Age | Commit message (Collapse) | Author |
|
'nocb.2023.05.11a', 'rcu-tasks.2023.05.10a', 'torture.2023.05.15a' and 'rcu-urgent.2023.06.06a' into HEAD
doc.2023.05.10a: Documentation updates
fixes.2023.05.11a: Miscellaneous fixes
kvfree.2023.05.10a: kvfree_rcu updates
nocb.2023.05.11a: Callback-offloading updates
rcu-tasks.2023.05.10a: Tasks RCU updates
torture.2023.05.15a: Torture-test updates
rcu-urgent.2023.06.06a: Urgent SRCU fix
|
|
The rcu_tasks_invoke_cbs() function relies on queue_work_on() to silently
fall back to WORK_CPU_UNBOUND when the specified CPU is offline. However,
the queue_work_on() function's silent fallback mechanism relies on that
CPU having been online at some time in the past. When queue_work_on()
is passed a CPU that has never been online, workqueue lockups ensue,
which can be bad for your kernel's general health and well-being.
This commit therefore checks whether a given CPU has ever been online,
and, if not substitutes WORK_CPU_UNBOUND in the subsequent call to
queue_work_on(). Why not simply omit the queue_work_on() call entirely?
Because this function is flooding callback-invocation notifications
to all CPUs, and must deal with possibilities that include a sparse
cpu_possible_mask.
This commit also moves the setting of the rcu_data structure's
->beenonline field to rcu_cpu_starting(), which executes on the
incoming CPU before that CPU has ever enabled interrupts. This ensures
that the required workqueues are present. In addition, because the
incoming CPU has not yet enabled its interrupts, there cannot yet have
been any softirq handlers running on this CPU, which means that the
WARN_ON_ONCE(!rdp->beenonline) within the RCU_SOFTIRQ handler cannot
have triggered yet.
Fixes: d363f833c6d88 ("rcu-tasks: Use workqueues for multiple rcu_tasks_invoke_cbs() invocations")
Reported-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Currently, rcu_cpu_starting() is written so that it might be invoked
with interrupts enabled. However, it is always called when interrupts
are disabled, either by rcu_init(), notify_cpu_starting(), or from a
call point prior to the call to notify_cpu_starting().
But why bother requiring that interrupts be disabled? The purpose is
to allow the rcu_data structure's ->beenonline flag to be set after all
early processing has completed for the incoming CPU, thus allowing this
flag to be used to determine when workqueues have been set up for the
incoming CPU, while still allowing this flag to be used as a diagnostic
within rcu_core().
This commit therefore makes rcu_cpu_starting() rely on interrupts being
disabled.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
The rcu_data structure's ->rcu_cpu_has_work field can be modified by
any CPU attempting to wake up the rcuc kthread. Therefore, this commit
marks accesses to this field from the rcu_cpu_kthread() function.
This data race was reported by KCSAN. Not appropriate for backporting
due to failure being unlikely.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Currently, if there are more than 100 ready-to-invoke RCU callbacks queued
on a given CPU, the rcu_do_batch() function sets a timeout for invocation
of the series. This timeout defaulting to three milliseconds, and may
be adjusted using the rcutree.rcu_resched_ns kernel boot parameter.
This timeout is checked using local_clock(), but the overhead of this
function combined with the common-case very small callback-invocation
overhead means that local_clock() is checked every 32nd invocation.
This works well except for longer-than average callbacks. For example,
a series of 500-microsecond-duration callbacks means that local_clock()
is checked only once every 16 milliseconds, which makes it difficult to
enforce a three-millisecond timeout.
This commit therefore adds a Kconfig option RCU_DOUBLE_CHECK_CB_TIME
that enables backup timeout checking using the coarser grained but
lighter weight jiffies. If the jiffies counter detects a timeout,
then local_clock() is consulted even if this is not the 32nd callback.
This prevents the aforementioned 16-millisecond latency blow.
Reported-by: Domas Mituzas <dmituzas@meta.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Currently, a callback-invocation time limit is enforced only for
callbacks invoked from the softirq environment, the rationale being
that when callbacks are instead invoked from rcuc and rcuoc kthreads,
these callbacks cannot be holding up other softirq vectors.
Which is in fact true. However, if an rcuc kthread spends too much time
invoking callbacks, it can delay quiescent-state reports from its CPU,
which can also be a problem.
This commit therefore applies the callback-invocation time limit to
callback invocation from the rcuc kthreads as well as from softirq.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
If the rcutree.rcu_min_cached_objs kernel boot parameter is set to zero,
then krcp->page_cache_work will never be triggered to fill page cache.
In addition, the put_cached_bnode() will not fill page cache. As a
result krcp->bkvcache will always be empty, so there is no need to acquire
krcp->lock to get page from krcp->bkvcache. This commit therefore makes
drain_page_cache() return immediately if the rcu_min_cached_objs is zero.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
When the fill_page_cache_func() function is invoked, it assumes that
the cache of pages is completely empty. However, there can be some time
between triggering execution of this function and its actual invocation.
During this time, kfree_rcu_work() might run, and might fill in part or
all of this cache of pages, thus invalidating the fill_page_cache_func()
function's assumption.
