complicated. We implicitly add a requirement that both BTFs are same, because struct btf_field_list_head has btf and value_rec members. We obviously shouldn't force BTFs to be equal by default, as that breaks backwards compatibility. Currently it is only implicitly required due to list_head matching struct btf and value_rec member. value_rec points back into a btf_record stashed in the map BTF (btf member of btf_field_list_head). So that pointer and btf member has to match exactly. Document all these subtle details so that things don't break in the future when touching this code. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221118015614.2013203-19-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17bpf: Rewrite kfunc argument handlingKumar Kartikeya Dwivedi
As we continue to add more features, argument types, kfunc flags, and different extensions to kfuncs, the code to verify the correctness of the kfunc prototype wrt the passed in registers has become ad-hoc and ugly to read. To make life easier, and make a very clear split between different stages of argument processing, move all the code into verifier.c and refactor into easier to read helpers and functions. This also makes sharing code within the verifier easier with kfunc argument processing. This will be more and more useful in later patches as we are now moving to implement very core BPF helpers as kfuncs, to keep them experimental before baking into UAPI. Remove all kfunc related bits now from btf_check_func_arg_match, as users have been converted away to refactored kfunc argument handling. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221118015614.2013203-12-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17bpf: Verify ownership relationships for user BTF typesKumar Kartikeya Dwivedi
Ensure that there can be no ownership cycles among different types by way of having owning objects that can hold some other type as their element. For instance, a map value can only hold allocated objects, but these are allowed to have another bpf_list_head. To prevent unbounded recursion while freeing resources, elements of bpf_list_head in local kptrs can never have a bpf_list_head which are part of list in a map value. Later patches will verify this by having dedicated BTF selftests. Also, to make runtime destruction easier, once btf_struct_metas is fully populated, we can stash the metadata of the value type directly in the metadata of the list_head fields, as that allows easier access to the value type's layout to destruct it at runtime from the btf_field entry of the list head itself. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221118015614.2013203-8-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17bpf: Recognize lock and list fields in allocated objectsKumar Kartikeya Dwivedi
Allow specifying bpf_spin_lock, bpf_list_head, bpf_list_node fields in a allocated object. Also update btf_struct_access to reject direct access to these special fields. A bpf_list_head allows implementing map-in-map style use cases, where an allocated object with bpf_list_head is linked into a list in a map value. This would require embedding a bpf_list_node, support for which is also included. The bpf_spin_lock is used to protect the bpf_list_head and other data. While we strictly don't require to hold a bpf_spin_lock while touching the bpf_list_head in such objects, as when have access to it, we have complete ownership of the object, the locking constraint is still kept and may be conditionally lifted in the future. Note that the specification of such types can be done just like map values, e.g.: struct bar { struct bpf_list_node node; }; struct foo { struct bpf_spin_lock lock; struct bpf_list_head head __contains(bar, node); struct bpf_list_node node; }; struct map_value { struct bpf_spin_lock lock; struct bpf_list_head head __contains(foo, node); }; To recognize such types in user BTF, we build a btf_struct_metas array of metadata items corresponding to each BTF ID. This is done once during the btf_parse stage to avoid having to do it each time during the verification process's requirement to inspect the metadata. Moreover, the computed metadata needs to be passed to some helpers in future patches which requires allocating them and storing them in the BTF that is pinned by the program itself, so that valid access can be assumed to such data during program runtime. A key thing to note is that once a btf_struct_meta is available for a type, both the btf_record and btf_field_offs should be available. It is critical that btf_field_offs is available in case special fields are present, as we extensively rely on special fields being zeroed out in map values and allocated objects in later patches. The code ensures that by bailing out in case of errors and ensuring both are available together. If the record is not available, the special fields won't be recognized, so not having both is also fine (in terms of being a verification error and not a runtime bug). Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221118015614.2013203-7-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-17bpf: Introduce allocated objects supportKumar Kartikeya Dwivedi
