summaryrefslogtreecommitdiff
path: root/lib/crypto/Kconfig
AgeCommit message (Collapse)Author
2019-11-17crypto: chacha20poly1305 - import construction and selftest from ZincArd Biesheuvel
This incorporates the chacha20poly1305 from the Zinc library, retaining the library interface, but replacing the implementation with calls into the code that already existed in the kernel's crypto API. Note that this library API does not implement RFC7539 fully, given that it is limited to 64-bit nonces. (The 96-bit nonce version that was part of the selftest only has been removed, along with the 96-bit nonce test vectors that only tested the selftest but not the actual library itself) Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17crypto: curve25519 - generic C library implementationsJason A. Donenfeld
This contains two formally verified C implementations of the Curve25519 scalar multiplication function, one for 32-bit systems, and one for 64-bit systems whose compiler supports efficient 128-bit integer types. Not only are these implementations formally verified, but they are also the fastest available C implementations. They have been modified to be friendly to kernel space and to be generally less horrendous looking, but still an effort has been made to retain their formally verified characteristic, and so the C might look slightly unidiomatic. The 64-bit version comes from HACL*: https://github.com/project-everest/hacl-star The 32-bit version comes from Fiat: https://github.com/mit-plv/fiat-crypto Information: https://cr.yp.to/ecdh.html Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> [ardb: - move from lib/zinc to lib/crypto - replace .c #includes with Kconfig based object selection - drop simd handling and simplify support for per-arch versions ] Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17crypto: blake2s - generic C library implementation and selftestJason A. Donenfeld
The C implementation was originally based on Samuel Neves' public domain reference implementation but has since been heavily modified for the kernel. We're able to do compile-time optimizations by moving some scaffolding around the final function into the header file. Information: https://blake2.net/ Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Samuel Neves <sneves@dei.uc.pt> Co-developed-by: Samuel Neves <sneves@dei.uc.pt> [ardb: - move from lib/zinc to lib/crypto - remove simd handling - rewrote selftest for better coverage - use fixed digest length for blake2s_hmac() and rename to blake2s256_hmac() ] Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17crypto: mips/poly1305 - incorporate OpenSSL/CRYPTOGAMS optimized implementationArd Biesheuvel
This is a straight import of the OpenSSL/CRYPTOGAMS Poly1305 implementation for MIPS authored by Andy Polyakov, a prior 64-bit only version of which has been contributed by him to the OpenSSL project. The file 'poly1305-mips.pl' is taken straight from this upstream GitHub repository [0] at commit d22ade312a7af958ec955620b0d241cf42c37feb, and already contains all the changes required to build it as part of a Linux kernel module. [0] https://github.com/dot-asm/cryptogams Co-developed-by: Andy Polyakov <appro@cryptogams.org> Signed-off-by: Andy Polyakov <appro@cryptogams.org> Co-developed-by: René van Dorst <opensource@vdorst.com> Signed-off-by: René van Dorst <opensource@vdorst.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17crypto: arm/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementationArd Biesheuvel
This is a straight import of the OpenSSL/CRYPTOGAMS Poly1305 implementation for NEON authored by Andy Polyakov, and contributed by him to the OpenSSL project. The file 'poly1305-armv4.pl' is taken straight from this upstream GitHub repository [0] at commit ec55a08dc0244ce570c4fc7cade330c60798952f, and already contains all the changes required to build it as part of a Linux kernel module. [0] https://github.com/dot-asm/cryptogams Co-developed-by: Andy Polyakov <appro@cryptogams.org> Signed-off-by: Andy Polyakov <appro@cryptogams.org> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17crypto: arm64/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementationArd Biesheuvel
This is a straight import of the OpenSSL/CRYPTOGAMS Poly1305 implementation for NEON authored by Andy Polyakov, and contributed by him to the OpenSSL project. The file 'poly1305-armv8.pl' is taken straight from this upstream GitHub repository [0] at commit ec55a08dc0244ce570c4fc7cade330c60798952f, and already contains all the changes required to build it as part of a Linux kernel module. [0] https://github.com/dot-asm/cryptogams Co-developed-by: Andy Polyakov <appro@cryptogams.org> Signed-off-by: Andy Polyakov <appro@cryptogams.org> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17crypto: x86/poly1305 - expose existing driver as poly1305 libraryArd Biesheuvel
Implement the arch init/update/final Poly1305 library routines in the accelerated SIMD driver for x86 so they are accessible to users of the Poly1305 library interface as well. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17crypto: poly1305 - expose init/update/final library interfaceArd Biesheuvel
Expose the existing generic Poly1305 code via a init/update/final library interface so that callers are not required to go through the crypto API's shash abstraction to access it. At the same time, make some preparations so that the library implementation can be superseded by an accelerated arch-specific version in the future. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17crypto: poly1305 - move core routines into a separate libraryArd Biesheuvel
Move the core Poly1305 routines shared between the generic Poly1305 shash driver and the Adiantum and NHPoly1305 drivers into a separate library so that using just this pieces does not pull in the crypto API pieces of the generic Poly1305 routine. In a subsequent patch, we will augment this generic library with init/update/final routines so that Poyl1305 algorithm can be used directly without the need for using the crypto API's shash abstraction. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17crypto: chacha - move existing library code into lib/cryptoArd Biesheuvel
Currently, our generic ChaCha implementation consists of a permute function in lib/chacha.c that operates on the 64-byte ChaCha state directly [and which is always included into the core kernel since it is used by the /dev/random driver], and the crypto API plumbing to expose it as a skcipher. In order to support in-kernel users that need the ChaCha streamcipher but have no need [or tolerance] for going through the abstractions of the crypto API, let's expose the streamcipher bits via a library API as well, in a way that permits the implementation to be superseded by an architecture specific one if provided. So move the streamcipher code into a separate module in lib/crypto, and expose the init() and crypt() routines to users of the library. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-11-17crypto: lib - tidy up lib/crypto Kconfig and MakefileArd Biesheuvel
In preparation of introducing a set of crypto library interfaces, tidy up the Makefile and split off the Kconfig symbols into a separate file. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>