summaryrefslogtreecommitdiff
path: root/kernel/trace/trace_benchmark.c
AgeCommit message (Collapse)Author
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-04-17tracing: Have the trace_event benchmark thread call cond_resched_rcu_qs()Steven Rostedt (VMware)
The trace_event benchmark thread runs in kernel space in an infinite loop while also calling cond_resched() in case anything else wants to schedule in. Unfortunately, on a PREEMPT kernel, that makes it a nop, in which case, this will never voluntarily schedule. That will cause synchronize_rcu_tasks() to forever block on this thread, while it is running. This is exactly what cond_resched_rcu_qs() is for. Use that instead. Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2017-02-15tracing: Fix return value check in trace_benchmark_reg()Wei Yongjun
In case of error, the function kthread_run() returns ERR_PTR() and never returns NULL. The NULL test in the return value check should be replaced with IS_ERR(). Link: http://lkml.kernel.org/r/20170112135502.28556-1-weiyj.lk@gmail.com Cc: stable@vger.kernel.org Fixes: 81dc9f0e ("tracing: Add tracepoint benchmark tracepoint") Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2016-12-09tracing: Allow benchmark to be enabled at early_initcall()Steven Rostedt (Red Hat)
The trace event start up selftests fails when the trace benchmark is enabled, because it is disabled during boot. It really only needs to be disabled before scheduling is set up, as it creates a thread. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-12-09tracing: Do not start benchmark on boot upSteven Rostedt (Red Hat)
Trace events are enabled very early on boot up via the boot command line parameter. The benchmark tool creates a new thread to perform the trace event benchmarking. But at start up, it is called before scheduling is set up and because it creates a new thread before the init thread is created, this crashes the kernel. Have the benchmark fail to register when started via the kernel command line. Also, since the registering of a tracepoint now can handle failure cases, return -ENOMEM instead of warning if the thread cannot be created. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2016-12-09tracing: Have the reg function allow to failSteven Rostedt (Red Hat)
Some tracepoints have a registration function that gets enabled when the tracepoint is enabled. There may be cases that the registraction function must fail (for example, can't allocate enough memory). In this case, the tracepoint should also fail to register, otherwise the user would not know why the tracepoint is not working. Cc: David Howells <dhowells@redhat.com> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Cc: Anton Blanchard <anton@samba.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-11-02tracing: Only benchmark the time tracepoints take if tracing is onChunyan Zhang
There's no need to record the time tracepoints take when tracing is off. This is because: 1) We cannot see these records since ring_buffer record is off at that moment. 2) If tracing is off and benchmark tracepoint is enabled, the time tracepoint takes is fewer than the same situation when tracing is on, since the tracepoints need to be wrote into ring_buffer, it would take more time. If turn on tracing at this moment, the average and standard deviation cannot exactly present the time that tracepoints take to write data into ring_buffer. Link: http://lkml.kernel.org/r/1445947933-27955-1-git-send-email-zhang.chunyan@linaro.org Signed-off-by: Chunyan Zhang <zhang.chunyan@linaro.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-06-06tracing: Only calculate stats of tracepoint benchmarks for 2^32 timesSteven Rostedt (Red Hat)
When calculating the average and standard deviation, it is required that the count be less than UINT_MAX, otherwise the do_div() will get undefined results. After 2^32 counts of data, the average and standard deviation should pretty much be set anyway. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-06-05tracing: Convert stddev into u64 in tracepoint benchmarkSteven Rostedt (Red Hat)
I've been told that do_div() expects an unsigned 64 bit number, and is undefined if a signed is used. This gave a warning on the MIPS build. I'm not sure if a signed 64 bit dividend is really an issue or not, but the calculation this is used for is standard deviation, and that isn't going to be negative. We can just convert it to unsigned and be safe. Reported-by: David Daney <ddaney.cavm@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-06-04tracing: Remove unused variable in trace_benchmarkSteven Rostedt (Red Hat)
Somehow this unused variable warning sneaked past my warnings check (probably due to it depending on a new config). kernel/trace/trace_benchmark.c: In function 'trace_do_benchmark': kernel/trace/trace_benchmark.c:38:6: warning: unused variable 'seedsq' [-Wunused-variable] u64 seedsq; ^ Link: http://lkml.kernel.org/r/20140604160921.4f4e69c4@canb.auug.org.au Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-05-29tracing: Add tracepoint benchmark tracepointSteven Rostedt (Red Hat)
In order to help benchmark the time tracepoints take, a new config option is added called CONFIG_TRACEPOINT_BENCHMARK. When this option is set a tracepoint is created called "benchmark:benchmark_event". When the tracepoint is enabled, it kicks off a kernel thread that goes into an infinite loop (calling cond_sched() to let other tasks run), and calls the tracepoint. Each iteration will record the time it took to write to the tracepoint and the next iteration that data will be passed to the tracepoint itself. That is, the tracepoint will report the time it took to do the previous tracepoint. The string written to the tracepoint is a static string of 128 bytes to keep the time the same. The initial string is simply a write of "START". The second string records the cold cache time of the first write which is not added to the rest of the calculations. As it is a tight loop, it benchmarks as hot cache. That's fine because we care most about hot paths that are probably in cache already. An example of the output: START first=3672 [COLD CACHED] last=632 first=3672 max=632 min=632 avg=316 std=446 std^2=199712 last=278 first=3672 max=632 min=278 avg=303 std=316 std^2=100337 last=277 first=3672 max=632 min=277 avg=296 std=258 std^2=67064 last=273 first=3672 max=632 min=273 avg=292 std=224 std^2=50411 last=273 first=3672 max=632 min=273 avg=288 std=200 std^2=40389 last=281 first=3672 max=632 min=273 avg=287 std=183 std^2=33666 Signed-off-by: Steven Rostedt <rostedt@goodmis.org>