Introduce support for representing pointers to objects allocated by the BPF program, i.e. PTR_TO_BTF_ID that point to a type in program BTF. This is indicated by the presence of MEM_ALLOC type flag in reg->type to avoid having to check btf_is_kernel when trying to match argument types in helpers. Whenever walking such types, any pointers being walked will always yield a SCALAR instead of pointer. In the future we might permit kptr inside such allocated objects (either kernel or program allocated), and it will then form a PTR_TO_BTF_ID of the respective type. For now, such allocated objects will always be referenced in verifier context, hence ref_obj_id == 0 for them is a bug. It is allowed to write to such objects, as long fields that are special are not touched (support for which will be added in subsequent patches). Note that once such a pointer is marked PTR_UNTRUSTED, it is no longer allowed to write to it. No PROBE_MEM handling is therefore done for loads into this type unless PTR_UNTRUSTED is part of the register type, since they can never be in an undefined state, and their lifetime will always be valid. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221118015614.2013203-6-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-14bpf: Refactor btf_struct_accessKumar Kartikeya Dwivedi
Instead of having to pass multiple arguments that describe the register, pass the bpf_reg_state into the btf_struct_access callback. Currently, all call sites simply reuse the btf and btf_id of the reg they want to check the access of. The only exception to this pattern is the callsite in check_ptr_to_map_access, hence for that case create a dummy reg to simulate PTR_TO_BTF_ID access. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221114191547.1694267-8-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-14bpf: Support bpf_list_head in map valuesKumar Kartikeya Dwivedi
Add the support on the map side to parse, recognize, verify, and build metadata table for a new special field of the type struct bpf_list_head. To parameterize the bpf_list_head for a certain value type and the list_node member it will accept in that value type, we use BTF declaration tags. The definition of bpf_list_head in a map value will be done as follows: struct foo { struct bpf_list_node node; int data; }; struct map_value { struct bpf_list_head head __contains(foo, node); }; Then, the bpf_list_head only allows adding to the list 'head' using the bpf_list_node 'node' for the type struct foo. The 'contains' annotation is a BTF declaration tag composed of four parts, "contains:name:node" where the name is then used to look up the type in the map BTF, with its kind hardcoded to BTF_KIND_STRUCT during the lookup. The node defines name of the member in this type that has the type struct bpf_list_node, which is actually used for linking into the linked list. For now, 'kind' part is hardcoded as struct. This allows building intrusive linked lists in BPF, using container_of to obtain pointer to entry, while being completely type safe from the perspective of the verifier. The verifier knows exactly the type of the nodes, and knows that list helpers return that type at some fixed offset where the bpf_list_node member used for this list exists. The verifier also uses this information to disallow adding types that are not accepted by a certain list. For now, no elements can be added to such lists. Support for that is coming in future patches, hence draining and freeing items is done with a TODO that will be resolved in a future patch. Note that the bpf_list_head_free function moves the list out to a local variable under the lock and releases it, doing the actual draining of the list items outside the lock. While this helps with not holding the lock for too long pessimizing other concurrent list operations, it is also necessary for deadlock prevention: unless every function called in the critical section would be notrace, a fentry/fexit program could attach and call bpf_map_update_elem again on the map, leading to the same lock being acquired if the key matches and lead to a deadlock. While this requires some special effort on part of the BPF programmer to trigger and is highly unlikely to occur in practice, it is always better if we can avoid such a condition. While notrace would prevent this, doing the draining outside the lock has advantages of its own, hence it is used to also fix the deadlock related problem. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221114191547.1694267-5-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-14bpf: Remove BPF_MAP_OFF_ARR_MAXKumar Kartikeya Dwivedi
In f71b2f64177a ("bpf: Refactor map->off_arr handling"), map->off_arr was refactored to be btf_field_offs. The number of field offsets is equal to maximum possible fields limited by BTF_FIELDS_MAX. Hence, reuse BTF_FIELDS_MAX as spin_lock and timer no longer are to be handled specially for offset sorting, fix the comment, and remove incorrect WARN_ON as its rec->cnt can never exceed this value. The reason to keep separate constant was the it was always more 2 more than total kptrs. This is no longer the case. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221114191547.1694267-3-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-03bpf: Refactor map->off_arr handlingKumar Kartikeya Dwivedi
Refactor map->off_arr handling into generic functions that can work on their own without hardcoding map specific code. The btf_fields_offs structure is now returned from btf_parse_field_offs, which can be reused later for types in program BTF. All functions like copy_map_value, zero_map_value call generic underlying functions so that they can also be reused later for copying to values allocated in programs which encode specific fields. Later, some helper functions will also require access to this btf_field_offs structure to be able to skip over special fields at runtime. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221103191013.1236066-9-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-03bpf: Consolidate spin_lock, timer management into btf_recordKumar Kartikeya Dwivedi