This will not overfill the cache because put_cached_bnode() will reject
the extra page. However, it will result in a needless allocation and
freeing of one extra page, which might not be helpful under lowish-memory
conditions.
This commit therefore causes the fill_page_cache_func() to explicitly
account for pages that have been placed into the cache shortly before
it starts running.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
By default the cache size is 5 pages per CPU, but it can be disabled at
boot time by setting the rcu_min_cached_objs to zero. When that happens,
the current code will uselessly set an hrtimer to schedule refilling this
cache with zero pages. This commit therefore streamlines this process
by simply refusing the set the hrtimer when rcu_min_cached_objs is zero.
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
The add_ptr_to_bulk_krc_lock() function is invoked to allocate a new
kfree_rcu() page, also known as a kvfree_rcu_bulk_data structure.
The kfree_rcu_cpu structure's lock is used to protect this operation,
except that this lock must be momentarily dropped when allocating memory.
It is clearly important that the lock that is reacquired be the same
lock that was acquired initially via krc_this_cpu_lock().
Unfortunately, this same krc_this_cpu_lock() function is used to
re-acquire this lock, and if the task migrated to some other CPU during
the memory allocation, this will result in the kvfree_rcu_bulk_data
structure being added to the wrong CPU's kfree_rcu_cpu structure.
This commit therefore replaces that second call to krc_this_cpu_lock()
with raw_spin_lock_irqsave() in order to explicitly acquire the lock on
the correct kfree_rcu_cpu structure, thus keeping things straight even
when the task migrates.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
If kvfree_rcu_bulk() sees that the required grace period has failed to
elapse, it leaks the memory because readers might still be using it.
But in that case, the debug-objects subsystem still marks the relevant
structures as having been freed, even though they are instead being
leaked.
This commit fixes this mismatch by invoking debug_rcu_bhead_unqueue()
only when we are actually going to free the objects.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Under low-memory conditions, kvfree_rcu() will use each object's
rcu_head structure to queue objects in a singly linked list headed by
the kfree_rcu_cpu structure's ->head field. This list is passed to
call_rcu() as a unit, but there is no indication of which grace period
this list needs to wait for. This in turn prevents adding debug checks
in the kfree_rcu_work() as was done for the two page-of-pointers channels
in the kfree_rcu_cpu structure.
This commit therefore adds a ->head_free_gp_snap field to the
kfree_rcu_cpu_work structure to record this grace-period number. It also
adds a WARN_ON_ONCE() to kfree_rcu_monitor() that checks to make sure
that the required grace period has in fact elapsed.
[ paulmck: Fix kerneldoc issue raised by Stephen Rothwell. ]
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
This commit adds debugging checks to verify that the required RCU
grace period has elapsed for each kvfree_rcu_bulk_data structure that
arrives at the kvfree_rcu_bulk() function. These checks make use
of that structure's ->gp_snap field, which has been upgraded from an
unsigned long to an rcu_gp_oldstate structure. This upgrade reduces
the chances of false positives to nearly zero, even on 32-bit systems,
for which this structure carries 64 bits of state.
Cc: Ziwei Dai <ziwei.dai@unisoc.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jfern/linux
Pull RCU updates from Joel Fernandes:
- Updates and additions to MAINTAINERS files, with Boqun being added to
the RCU entry and Zqiang being added as an RCU reviewer.
I have also transitioned from reviewer to maintainer; however, Paul
will be taking over sending RCU pull-requests for the next merge
window.
- Resolution of hotplug warning in nohz code, achieved by fixing
cpu_is_hotpluggable() through interaction with the nohz subsystem.
Tick dependency modifications by Zqiang, focusing on fixing usage of
the TICK_DEP_BIT_RCU_EXP bitmask.
- Avoid needless calls to the rcu-lazy shrinker for CONFIG_RCU_LAZY=n
kernels, fixed by Zqiang.
- Improvements to rcu-tasks stall reporting by Neeraj.
- Initial renaming of k[v]free_rcu() to k[v]free_rcu_mightsleep() for
increased robustness, affecting several components like mac802154,
drbd, vmw_vmci, tracing, and more.
A report by Eric Dumazet showed that the API could be unknowingly
used in an atomic context, so we'd rather make sure they know what
they're asking for by being explicit:
https://lore.kernel.org/all/20221202052847.2623997-1-edumazet@google.com/
- Documentation updates, including corrections to spelling,
clarifications in comments, and improvements to the srcu_size_state
comments.
- Better srcu_struct cache locality for readers, by adjusting the size
of srcu_struct in support of SRCU usage by Christoph Hellwig.
- Teach lockdep to detect deadlocks between srcu_read_lock() vs
synchronize_srcu() contributed by Boqun.
Previously lockdep could not detect such deadlocks, now it can.