Now that kptr_off_tab has been refactored into btf_record, and can hold more than one specific field type, accomodate bpf_spin_lock and bpf_timer as well. While they don't require any more metadata than offset, having all special fields in one place allows us to share the same code for allocated user defined types and handle both map values and these allocated objects in a similar fashion. As an optimization, we still keep spin_lock_off and timer_off offsets in the btf_record structure, just to avoid having to find the btf_field struct each time their offset is needed. This is mostly needed to manipulate such objects in a map value at runtime. It's ok to hardcode just one offset as more than one field is disallowed. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221103191013.1236066-8-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-03bpf: Refactor kptr_off_tab into btf_recordKumar Kartikeya Dwivedi
To prepare the BPF verifier to handle special fields in both map values and program allocated types coming from program BTF, we need to refactor the kptr_off_tab handling code into something more generic and reusable across both cases to avoid code duplication. Later patches also require passing this data to helpers at runtime, so that they can work on user defined types, initialize them, destruct them, etc. The main observation is that both map values and such allocated types point to a type in program BTF, hence they can be handled similarly. We can prepare a field metadata table for both cases and store them in struct bpf_map or struct btf depending on the use case. Hence, refactor the code into generic btf_record and btf_field member structs. The btf_record represents the fields of a specific btf_type in user BTF. The cnt indicates the number of special fields we successfully recognized, and field_mask is a bitmask of fields that were found, to enable quick determination of availability of a certain field. Subsequently, refactor the rest of the code to work with these generic types, remove assumptions about kptr and kptr_off_tab, rename variables to more meaningful names, etc. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221103191013.1236066-7-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-03bpf: Allow specifying volatile type modifier for kptrsKumar Kartikeya Dwivedi
This is useful in particular to mark the pointer as volatile, so that compiler treats each load and store to the field as a volatile access. The alternative is having to define and use READ_ONCE and WRITE_ONCE in the BPF program. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Acked-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/r/20221103191013.1236066-3-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-10-17bpf: prevent decl_tag from being referenced in func_protoStanislav Fomichev
Syzkaller was able to hit the following issue: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 3609 at kernel/bpf/btf.c:1946 btf_type_id_size+0x2d5/0x9d0 kernel/bpf/btf.c:1946 Modules linked in: CPU: 0 PID: 3609 Comm: syz-executor361 Not tainted 6.0.0-syzkaller-02734-g0326074ff465 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022 RIP: 0010:btf_type_id_size+0x2d5/0x9d0 kernel/bpf/btf.c:1946 Code: ef e8 7f 8e e4 ff 41 83 ff 0b 77 28 f6 44 24 10 18 75 3f e8 6d 91 e4 ff 44 89 fe bf 0e 00 00 00 e8 20 8e e4 ff e8 5b 91 e4 ff <0f> 0b 45 31 f6 e9 98 02 00 00 41 83 ff 12 74 18 e8 46 91 e4 ff 44 RSP: 0018:ffffc90003cefb40 EFLAGS: 00010293 RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000 RDX: ffff8880259c0000 RSI: ffffffff81968415 RDI: 0000000000000005 RBP: ffff88801270ca00 R08: 0000000000000005 R09: 000000000000000e R10: 0000000000000011 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000011 R14: ffff888026ee6424 R15: 0000000000000011 FS: 000055555641b300(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000f2e258 CR3: 000000007110e000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> btf_func_proto_check kernel/bpf/btf.c:4447 [inline] btf_check_all_types kernel/bpf/btf.c:4723 [inline] btf_parse_type_sec kernel/bpf/btf.c:4752 [inline] btf_parse kernel/bpf/btf.c:5026 [inline] btf_new_fd+0x1926/0x1e70 kernel/bpf/btf.c:6892 bpf_btf_load kernel/bpf/syscall.c:4324 [inline] __sys_bpf+0xb7d/0x4cf0 kernel/bpf/syscall.c:5010 __do_sys_bpf kernel/bpf/syscall.c:5069 [inline] __se_sys_bpf kernel/bpf/syscall.c:5067 [inline] __x64_sys_bpf+0x75/0xb0 kernel/bpf/syscall.c:5067 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f0fbae41c69 Code: 28 c3 e8 2a 14 00 00 66 2e 0f 1f 84 00 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffc8aeb6228 EFLAGS: 00000246 ORIG_RAX: 0000000000000141 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f0fbae41c69 RDX: 0000000000000020 RSI: 0000000020000140 RDI: 0000000000000012 RBP: 00007f0fbae05e10 R08: 0000000000000000 R09: 0000000000000000 R10: 00000000ffffffff R11: 0000000000000246 R12: 00007f0fbae05ea0 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 </TASK> Looks like it tries to create a func_proto which return type is decl_tag. For the details, see Martin's spot on analysis in [0]. 0: https://lore.kernel.org/bpf/CAKH8qBuQDLva_hHxxBuZzyAcYNO4ejhovz6TQeVSk8HY-2SO6g@mail.gmail.com/T/#mea6524b3fcd6298347432226e81b1e6155efc62c Cc: Yonghong Song <yhs@fb.com> Cc: Martin KaFai Lau <martin.lau@kernel.org> Fixes: bd16dee66ae4 ("bpf: Add BTF_KIND_DECL_TAG typedef support") Reported-by: syzbot+d8bd751aef7c6b39a344@syzkaller.appspotmail.com Signed-off-by: Stanislav Fomichev <sdf@google.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/r/20221015002444.2680969-2-sdf@google.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2022-10-03Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
Merge in the left-over fixes before the net-next pull-request. Conflicts: drivers/net/ethernet/mediatek/mtk_ppe.c ae3ed15da588 ("net: ethernet: mtk_eth_soc: fix state in __mtk_foe_entry_clear") 9d8cb4c096ab ("net: ethernet: mtk_eth_soc: add foe_entry_size to mtk_eth_soc") https://lore.kernel.org/all/6cb6893b-4921-a068-4c30-1109795110bb@tessares.net/ kernel/bpf/helpers.c 8addbfc7b308 ("bpf: Gate dynptr API behind CAP_BPF") 5679ff2f138f ("bpf: Move bpf_loop and bpf_for_each_map_elem under CAP_BPF") 8a67f2de9b1d ("bpf: expose bpf_strtol and bpf_strtoul to all program types") https://lore.kernel.org/all/20221003201957.13149-1-daniel@iogearbox.net/ Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-09-21bpf: Tweak definition of KF_TRUSTED_ARGSKumar Kartikeya Dwivedi
Instead of forcing all arguments to be referenced pointers with non-zero reg->ref_obj_id, tweak the definition of KF_TRUSTED_ARGS to mean that only PTR_TO_BTF_ID (and socket types translated to PTR_TO_BTF_ID) have that constraint, and require their offset to be set to 0. The rest of pointer types are also accomodated in this definition of trusted pointers, but with more relaxed rules regarding offsets. The inherent meaning of setting this flag is that all kfunc pointer arguments have a guranteed lifetime, and kernel object pointers (PTR_TO_BTF_ID, PTR_TO_CTX) are passed in their unmodified form (with offset 0). In general, this is not true for PTR_TO_BTF_ID as it can be obtained using pointer walks. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org> Link: https://lore.kernel.org/r/cdede0043c47ed7a357f0a915d16f9ce06a1d589.1663778601.git.lorenzo@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-21btf: Allow dynamic pointer parameters in kfuncsRoberto Sassu
Allow dynamic pointers (struct bpf_dynptr_kern *) to be specified as parameters in kfuncs. Also, ensure that dynamic pointers passed as argument are valid and initialized, are a pointer to the stack, and of the type local. More dynamic pointer types can be supported in the future. To properly detect whether a parameter is of the desired type, introduce the stringify_struct() macro to compare the returned structure name with the desired name. In addition, protect against structure renames, by halting the build with BUILD_BUG_ON(), so that developers have to revisit the code. To check if a dynamic pointer passed to the kfunc is valid and initialized, and if its type is local, export the existing functions is_dynptr_reg_valid_init() and is_dynptr_type_expected(). Cc: Joanne Koong <joannelkoong@gmail.com> Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com> Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20220920075951.929132-5-roberto.sassu@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-21bpf: Allow kfuncs to be used in LSM programsKP Singh
In preparation for the addition of new kfuncs, allow kfuncs defined in the tracing subsystem to be used in LSM programs by mapping the LSM program type to the TRACING hook. Signed-off-by: KP Singh <kpsingh@kernel.org> Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com> Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20220920075951.929132-2-roberto.sassu@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-21bpf: simplify code in btf_parse_hdrWilliam Dean
It could directly return 'btf_check_sec_info' to simplify code. Signed-off-by: William Dean <williamsukatube@163.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/r/20220917084248.3649-1-williamsukatube@163.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2022-09-16bpf/btf: Use btf_type_str() whenever possiblePeilin Ye
We have btf_type_str(). Use it whenever possible in btf.c, instead of "btf_kind_str[BTF_INFO_KIND(t->info)]". Signed-off-by: Peilin Ye <peilin.ye@bytedance.com> Link: https://lore.kernel.org/r/20220916202800.31421-1-yepeilin.cs@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2022-09-10bpf: btf: fix truncated last_member_type_id in btf_struct_resolveLorenz Bauer
When trying to finish resolving a struct member, btf_struct_resolve saves the member type id in a u16 temporary variable. This truncates the 32 bit type id value if it exceeds UINT16_MAX. As a result, structs that have members with type ids > UINT16_MAX and which need resolution will fail with a message like this: [67414] STRUCT ff_device size=120 vlen=12 effect_owners type_id=67434 bits_offset=960 Member exceeds struct_size Fix this by changing the type of last_member_type_id to u32. Fixes: a0791f0df7d2 ("bpf: fix BTF limits") Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Lorenz Bauer <oss@lmb.io> Link: https://lore.kernel.org/r/20220910110120.339242-1-oss@lmb.io Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-10bpf: Export btf_type_by_id() and bpf_log()Daniel Xu