- Integration of rcutorture and rcu-related tools, targeted for v6.4
from Boqun's tree, featuring new SRCU deadlock scenarios, test_nmis
module parameter, and more
- Miscellaneous changes, various code cleanups and comment improvements
* tag 'rcu.6.4.april5.2023.3' of git://git.kernel.org/pub/scm/linux/kernel/git/jfern/linux: (71 commits)
checkpatch: Error out if deprecated RCU API used
mac802154: Rename kfree_rcu() to kvfree_rcu_mightsleep()
rcuscale: Rename kfree_rcu() to kfree_rcu_mightsleep()
ext4/super: Rename kfree_rcu() to kfree_rcu_mightsleep()
net/mlx5: Rename kfree_rcu() to kfree_rcu_mightsleep()
net/sysctl: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
lib/test_vmalloc.c: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
tracing: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
misc: vmw_vmci: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
drbd: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
rcu: Protect rcu_print_task_exp_stall() ->exp_tasks access
rcu: Avoid stack overflow due to __rcu_irq_enter_check_tick() being kprobe-ed
rcu-tasks: Report stalls during synchronize_srcu() in rcu_tasks_postscan()
rcu: Permit start_poll_synchronize_rcu_expedited() to be invoked early
rcu: Remove never-set needwake assignment from rcu_report_qs_rdp()
rcu: Register rcu-lazy shrinker only for CONFIG_RCU_LAZY=y kernels
rcu: Fix missing TICK_DEP_MASK_RCU_EXP dependency check
rcu: Fix set/clear TICK_DEP_BIT_RCU_EXP bitmask race
rcu/trace: use strscpy() to instead of strncpy()
tick/nohz: Fix cpu_is_hotpluggable() by checking with nohz subsystem
...
|
|
Memory passed to kvfree_rcu() that is to be freed is tracked by a
per-CPU kfree_rcu_cpu structure, which in turn contains pointers
to kvfree_rcu_bulk_data structures that contain pointers to memory
that has not yet been handed to RCU, along with an kfree_rcu_cpu_work
structure that tracks the memory that has already been handed to RCU.
These structures track three categories of memory: (1) Memory for
kfree(), (2) Memory for kvfree(), and (3) Memory for both that arrived
during an OOM episode. The first two categories are tracked in a
cache-friendly manner involving a dynamically allocated page of pointers
(the aforementioned kvfree_rcu_bulk_data structures), while the third
uses a simple (but decidedly cache-unfriendly) linked list through the
rcu_head structures in each block of memory.
On a given CPU, these three categories are handled as a unit, with that
CPU's kfree_rcu_cpu_work structure having one pointer for each of the
three categories. Clearly, new memory for a given category cannot be
placed in the corresponding kfree_rcu_cpu_work structure until any old
memory has had its grace period elapse and thus has been removed. And
the kfree_rcu_monitor() function does in fact check for this.
Except that the kfree_rcu_monitor() function checks these pointers one
at a time. This means that if the previous kfree_rcu() memory passed
to RCU had only category 1 and the current one has only category 2, the
kfree_rcu_monitor() function will send that current category-2 memory
along immediately. This can result in memory being freed too soon,
that is, out from under unsuspecting RCU readers.
To see this, consider the following sequence of events, in which:
o Task A on CPU 0 calls rcu_read_lock(), then uses "from_cset",
then is preempted.
o CPU 1 calls kfree_rcu(cset, rcu_head) in order to free "from_cset"
after a later grace period. Except that "from_cset" is freed
right after the previous grace period ended, so that "from_cset"
is immediately freed. Task A resumes and references "from_cset"'s
member, after which nothing good happens.
In full detail:
CPU 0 CPU 1
---------------------- ----------------------
count_memcg_event_mm()
|rcu_read_lock() <---
|mem_cgroup_from_task()
|// css_set_ptr is the "from_cset" mentioned on CPU 1
|css_set_ptr = rcu_dereference((task)->cgroups)
|// Hard irq comes, current task is scheduled out.
cgroup_attach_task()
|cgroup_migrate()
|cgroup_migrate_execute()
|css_set_move_task(task, from_cset, to_cset, true)
|cgroup_move_task(task, to_cset)
|rcu_assign_pointer(.., to_cset)
|...
|cgroup_migrate_finish()
|put_css_set_locked(from_cset)
|from_cset->refcount return 0
|kfree_rcu(cset, rcu_head) // free from_cset after new gp
|add_ptr_to_bulk_krc_lock()
|schedule_delayed_work(&krcp->monitor_work, ..)
kfree_rcu_monitor()
|krcp->bulk_head[0]'s work attached to krwp->bulk_head_free[]
|queue_rcu_work(system_wq, &krwp->rcu_work)
|if rwork->rcu.work is not in WORK_STRUCT_PENDING_BIT state,
|call_rcu(&rwork->rcu, rcu_work_rcufn) <--- request new gp
// There is a perious call_rcu(.., rcu_work_rcufn)
// gp end, rcu_work_rcufn() is called.
rcu_work_rcufn()
|__queue_work(.., rwork->wq, &rwork->work);
|kfree_rcu_work()
|krwp->bulk_head_free[0] bulk is freed before new gp end!!!
|The "from_cset" is freed before new gp end.
// the task resumes some time later.
|css_set_ptr->subsys[(subsys_id) <--- Caused kernel crash, because css_set_ptr is freed.
This commit therefore causes kfree_rcu_monitor() to refrain from moving
kfree_rcu() memory to the kfree_rcu_cpu_work structure until the RCU
grace period has completed for all three categories.
v2: Use helper function instead of inserted code block at kfree_rcu_monitor().