These symbols will be used in nf_conntrack.ko to support direct writes to `nf_conn`. Signed-off-by: Daniel Xu <dxu@dxuuu.xyz> Link: https://lore.kernel.org/r/3c98c19dc50d3b18ea5eca135b4fc3a5db036060.1662568410.git.dxu@dxuuu.xyz Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-07bpf/verifier: allow kfunc to return an allocated memBenjamin Tissoires
For drivers (outside of network), the incoming data is not statically defined in a struct. Most of the time the data buffer is kzalloc-ed and thus we can not rely on eBPF and BTF to explore the data. This commit allows to return an arbitrary memory, previously allocated by the driver. An interesting extra point is that the kfunc can mark the exported memory region as read only or read/write. So, when a kfunc is not returning a pointer to a struct but to a plain type, we can consider it is a valid allocated memory assuming that: - one of the arguments is either called rdonly_buf_size or rdwr_buf_size - and this argument is a const from the caller point of view We can then use this parameter as the size of the allocated memory. The memory is either read-only or read-write based on the name of the size parameter. Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com> Link: https://lore.kernel.org/r/20220906151303.2780789-7-benjamin.tissoires@redhat.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-07bpf/btf: bump BTF_KFUNC_SET_MAX_CNTBenjamin Tissoires
net/bpf/test_run.c is already presenting 20 kfuncs. net/netfilter/nf_conntrack_bpf.c is also presenting an extra 10 kfuncs. Given that all the kfuncs are regrouped into one unique set, having only 2 space left prevent us to add more selftests. Bump it to 256. Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com> Link: https://lore.kernel.org/r/20220906151303.2780789-6-benjamin.tissoires@redhat.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-07bpf: split btf_check_subprog_arg_match in twoBenjamin Tissoires
btf_check_subprog_arg_match() was used twice in verifier.c: - when checking for the type mismatches between a (sub)prog declaration and BTF - when checking the call of a subprog to see if the provided arguments are correct and valid This is problematic when we check if the first argument of a program (pointer to ctx) is correctly accessed: To be able to ensure we access a valid memory in the ctx, the verifier assumes the pointer to context is not null. This has the side effect of marking the program accessing the entire context, even if the context is never dereferenced. For example, by checking the context access with the current code, the following eBPF program would fail with -EINVAL if the ctx is set to null from the userspace: ``` SEC("syscall") int prog(struct my_ctx *args) { return 0; } ``` In that particular case, we do not want to actually check that the memory is correct while checking for the BTF validity, but we just want to ensure that the (sub)prog definition matches the BTF we have. So split btf_check_subprog_arg_match() in two so we can actually check for the memory used when in a call, and ignore that part when not. Note that a further patch is in preparation to disentangled btf_check_func_arg_match() from these two purposes, and so right now we just add a new hack around that by adding a boolean to this function. Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com> Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20220906151303.2780789-3-benjamin.tissoires@redhat.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-06bpf: Allow struct argument in trampoline based programsYonghong Song
Allow struct argument in trampoline based programs where the struct size should be <= 16 bytes. In such cases, the argument will be put into up to 2 registers for bpf, x86_64 and arm64 architectures. To support arch-specific trampoline manipulation, add arg_flags for additional struct information about arguments in btf_func_model. Such information will be used in arch specific function arch_prepare_bpf_trampoline() to prepare argument access properly in trampoline. Signed-off-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/r/20220831152646.2078089-1-yhs@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-08-09bpf: Always return corresponding btf_type in __get_type_size()Yonghong Song
Currently in funciton __get_type_size(), the corresponding btf_type is returned only in invalid cases. Let us always return btf_type regardless of valid or invalid cases. Such a new functionality will be used in subsequent patches. Signed-off-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/r/20220807175116.4179242-1-yhs@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-08-09btf: Add a new kfunc flag which allows to mark a function to be sleepableBenjamin Tissoires
This allows to declare a kfunc as sleepable and prevents its use in a non sleepable program. Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com> Co-developed-by: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220805214821.1058337-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-07-29bpf: btf: Fix vsnprintf return value checkFedor Tokarev
vsnprintf returns the number of characters which would have been written if enough space had been available, excluding the terminating null byte. Thus, the return value of 'len_left' means that the last character has been dropped. Signed-off-by: Fedor Tokarev <ftokarev@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Alan Maguire <alan.maguire@oracle.com> Link: https://lore.kernel.org/bpf/20220711211317.GA1143610@laptop
2022-07-21bpf: Add support for forcing kfunc args to be trustedKumar Kartikeya Dwivedi