Fixes: 34c881745549 ("rcu: Support kfree_bulk() interface in kfree_rcu()")
Fixes: 5f3c8d620447 ("rcu/tree: Maintain separate array for vmalloc ptrs")
Reported-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Ziwei Dai <ziwei.dai@unisoc.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Tested-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
'rcu/staging-kfree', remote-tracking branches 'paul/srcu-cf.2023.04.04a', 'fbq/rcu/lockdep.2023.03.27a' and 'fbq/rcu/rcutorture.2023.03.20a' into rcu/staging
|
|
Registering a kprobe on __rcu_irq_enter_check_tick() can cause kernel
stack overflow as shown below. This issue can be reproduced by enabling
CONFIG_NO_HZ_FULL and booting the kernel with argument "nohz_full=",
and then giving the following commands at the shell prompt:
# cd /sys/kernel/tracing/
# echo 'p:mp1 __rcu_irq_enter_check_tick' >> kprobe_events
# echo 1 > events/kprobes/enable
This commit therefore adds __rcu_irq_enter_check_tick() to the kprobes
blacklist using NOKPROBE_SYMBOL().
Insufficient stack space to handle exception!
ESR: 0x00000000f2000004 -- BRK (AArch64)
FAR: 0x0000ffffccf3e510
Task stack: [0xffff80000ad30000..0xffff80000ad38000]
IRQ stack: [0xffff800008050000..0xffff800008058000]
Overflow stack: [0xffff089c36f9f310..0xffff089c36fa0310]
CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19
Hardware name: linux,dummy-virt (DT)
pstate: 400003c5 (nZcv DAIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __rcu_irq_enter_check_tick+0x0/0x1b8
lr : ct_nmi_enter+0x11c/0x138
sp : ffff80000ad30080
x29: ffff80000ad30080 x28: ffff089c82e20000 x27: 0000000000000000
x26: 0000000000000000 x25: ffff089c02a8d100 x24: 0000000000000000
x23: 00000000400003c5 x22: 0000ffffccf3e510 x21: ffff089c36fae148
x20: ffff80000ad30120 x19: ffffa8da8fcce148 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: ffffa8da8e44ea6c
x14: ffffa8da8e44e968 x13: ffffa8da8e03136c x12: 1fffe113804d6809
x11: ffff6113804d6809 x10: 0000000000000a60 x9 : dfff800000000000
x8 : ffff089c026b404f x7 : 00009eec7fb297f7 x6 : 0000000000000001
x5 : ffff80000ad30120 x4 : dfff800000000000 x3 : ffffa8da8e3016f4
x2 : 0000000000000003 x1 : 0000000000000000 x0 : 0000000000000000
Kernel panic - not syncing: kernel stack overflow
CPU: 5 PID: 190 Comm: bash Not tainted 6.2.0-rc2-00320-g1f5abbd77e2c #19
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0xf8/0x108
show_stack+0x20/0x30
dump_stack_lvl+0x68/0x84
dump_stack+0x1c/0x38
panic+0x214/0x404
add_taint+0x0/0xf8
panic_bad_stack+0x144/0x160
handle_bad_stack+0x38/0x58
__bad_stack+0x78/0x7c
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
[...]
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
arm64_enter_el1_dbg.isra.0+0x14/0x20
el1_dbg+0x2c/0x90
el1h_64_sync_handler+0xcc/0xe8
el1h_64_sync+0x64/0x68
__rcu_irq_enter_check_tick+0x0/0x1b8
el1_interrupt+0x28/0x60
el1h_64_irq_handler+0x18/0x28
el1h_64_irq+0x64/0x68
__ftrace_set_clr_event_nolock+0x98/0x198
__ftrace_set_clr_event+0x58/0x80
system_enable_write+0x144/0x178
vfs_write+0x174/0x738
ksys_write+0xd0/0x188
__arm64_sys_write+0x4c/0x60
invoke_syscall+0x64/0x180
el0_svc_common.constprop.0+0x84/0x160
do_el0_svc+0x48/0xe8
el0_svc+0x34/0xd0
el0t_64_sync_handler+0xb8/0xc0
el0t_64_sync+0x190/0x194
SMP: stopping secondary CPUs
Kernel Offset: 0x28da86000000 from 0xffff800008000000
PHYS_OFFSET: 0xfffff76600000000
CPU features: 0x00000,01a00100,0000421b
Memory Limit: none
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Link: https://lore.kernel.org/all/20221119040049.795065-1-zhengyejian1@huawei.com/
Fixes: aaf2bc50df1f ("rcu: Abstract out rcu_irq_enter_check_tick() from rcu_nmi_enter()")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
|
|
According to the commit log of the patch that added it to the kernel,
start_poll_synchronize_rcu_expedited() can be invoked very early, as
in long before rcu_init() has been invoked. But before rcu_init(),
the rcu_data structure's ->mynode field has not yet been initialized.
This means that the start_poll_synchronize_rcu_expedited() function's
attempt to set the CPU's leaf rcu_node structure's ->exp_seq_poll_rq
field will result in a segmentation fault.
This commit therefore causes start_poll_synchronize_rcu_expedited() to
set ->exp_seq_poll_rq only after rcu_init() has initialized all CPUs'
rcu_data structures' ->mynode fields. It also removes the check from
the rcu_init() function so that start_poll_synchronize_rcu_expedited(
is unconditionally invoked. Yes, this might result in an unnecessary
boot-time grace period, but this is down in the noise.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
|
|
The rcu_accelerate_cbs() function is invoked by rcu_report_qs_rdp()
only if there is a grace period in progress that is still blocked
by at least one CPU on this rcu_node structure. This means that
rcu_accelerate_cbs() should never return the value true, and thus that
this function should never set the needwake variable and in turn never
invoke rcu_gp_kthread_wake().