Teach the verifier to detect a new KF_TRUSTED_ARGS kfunc flag, which means each pointer argument must be trusted, which we define as a pointer that is referenced (has non-zero ref_obj_id) and also needs to have its offset unchanged, similar to how release functions expect their argument. This allows a kfunc to receive pointer arguments unchanged from the result of the acquire kfunc. This is required to ensure that kfunc that operate on some object only work on acquired pointers and not normal PTR_TO_BTF_ID with same type which can be obtained by pointer walking. The restrictions applied to release arguments also apply to trusted arguments. This implies that strict type matching (not deducing type by recursively following members at offset) and OBJ_RELEASE offset checks (ensuring they are zero) are used for trusted pointer arguments. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20220721134245.2450-5-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-07-21bpf: Switch to new kfunc flags infrastructureKumar Kartikeya Dwivedi
Instead of populating multiple sets to indicate some attribute and then researching the same BTF ID in them, prepare a single unified BTF set which indicates whether a kfunc is allowed to be called, and also its attributes if any at the same time. Now, only one call is needed to perform the lookup for both kfunc availability and its attributes. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20220721134245.2450-4-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-07-15bpf: Fix check against plain integer v 'NULL'Ben Dooks
When checking with sparse, btf_show_type_value() is causing a warning about checking integer vs NULL when the macro is passed a pointer, due to the 'value != 0' check. Stop sparse complaining about any type-casting by adding a cast to the typeof(value). This fixes the following sparse warnings: kernel/bpf/btf.c:2579:17: warning: Using plain integer as NULL pointer kernel/bpf/btf.c:2581:17: warning: Using plain integer as NULL pointer kernel/bpf/btf.c:3407:17: warning: Using plain integer as NULL pointer kernel/bpf/btf.c:3758:9: warning: Using plain integer as NULL pointer Signed-off-by: Ben Dooks <ben.dooks@sifive.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20220714100322.260467-1-ben.dooks@sifive.com
2022-07-09Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextJakub Kicinski
Daniel Borkmann says: ==================== pull-request: bpf-next 2022-07-09 We've added 94 non-merge commits during the last 19 day(s) which contain a total of 125 files changed, 5141 insertions(+), 6701 deletions(-). The main changes are: 1) Add new way for performing BTF type queries to BPF, from Daniel Müller. 2) Add inlining of calls to bpf_loop() helper when its function callback is statically known, from Eduard Zingerman. 3) Implement BPF TCP CC framework usability improvements, from Jörn-Thorben Hinz. 4) Add LSM flavor for attaching per-cgroup BPF programs to existing LSM hooks, from Stanislav Fomichev. 5) Remove all deprecated libbpf APIs in prep for 1.0 release, from Andrii Nakryiko. 6) Add benchmarks around local_storage to BPF selftests, from Dave Marchevsky. 7) AF_XDP sample removal (given move to libxdp) and various improvements around AF_XDP selftests, from Magnus Karlsson & Maciej Fijalkowski. 8) Add bpftool improvements for memcg probing and bash completion, from Quentin Monnet. 9) Add arm64 JIT support for BPF-2-BPF coupled with tail calls, from Jakub Sitnicki. 10) Sockmap optimizations around throughput of UDP transmissions which have been improved by 61%, from Cong Wang. 11) Rework perf's BPF prologue code to remove deprecated functions, from Jiri Olsa. 12) Fix sockmap teardown path to avoid sleepable sk_psock_stop, from John Fastabend. 13) Fix libbpf's cleanup around legacy kprobe/uprobe on error case, from Chuang Wang. 14) Fix libbpf's bpf_helpers.h to work with gcc for the case of its sec/pragma macro, from James Hilliard. 15) Fix libbpf's pt_regs macros for riscv to use a0 for RC register, from Yixun Lan. 16) Fix bpftool to show the name of type BPF_OBJ_LINK, from Yafang Shao. * https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (94 commits) selftests/bpf: Fix xdp_synproxy build failure if CONFIG_NF_CONNTRACK=m/n bpf: Correctly propagate errors up from bpf_core_composites_match libbpf: Disable SEC pragma macro on GCC bpf: Check attach_func_proto more carefully in check_return_code selftests/bpf: Add test involving restrict type qualifier bpftool: Add support for KIND_RESTRICT to gen min_core_btf command MAINTAINERS: Add entry for AF_XDP selftests files selftests, xsk: Rename AF_XDP testing app bpf, docs: Remove deprecated xsk libbpf APIs description selftests/bpf: Add benchmark for local_storage RCU Tasks Trace usage libbpf, riscv: Use a0 for RC register libbpf: Remove unnecessary usdt_rel_ip assignments selftests/bpf: Fix few more compiler warnings selftests/bpf: Fix bogus uninitialized variable warning bpftool: Remove zlib feature test from Makefile libbpf: Cleanup the legacy uprobe_event on failed add/attach_event() libbpf: Fix wrong variable used in perf_event_uprobe_open_legacy() libbpf: Cleanup the legacy kprobe_event on failed add/attach_event() selftests/bpf: Add type match test against kernel's task_struct selftests/bpf: Add nested type to type based tests ... ==================== Link: https://lore.kernel.org/r/20220708233145.32365-1-daniel@iogearbox.net Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-07-05bpf, libbpf: Add type match supportDaniel Müller