This commit therefore removes the needwake variable and the invocation
of rcu_gp_kthread_wake() in favor of a WARN_ON_ONCE() on the call to
rcu_accelerate_cbs(). The purpose of this new WARN_ON_ONCE() is to
detect situations where the system's opinion differs from ours.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
|
|
This commit adds a comment to help explain why the "else" clause of the
in_serving_softirq() "if" statement does not need to enforce a time limit.
The reason is that this "else" clause handles rcuoc kthreads that do not
block handlers for other softirq vectors.
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
|
|
stall.2023.01.09a: RCU CPU stall-warning updates.
|
|
'srcu.2023.01.03a', 'srcu-always.2023.02.02a', 'tasks.2023.01.03a', 'torture.2023.01.05a' and 'torturescript.2023.01.03a' into HEAD
doc.2023.01.05a: Documentation update.
fixes.2023.01.23a: Miscellaneous fixes.
kvfree.2023.01.03a: kvfree_rcu() updates.
srcu.2023.01.03a: SRCU updates.
srcu-always.2023.02.02a: Finish making SRCU be unconditionally available.
tasks.2023.01.03a: Tasks-RCU updates.
torture.2023.01.05a: Torture-test updates.
torturescript.2023.01.03a: Torture-test scripting updates.
|
|
During suspend, we see failures to suspend 1 in 300-500 suspends.
Looking closer, it appears that asynchronous RCU callbacks are being
queued as lazy even though synchronous callbacks are expedited. These
delays appear to not be very welcome by the suspend/resume code as
evidenced by these occasional suspend failures.
This commit modifies call_rcu() to check if rcu_async_should_hurry(),
which will return true if we are in suspend or in-kernel boot.
[ paulmck: Alphabetize local variables. ]
Ignoring the lazy hint makes the 3000 suspend/resume cycles pass
reliably on a 12th gen 12-core Intel CPU, and there is some evidence
that it also slightly speeds up boot performance.
Fixes: 3cb278e73be5 ("rcu: Make call_rcu() lazy to save power")
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Boot and suspend/resume should not be slowed down in kernels built with
CONFIG_RCU_LAZY=y. In particular, suspend can sometimes fail in such
kernels.
This commit therefore adds rcu_async_hurry(), rcu_async_relax(), and
rcu_async_should_hurry() functions that track whether or not either
a boot or a suspend/resume operation is in progress. This will
enable a later commit to refrain from laziness during those times.
Export rcu_async_should_hurry(), rcu_async_hurry(), and rcu_async_relax()
for later use by rcutorture.
[ paulmck: Apply feedback from Steve Rostedt. ]
Fixes: 3cb278e73be5 ("rcu: Make call_rcu() lazy to save power")
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
The rcu_boost_kthread_setaffinity() function is invoked at
rcutree_online_cpu() and rcutree_offline_cpu() time, early in the online
timeline and late in the offline timeline, respectively. It is also
invoked from rcutree_dead_cpu(), however, in the absence of userspace
manipulations (for which userspace must take responsibility), this call
is redundant with that from rcutree_offline_cpu(). This redundancy can
be demonstrated by printing out the relevant cpumasks
This commit therefore removes the call to rcu_boost_kthread_setaffinity()
from rcutree_dead_cpu().
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
|
|
Because RCU CPU stall warnings are driven from the scheduling-clock
interrupt handler, a workload consisting of a very large number of
short-duration hardware interrupts can result in misleading stall-warning
messages. On systems supporting only a single level of interrupts,
that is, where interrupts handlers cannot be interrupted, this can
produce misleading diagnostics. The stack traces will show the
innocent-bystander interrupted task, not the interrupts that are
at the very least exacerbating the stall.
This situation can be improved by displaying the number of interrupts
and the CPU time that they have consumed. Diagnosing other types
of stalls can be eased by also providing the count of softirqs and
the CPU time that they consumed as well as the number of context
switches and the task-level CPU time consumed.
Consider the following output given this change:
rcu: INFO: rcu_preempt self-detected stall on CPU
rcu: 0-....: (1250 ticks this GP) <omitted>
rcu: hardirqs softirqs csw/system
rcu: number: 624 45 0
rcu: cputime: 69 1 2425 ==> 2500(ms)
This output shows that the number of hard and soft interrupts is small,
there are no context switches, and the system takes up a lot of time. This
indicates that the current task is looping with preemption disabled.
The impact on system performance is negligible because snapshot is
recorded only once for all continuous RCU stalls.
This added debugging information is suppressed by default and can be
enabled by building the kernel with CONFIG_RCU_CPU_STALL_CPUTIME=y or
by booting with rcupdate.rcu_cpu_stall_cputime=1.
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
This patch splits the lists of objects so as to avoid sending any
through RCU that have already been queued for more than one grace
period. These long-term-resident objects are immediately freed.
The remaining short-term-resident objects are queued for later freeing
using queue_rcu_work().
This change avoids delaying workqueue handlers with synchronize_rcu()
invocations. Yes, workqueue handlers are designed to handle blocking,
but avoiding blocking when unnecessary improves performance during
low-memory situations.
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
The schedule_delayed_monitor_work() function relies on the count of
objects queued into any given kfree_rcu_cpu structure. This count is
used to determine how quickly to schedule passing these objects to RCU.
There are three pipes where pointers can be placed. When any pipe is
offloaded, the kfree_rcu_cpu structure's ->count counter is set to zero,
which is wrong because the other pipes might still be non-empty.
This commit therefore maintains per-pipe counters, and introduces a
krc_count() helper to access the aggregate value of those counters.
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
The need_offload_krc() function is now lock-free, which gives the
compiler freedom to load old values from plain C-language loads from
the kfree_rcu_cpu struture's ->head pointer. This commit therefore
applied READ_ONCE() to these loads.
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Currently all objects placed into a batch wait for a full grace period
to elapse after that batch is ready to send to RCU. However, this
can unnecessarily delay freeing of the first objects that were added
to the batch. After all, several RCU grace periods might have elapsed
since those objects were added, and if so, there is no point in further
deferring their freeing.
This commit therefore adds per-page grace-period snapshots which are
obtained from get_state_synchronize_rcu(). When the batch is ready
to be passed to call_rcu(), each page's snapshot is checked by passing
it to poll_state_synchronize_rcu(). If a given page's RCU grace period
has already elapsed, its objects are freed immediately by kvfree_rcu_bulk().
Otherwise, these objects are freed after a call to synchronize_rcu().
This approach requires that the pages be traversed in reverse order,
that is, the oldest ones first.
Test example:
kvm.sh --memory 10G --torture rcuscale --allcpus --duration 1 \
--kconfig CONFIG_NR_CPUS=64 \
--kconfig CONFIG_RCU_NOCB_CPU=y \
--kconfig CONFIG_RCU_NOCB_CPU_DEFAULT_ALL=y \
--kconfig CONFIG_RCU_LAZY=n \
--bootargs "rcuscale.kfree_rcu_test=1 rcuscale.kfree_nthreads=16 \
rcuscale.holdoff=20 rcuscale.kfree_loops=10000 \
torture.disable_onoff_at_boot" --trust-make
Before this commit:
Total time taken by all kfree'ers: 8535693700 ns, loops: 10000, batches: 1188, memory footprint: 2248MB
Total time taken by all kfree'ers: 8466933582 ns, loops: 10000, batches: 1157, memory footprint: 2820MB
Total time taken by all kfree'ers: 5375602446 ns, loops: 10000, batches: 1130, memory footprint: 6502MB
Total time taken by all kfree'ers: 7523283832 ns, loops: 10000, batches: 1006, memory footprint: 3343MB
Total time taken by all kfree'ers: 6459171956 ns, loops: 10000, batches: 1150, memory footprint: 6549MB
After this commit:
Total time taken by all kfree'ers: 8560060176 ns, loops: 10000, batches: 1787, memory footprint: 61MB
Total time taken by all kfree'ers: 8573885501 ns, loops: 10000, batches: 1777, memory footprint: 93MB
Total time taken by all kfree'ers: 8320000202 ns, loops: 10000, batches: 1727, memory footprint: 66MB
Total time taken by all kfree'ers: 8552718794 ns, loops: 10000, batches: 1790, memory footprint: 75MB
Total time taken by all kfree'ers: 8601368792 ns, loops: 10000, batches: 1724, memory footprint: 62MB
The reduction in memory footprint is well in excess of an order of
magnitude.
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
The need_offload_krc() function currently holds the krcp->lock in order
to safely check krcp->head. This commit removes the need for this lock
in that function by updating the krcp->head pointer using WRITE_ONCE()
macro so that readers can carry out lockless loads of that pointer.
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
The kvfree_rcu() code maintains lists of pages of pointers, but also a
singly linked list, with the latter being used when memory allocation
fails. Traversal of these two types of lists is currently open coded.
This commit simplifies the code by providing kvfree_rcu_bulk() and
kvfree_rcu_list() functions, respectively, to traverse these two types
of lists. This patch does not introduce any functional change.
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
This commit improves the readability and maintainability of the
kvfree_rcu() code by switching from an open-coded linked list to
the standard Linux-kernel circular doubly linked list. This patch
does not introduce any functional change.
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Currently a kvfree_call_rcu() takes an offset within a structure as
a second parameter, so a helper such as a kvfree_rcu_arg_2() has to
convert rcu_head and a freed ptr to an offset in order to pass it. That
leads to an extra conversion on macro entry.
Instead of converting, refactor the code in way that a pointer that has
to be freed is passed directly to the kvfree_call_rcu().
This patch does not make any functional change and is transparent to
all kvfree_rcu() users.
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
This commit tests synchronize_rcu() and synchronize_rcu_expedited()
at the end of rcu_init(), in addition to the test already at the
beginning of that function. These tests are run only in kernels built
with CONFIG_PROVE_RCU=y.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Currently, rcu_blocking_is_gp() invokes might_sleep() even during early
boot when interrupts are disabled and before the scheduler is scheduling.