This patch adds support for the proposed type match relation to relo_core where it is shared between userspace and kernel. It plumbs through both kernel-side and libbpf-side support. The matching relation is defined as follows (copy from source): - modifiers and typedefs are stripped (and, hence, effectively ignored) - generally speaking types need to be of same kind (struct vs. struct, union vs. union, etc.) - exceptions are struct/union behind a pointer which could also match a forward declaration of a struct or union, respectively, and enum vs. enum64 (see below) Then, depending on type: - integers: - match if size and signedness match - arrays & pointers: - target types are recursively matched - structs & unions: - local members need to exist in target with the same name - for each member we recursively check match unless it is already behind a pointer, in which case we only check matching names and compatible kind - enums: - local variants have to have a match in target by symbolic name (but not numeric value) - size has to match (but enum may match enum64 and vice versa) - function pointers: - number and position of arguments in local type has to match target - for each argument and the return value we recursively check match Signed-off-by: Daniel Müller <deso@posteo.net> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20220628160127.607834-5-deso@posteo.net
2022-06-29bpf: minimize number of allocated lsm slots per programStanislav Fomichev
Previous patch adds 1:1 mapping between all 211 LSM hooks and bpf_cgroup program array. Instead of reserving a slot per possible hook, reserve 10 slots per cgroup for lsm programs. Those slots are dynamically allocated on demand and reclaimed. struct cgroup_bpf { struct bpf_prog_array * effective[33]; /* 0 264 */ /* --- cacheline 4 boundary (256 bytes) was 8 bytes ago --- */ struct hlist_head progs[33]; /* 264 264 */ /* --- cacheline 8 boundary (512 bytes) was 16 bytes ago --- */ u8 flags[33]; /* 528 33 */ /* XXX 7 bytes hole, try to pack */ struct list_head storages; /* 568 16 */ /* --- cacheline 9 boundary (576 bytes) was 8 bytes ago --- */ struct bpf_prog_array * inactive; /* 584 8 */ struct percpu_ref refcnt; /* 592 16 */ struct work_struct release_work; /* 608 72 */ /* size: 680, cachelines: 11, members: 7 */ /* sum members: 673, holes: 1, sum holes: 7 */ /* last cacheline: 40 bytes */ }; Reviewed-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Link: https://lore.kernel.org/r/20220628174314.1216643-5-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-06-29bpf: per-cgroup lsm flavorStanislav Fomichev
Allow attaching to lsm hooks in the cgroup context. Attaching to per-cgroup LSM works exactly like attaching to other per-cgroup hooks. New BPF_LSM_CGROUP is added to trigger new mode; the actual lsm hook we attach to is signaled via existing attach_btf_id. For the hooks that have 'struct socket' or 'struct sock' as its first argument, we use the cgroup associated with that socket. For the rest, we use 'current' cgroup (this is all on default hierarchy == v2 only). Note that for some hooks that work on 'struct sock' we still take the cgroup from 'current' because some of them work on the socket that hasn't been properly initialized yet. Behind the scenes, we allocate a shim program that is attached to the trampoline and runs cgroup effective BPF programs array. This shim has some rudimentary ref counting and can be shared between several programs attaching to the same lsm hook from different cgroups. Note that this patch bloats cgroup size because we add 211 cgroup_bpf_attach_type(s) for simplicity sake. This will be addressed in the subsequent patch. Also note that we only add non-sleepable flavor for now. To enable sleepable use-cases, bpf_prog_run_array_cg has to grab trace rcu, shim programs have to be freed via trace rcu, cgroup_bpf.effective should be also trace-rcu-managed + maybe some other changes that I'm not aware of. Reviewed-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Link: https://lore.kernel.org/r/20220628174314.1216643-4-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-06-24bpf: Merge "types_are_compat" logic into relo_core.cDaniel Müller
BPF type compatibility checks (bpf_core_types_are_compat()) are currently duplicated between kernel and user space. That's a historical artifact more than intentional doing and can lead to subtle bugs where one implementation is adjusted but another is forgotten. That happened with the enum64 work, for example, where the libbpf side was changed (commit 23b2a3a8f63a ("libbpf: Add enum64 relocation support")) to use the btf_kind_core_compat() helper function but the kernel side was not (commit 6089fb325cf7 ("bpf: Add btf enum64 support")). This patch addresses both the duplication issue, by merging both implementations and moving them into relo_core.c, and fixes the alluded to kind check (by giving preference to libbpf's already adjusted logic). For discussion of the topic, please refer to: https://lore.kernel.org/bpf/CAADnVQKbWR7oarBdewgOBZUPzryhRYvEbkhyPJQHHuxq=0K1gw@mail.gmail.com/T/#mcc99f4a33ad9a322afaf1b9276fb1f0b7add9665 Changelog: v1 -> v2: - limited libbpf recursion limit to 32 - changed name to __bpf_core_types_are_compat - included warning previously present in libbpf version - merged kernel and user space changes into a single patch Signed-off-by: Daniel Müller <deso@posteo.net> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20220623182934.2582827-1-deso@posteo.net