This is at best an accident waiting to happen. Therefore, this commit
moves that might_sleep() under an rcu_scheduler_active check in order
to ensure that might_sleep() is not invoked unless sleeping might actually
happen.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
This commit emphasizes the possibility of concurrent calls to
synchronize_rcu() and synchronize_rcu_expedited() causing one or
the other of the two grace periods being lost from the viewpoint of
poll_state_synchronize_rcu().
If you cannot afford to lose grace periods this way, you should
instead use the _full() variants of the polled RCU API, for
example, poll_state_synchronize_rcu_full().
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Currently, rcu_do_batch() sizes its batches based on the total number
of callbacks in the callback list. This can result in some strange
choices, for example, if there was 12,800 callbacks in the list, but
only 200 were ready to invoke, RCU would invoke 100 at a time (12,800
shifted down by seven bits).
A more measured approach would use the number that were actually ready
to invoke, an approach that has become feasible only recently given the
per-segment ->seglen counts in ->cblist.
This commit therefore bases the batch limit on the number of callbacks
ready to invoke instead of on the total number of callbacks.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
This commit consolidates the initialization and CPU-hotplug code at
the end of kernel/rcu/tree.c. This is strictly a code-motion commit.
No functionality has changed.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU fix from Paul McKenney:
"This fixes a lockdep false positive in synchronize_rcu() that can
otherwise occur during early boot.
The fix simply avoids invoking lockdep if the scheduler has not yet
been initialized, that is, during that portion of boot when interrupts
are disabled"
* tag 'rcu-urgent.2022.12.17a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu:
rcu: Don't assert interrupts enabled too early in boot
|
|
The rcu_poll_gp_seq_end() and rcu_poll_gp_seq_end_unlocked() both check
that interrupts are enabled, as they normally should be when waiting for
an RCU grace period. Except that it is legal to wait for grace periods
during early boot, before interrupts have been enabled for the first time,
and polling for grace periods is required to work during this time.
This can result in false-positive lockdep splats in the presence of
boot-time-initiated tracing.
This commit therefore conditions those interrupts-enabled checks on
rcu_scheduler_active having advanced past RCU_SCHEDULER_INACTIVE, by
which time interrupts have been enabled.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU updates from Paul McKenney:
- Documentation updates. This is the second in a series from an ongoing
review of the RCU documentation.
- Miscellaneous fixes.
- Introduce a default-off Kconfig option that depends on RCU_NOCB_CPU
that, on CPUs mentioned in the nohz_full or rcu_nocbs boot-argument
CPU lists, causes call_rcu() to introduce delays.
These delays result in significant power savings on nearly idle
Android and ChromeOS systems. These savings range from a few percent
to more than ten percent.
This series also includes several commits that change call_rcu() to a
new call_rcu_hurry() function that avoids these delays in a few
cases, for example, where timely wakeups are required. Several of
these are outside of RCU and thus have acks and reviews from the
relevant maintainers.
- Create an srcu_read_lock_nmisafe() and an srcu_read_unlock_nmisafe()
for architectures that support NMIs, but which do not provide
NMI-safe this_cpu_inc(). These NMI-safe SRCU functions are required
by the upcoming lockless printk() work by John Ogness et al.
- Changes providing minor but important increases in torture test
coverage for the new RCU polled-grace-period APIs.
- Changes to torturescript that avoid redundant kernel builds, thus
providing about a 30% speedup for the torture.sh acceptance test.
* tag 'rcu.2022.12.02a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (49 commits)
net: devinet: Reduce refcount before grace period
net: Use call_rcu_hurry() for dst_release()
workqueue: Make queue_rcu_work() use call_rcu_hurry()
percpu-refcount: Use call_rcu_hurry() for atomic switch
scsi/scsi_error: Use call_rcu_hurry() instead of call_rcu()
rcu/rcutorture: Use call_rcu_hurry() where needed
rcu/rcuscale: Use call_rcu_hurry() for async reader test
rcu/sync: Use call_rcu_hurry() instead of call_rcu
rcuscale: Add laziness and kfree tests
rcu: Shrinker for lazy rcu
rcu: Refactor code a bit in rcu_nocb_do_flush_bypass()
rcu: Make call_rcu() lazy to save power
rcu: Implement lockdep_rcu_enabled for !CONFIG_DEBUG_LOCK_ALLOC
srcu: Debug NMI safety even on archs that don't require it
srcu: Explain the reason behind the read side critical section on GP start
srcu: Warn when NMI-unsafe API is used in NMI
arch/s390: Add ARCH_HAS_NMI_SAFE_THIS_CPU_OPS Kconfig option
arch/loongarch: Add ARCH_HAS_NMI_SAFE_THIS_CPU_OPS Kconfig option
rcu: Fix __this_cpu_read() lockdep warning in rcu_force_quiescent_state()
rcu-tasks: Make grace-period-age message human-readable
...
|
|
'srcunmisafe.2022.11.09a', 'torture.2022.10.18c' and 'torturescript.2022.10.20a' into HEAD
doc.2022.10.20a: Documentation updates.
fixes.2022.10.21a: Miscellaneous fixes.
lazy.2022.11.30a: Lazy call_rcu() and NOCB updates.
srcunmisafe.2022.11.09a: NMI-safe SRCU readers.
torture.2022.10.18c: Torture-test updates.
torturescript.2022.10.20a: Torture-test scripting updates.
|
|
Implement timer-based RCU callback batching (also known as lazy
callbacks). With this we save about 5-10% of power consumed due
to RCU requests that happen when system is lightly loaded or idle.
By default, all async callbacks (queued via call_rcu) are marked
lazy. An alternate API call_rcu_hurry() is provided for the few users,
for example synchronize_rcu(), that need the old behavior.
The batch is flushed whenever a certain amount of time has passed, or
the batch on a particular CPU grows too big. Also memory pressure will
flush it in a future patch.
To handle several corner cases automagically (such as rcu_barrier() and
hotplug), we re-use bypass lists which were originally introduced to
address lock contention, to handle lazy CBs as well. The bypass list
length has the lazy CB length included in it. A separate lazy CB length
counter is also introduced to keep track of the number of lazy CBs.
[ paulmck: Fix formatting of inline call_rcu_lazy() definition. ]
[ paulmck: Apply Zqiang feedback. ]
[ paulmck: Apply s/call_rcu_flush/call_rcu_hurry/ feedback from Tejun Heo. ]
Suggested-by: Paul McKenney <paulmck@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Running rcutorture with non-zero fqs_duration module parameter in a
kernel built with CONFIG_PREEMPTION=y results in the following splat:
BUG: using __this_cpu_read() in preemptible [00000000]
code: rcu_torture_fqs/398
caller is __this_cpu_preempt_check+0x13/0x20
CPU: 3 PID: 398 Comm: rcu_torture_fqs Not tainted 6.0.0-rc1-yoctodev-standard+
Call Trace:
<TASK>
dump_stack_lvl+0x5b/0x86
dump_stack+0x10/0x16
check_preemption_disabled+0xe5/0xf0
__this_cpu_preempt_check+0x13/0x20
rcu_force_quiescent_state.part.0+0x1c/0x170
rcu_force_quiescent_state+0x1e/0x30
rcu_torture_fqs+0xca/0x160
? rcu_torture_boost+0x430/0x430
kthread+0x192/0x1d0
? kthread_complete_and_exit+0x30/0x30
ret_from_fork+0x22/0x30
</TASK>
The problem is that rcu_force_quiescent_state() uses __this_cpu_read()
in preemptible code instead of the proper raw_cpu_read(). This commit
therefore changes __this_cpu_read() to raw_cpu_read().
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
The commit 3fcd6a230fa7 ("x86/cpu: Avoid cpuinfo-induced IPIing of
idle CPUs") introduced rcu_is_idle_cpu() in order to identify the
current CPU idle state. But commit f3eca381bd49 ("x86/aperfmperf:
Replace arch_freq_get_on_cpu()") switched to using MAX_SAMPLE_AGE,
so rcu_is_idle_cpu() is no longer used. This commit therefore removes it.
Fixes: f3eca381bd49 ("x86/aperfmperf: Replace arch_freq_get_on_cpu()")
Signed-off-by: Yipeng Zou <zouyipeng@huawei.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Making polled RCU grace periods account for expedited grace periods
required acquiring the leaf rcu_node structure's lock during early boot,
but after rcu_init() was called. This lock is irq-disabled, but the
code incorrectly assumes that irqs are always disabled when invoking
synchronize_rcu(). The exception is early boot before the scheduler has
started, which means that upon return from synchronize_rcu(), irqs will
be incorrectly enabled.
This commit fixes this bug by using irqsave/irqrestore locking primitives.
Fixes: bf95b2bc3e42 ("rcu: Switch polled grace-period APIs to ->gp_seq_polled")
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
In preparation for RCU lazy changes, wake up the RCU nocb gp thread if
needed after an entrain. This change prevents the RCU barrier callback
from waiting in the queue for several seconds before the lazy callbacks
in front of it are serviced.
Reported-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
The rnp->qsmask is locklessly accessed from rcutree_dying_cpu(). This
may help avoid load tearing due to concurrent access, KCSAN
issues, and preserve sanity of people reading the mask in tracing.
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
The rcu_report_dead() function invokes rcu_report_exp_rdp() in order
to force an immediate expedited quiescent state on the outgoing
CPU, and then it invokes rcu_preempt_deferred_qs() to provide any
required deferred quiescent state of either sort. Because the call to
rcu_preempt_deferred_qs() provides the expedited RCU quiescent state if
requested, the call to rcu_report_exp_rdp() is potentially redundant.
One possible issue is a concurrent start of a new expedited RCU
grace period, but this situation is already handled correctly
by __sync_rcu_exp_select_node_cpus(). This function will detect
that the CPU is going offline via the error return from its call
to smp_call_function_single(). In that case, it will retry, and
eventually stop retrying due to rcu_report_exp_rdp() clearing the
->qsmaskinitnext bit corresponding to the target CPU. As a result,
__sync_rcu_exp_select_node_cpus() will report the necessary quiescent
state after dealing with any remaining CPU.
This change assumes that control does not enter rcu_report_dead() within
an RCU read-side critical section, but then again, the surviving call
to rcu_preempt_deferred_qs() has always made this assumption.
This commit therefore removes the call to rcu_report_exp_rdp(), thus
relying on rcu_preempt_deferred_qs() to handle both normal and expedited
quiescent states.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|