2022-06-23Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
No conflicts. Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-06-17Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextJakub Kicinski
Daniel Borkmann says: ==================== pull-request: bpf-next 2022-06-17 We've added 72 non-merge commits during the last 15 day(s) which contain a total of 92 files changed, 4582 insertions(+), 834 deletions(-). The main changes are: 1) Add 64 bit enum value support to BTF, from Yonghong Song. 2) Implement support for sleepable BPF uprobe programs, from Delyan Kratunov. 3) Add new BPF helpers to issue and check TCP SYN cookies without binding to a socket especially useful in synproxy scenarios, from Maxim Mikityanskiy. 4) Fix libbpf's internal USDT address translation logic for shared libraries as well as uprobe's symbol file offset calculation, from Andrii Nakryiko. 5) Extend libbpf to provide an API for textual representation of the various map/prog/attach/link types and use it in bpftool, from Daniel Müller. 6) Provide BTF line info for RV64 and RV32 JITs, and fix a put_user bug in the core seen in 32 bit when storing BPF function addresses, from Pu Lehui. 7) Fix libbpf's BTF pointer size guessing by adding a list of various aliases for 'long' types, from Douglas Raillard. 8) Fix bpftool to readd setting rlimit since probing for memcg-based accounting has been unreliable and caused a regression on COS, from Quentin Monnet. 9) Fix UAF in BPF cgroup's effective program computation triggered upon BPF link detachment, from Tadeusz Struk. 10) Fix bpftool build bootstrapping during cross compilation which was pointing to the wrong AR process, from Shahab Vahedi. 11) Fix logic bug in libbpf's is_pow_of_2 implementation, from Yuze Chi. 12) BPF hash map optimization to avoid grabbing spinlocks of all CPUs when there is no free element. Also add a benchmark as reproducer, from Feng Zhou. 13) Fix bpftool's codegen to bail out when there's no BTF, from Michael Mullin. 14) Various minor cleanup and improvements all over the place. * https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (72 commits) bpf: Fix bpf_skc_lookup comment wrt. return type bpf: Fix non-static bpf_func_proto struct definitions selftests/bpf: Don't force lld on non-x86 architectures selftests/bpf: Add selftests for raw syncookie helpers in TC mode bpf: Allow the new syncookie helpers to work with SKBs selftests/bpf: Add selftests for raw syncookie helpers bpf: Add helpers to issue and check SYN cookies in XDP bpf: Allow helpers to accept pointers with a fixed size bpf: Fix documentation of th_len in bpf_tcp_{gen,check}_syncookie selftests/bpf: add tests for sleepable (uk)probes libbpf: add support for sleepable uprobe programs bpf: allow sleepable uprobe programs to attach bpf: implement sleepable uprobes by chaining gps bpf: move bpf_prog to bpf.h libbpf: Fix internal USDT address translation logic for shared libraries samples/bpf: Check detach prog exist or not in xdp_fwd selftests/bpf: Avoid skipping certain subtests selftests/bpf: Fix test_varlen verification failure with latest llvm bpftool: Do not check return value from libbpf_set_strict_mode() Revert "bpftool: Use libbpf 1.0 API mode instead of RLIMIT_MEMLOCK" ... ==================== Link: https://lore.kernel.org/r/20220617220836.7373-1-daniel@iogearbox.net Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-06-15bpf: Limit maximum modifier chain length in btf_check_type_tagsKumar Kartikeya Dwivedi
On processing a module BTF of module built for an older kernel, we might sometimes find that some type points to itself forming a loop. If such a type is a modifier, btf_check_type_tags's while loop following modifier chain will be caught in an infinite loop. Fix this by defining a maximum chain length and bailing out if we spin any longer than that. Fixes: eb596b090558 ("bpf: Ensure type tags precede modifiers in BTF") Reported-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20220615042151.2266537-1-memxor@gmail.com
2022-06-07bpf: Fix calling global functions from BPF_PROG_TYPE_EXT programsToke Høiland-Jørgensen
The verifier allows programs to call global functions as long as their argument types match, using BTF to check the function arguments. One of the allowed argument types to such global functions is PTR_TO_CTX; however the check for this fails on BPF_PROG_TYPE_EXT functions because the verifier uses the wrong type to fetch the vmlinux BTF ID for the program context type. This failure is seen when an XDP program is loaded using libxdp (which loads it as BPF_PROG_TYPE_EXT and attaches it to a global XDP type program). Fix the issue by passing in the target program type instead of the BPF_PROG_TYPE_EXT type to bpf_prog_get_ctx() when checking function argument compatibility. The first Fixes tag refers to the latest commit that touched the code in question, while the second one points to the code that first introduced the global function call verification. v2: - Use resolve_prog_type() Fixes: 3363bd0cfbb8 ("bpf: Extend kfunc with PTR_TO_CTX, PTR_TO_MEM argument support") Fixes: 51c39bb1d5d1 ("bpf: Introduce function-by-function verification") Reported-by: Simon Sundberg <simon.sundberg@kau.se> Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/r/20220606075253.28422-1-toke@redhat.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>