summaryrefslogtreecommitdiff
path: root/mm/damon/sysfs-schemes.c
AgeCommit message (Collapse)Author
2025-05-22mm/damon/sysfs-schemes: fix wrong comment on damons_sysfs_quota_goal_metric_strsSeongJae Park
A comment on damos_sysfs_quota_goal_metric_strs is simply wrong, due to a copy-and-paste error. Fix it. Link: https://lkml.kernel.org/r/20250513002715.40126-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Brendan Higgins <brendan.higgins@linux.dev> Cc: David Gow <davidgow@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm/damon/sysfs-schemes: use kmalloc_array() and size_add()Su Hui
It's safer to use kmalloc_array() and size_add() because it can prevent possible overflow problem. Link: https://lkml.kernel.org/r/20250421062423.740605-1-suhui@nfschina.com Signed-off-by: Su Hui <suhui@nfschina.com> Reviewed-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm/damon/sysfs-schemes: connect damos_quota_goal nid with core layerSeongJae Park
DAMON sysfs interface file for DAMOS quota goal's node id argument is not passed to core layer. Implement the link. Link: https://lkml.kernel.org/r/20250420194030.75838-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Yunjeong Mun <yunjeong.mun@sk.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm/damon/sysfs-schemes: implement file for quota goal nid parameterSeongJae Park
DAMOS_QUOTA_NODE_MEM_{USED,FREE}_BP DAMOS quota goal metrics require the node id parameter. However, there is no DAMON user ABI for setting it. Implement a DAMON sysfs file for that with name 'nid', under the quota goal directory. Link: https://lkml.kernel.org/r/20250420194030.75838-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Yunjeong Mun <yunjeong.mun@sk.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm/damon/core: introduce damos quota goal metrics for memory node utilizationSeongJae Park
Patch series "mm/damon: auto-tune DAMOS for NUMA setups including tiered memory". Utilizing DAMON for memory tiering usually requires manual tuning and/or tedious controls. Let it self-tune hotness and coldness thresholds for promotion and demotion aiming high utilization of high memory tiers, by introducing new DAMOS quota goal metrics representing the used and the free memory ratios of specific NUMA nodes. And introduce a sample DAMON module that demonstrates how the new feature can be used for memory tiering use cases. Backgrounds =========== A type of tiered memory system exposes the memory tiers as NUMA nodes. A straightforward pages placement strategy for such systems is placing access-hot and cold pages on upper and lower tiers, reespectively, pursuing higher utilization of upper tiers. Since access temperature can be dynamic, periodically finding and migrating hot pages and cold pages to proper tiers (promoting and demoting) is also required. Linux kernel provides several features for such dynamic and transparent pages placement. Page Faults and LRU ------------------- One widely known way is using NUMA balancing in tiering mode (a.k.a NUMAB-2) and reclaim-based demotion features. In the setup, NUMAB-2 finds hot pages using access check-purpose page faults (a.k.a prot_none) and promote those inside each process' context, until there is no more pages to promote, or the upper tier is filled up and memory pressure happens. In the latter case, LRU-based reclaim logic wakes up as a response to the memory pressure and demotes cold pages to lower tiers in asynchronous (kswapd) and/or synchronous ways (direct reclaim). DAMON ----- Yet another available solution is using DAMOS with migrate_hot and migrate_cold DAMOS actions for promotions and demotions, respectively. To make it optimum, users need to specify aggressiveness and access temperature thresholds for promotions and demotions in a good balance that results in high utilization of upper tiers. The number of parameters is not small, and optimum parameter values depend on characteristics of the underlying hardware and the workload. As a result, it often requires manual, time consuming and repetitive tuning of the DAMOS schemes for given workloads and systems combinations. Self-tuned DAMON-based Memory Tiering ===================================== To solve such manual tuning problems, DAMOS provides aim-oriented feedback-driven quotas self-tuning. Using the feature, we design a self-tuned DAMON-based memory tiering for general multi-tier memory systems. For each memory tier node, if it has a lower tier, run a DAMOS scheme that demotes cold pages of the node, auto-tuning the aggressiveness aiming an amount of free space of the node. The free space is for keeping the headroom that avoids significant memory pressure during upper tier memory usage spike, and promoting hot pages from the lower tier. For each memory tier node, if it has an upper tier, run a DAMOS scheme that promotes hot pages of the current node to the upper tier, auto-tuning the aggressiveness aiming a high utilization ratio of the upper tier. The target ratio is to ensure higher tiers are utilized as much as possible. It should match with the headroom for demotion scheme, but have slight overlap, to ensure promotion and demotion are not entirely stopped. The aim-oriented aggressiveness auto-tuning of DAMOS is already available. Hence, to make such tiering solution implementation, only new quota goal metrics for utilization and free space ratio of specific NUMA node need to be developed. Discussions =========== The design imposes below discussion points. Expected Behaviors ------------------ The system will let upper tier memory node accommodates as many hot data as possible. If total amount of the data is less than the top tier memory's promotion/demotion target utilization, entire data will be just placed on the top tier. Promotion scheme will do nothing since there is no data to promote. Demotion scheme will also do nothing since the free space ratio of the top tier is higher than the goal. Only if the amount of data is larger than the top tier's utilization ratio, demotion scheme will demote cold pages and ensure the headroom free space. Since the promotion and demotion schemes for a single node has small overlap at their target utilization and free space goals, promotions and demotions will continue working with a moderate aggressiveness level. It will keep all data is placed on access hotness under dynamic access pattern, while minimizing the migration overhead. In any case, each node will keep headroom free space and as many upper tiers are utilized as possible. Ease of Use ----------- Users still need to set the target utilization and free space ratio, but it will be easier to set. We argue 99.7 % utilization and 0.5 % free space ratios can be good default values. It can be easily adjusted based on desired headroom size of given use case. Users are also still required to answer the minimum coldness and hotness thresholds. Together with monitoring intervals auto-tuning[2], DAMON will always show meaningful amount of hot and cold memory. And DAMOS quota's prioritization mechanism will make good decision as long as the source information is that colorful. Hence, users can very naively set the minimum criterias. We believe any access observation and no access observation within last one aggregation interval is enough for minimum hot and cold regions criterias. General Tiered Memory Setup Applicability ----------------------------------------- The design can be applied to any number of tiers having any performance characteristics, as long as they can be hierarchical. Hence, applying the system to different tiered memory system will be straightforward. Note that this assumes only single CPU NUMA node case. Because today's DAMON is not aware of which CPU made each access, applying this on systems having multiple CPU NUMA nodes can be complicated. We are planning to extend DAMON for the use case, but that's out of the scope of this patch series. How To Use ---------- Users can implement the auto-tuned DAMON-based memory tiering using DAMON sysfs interface. It can be easily done using DAMON user-space tool like user-space tool. Below evaluation results section shows an example DAMON user-space tool command for that. For wider and simpler deployment, having a kernel module that sets up and run the DAMOS schemes via DAMON kernel API can be useful. The module can enable the memory tiering at boot time via kernel command line parameter or at run time with single command. This patch series implements a sample DAMON kernel module that shows how such module can be implemented. Comparison To Page Faults and LRU-based Approaches -------------------------------------------------- The existing page faults based promotion (NUMAB-2) does hot pages detection and migration in the process context. When there are many pages to promote, it can block the progress of the application's real works. DAMOS works in asynchronous worker thread, so it doesn't block the real works. NUMAB-2 doesn't provide a way to control aggressiveness of promotion other than the maximum amount of pages to promote per given time widnow. If hot pages are found, promotions can happen in the upper-bound speed, regardless of upper tier's memory pressure. If the maximum speed is not well set for the given workload, it can result in slow promotion or unnecessary memory pressure. Self-tuned DAMON-based memory tiering alleviates the problem by adjusting the speed based on current utilization of the upper tier. LRU-based demotion can be triggered in both asynchronous (kswapd) and synchronous (direct reclaim) ways. Other than the way of finding cold pages, asynchronous LRU-based demotion and DAMON-based demotion has no big difference. DAMON-based demotion can make a better balancing with DAMON-based promotion, though. The LRU-based demotion can do better than DAMON-based demotion when the tier is having significant memory pressure. It would be wise to use DAMON-based demotion as a proactive and primary one, but utilizing LRU-based demotions together as a fast backup solution. Evaluation ========== In short, under a setup that requires fast and frequent promotions, self-tuned DAMON-based memory tiering's hot pages promotion improves performance about 4.42 %. We believe this shows self-tuned DAMON-based promotion's effectiveness. Meanwhile, NUMAB-2's hot pages promotion degrades the performance about 7.34 %. We suspect the degradation is mostly due to NUMAB-2's synchronous nature that can block the application's progress, which highlights the advantage of DAMON-based solution's asynchronous nature. Note that the test was done with the RFC version of this patch series. We don't run it again since this patch series got no meaningful change after the RFC, while the test takes pretty long time. Setup ----- Hardware. Use a machine that equips 250 GiB DRAM memory tier and 50 GiB CXL memory tier. The tiers are exposed as NUMA nodes 0 and 1, respectively. Kernel. Use Linux kernel v6.13 that modified as following. Add all DAMON patches that available on mm tree of 2025-03-15, and this patch series. Also modify it to ignore mempolicy() system calls, to avoid bad effects from application's traditional NUMA systems assumed optimizations. Workload. Use a modified version of Taobench benchmark[3] that available on DCPerf benchmark suite. It represents an in-memory caching workload. We set its 'memsize', 'warmup_time', and 'test_time' parameter as 340 GiB, 2,500 seconds and 1,440 seconds. The parameters are chosen to ensure the workload uses more than DRAM memory tier. Its RSS under the parameter grows to 270 GiB within the warmup time. It turned out the workload has a very static access pattrn. Only about 13 % of the RSS is frequently accessed from the beginning to end. Hence promotion shows no meaningful performance difference regardless of different design and implementations. We therefore modify the kernel to periodically demote up to 10 GiB hot pages and promote up to 10 GiB cold pages once per minute. The intention is to simulate periodic access pattern changes. The hotness and coldness threshold is very naively set so that it is more like random access pattern change rather than strict hot/cold pages exchange. This is why we call the workload as "modified". It is implemented as two DAMOS schemes each running on an asynchronous thread. It can be reproduced with DAMON user-space tool like below. # ./damo start \ --ops paddr --numa_node 0 --monitoring_intervals 10s 200s 200s \ --damos_action migrate_hot 1 \ --damos_quota_interval 60s --damos_quota_space 10G \ --ops paddr --numa_node 1 --monitoring_intervals 10s 200s 200s \ --damos_action migrate_cold 0 \ --damos_quota_interval 60s --damos_quota_space 10G \ --nr_schemes 1 1 --nr_targets 1 1 --nr_ctxs 1 1 System configurations. Use below variant system configurations. - Baseline. No memory tiering features are turned on. - Numab_tiering. On the baseline, enable NUMAB-2 and relcaim-based demotion. In detail, following command is executed: echo 2 > /proc/sys/kernel/numa_balancing; echo 1 > /sys/kernel/mm/numa/demotion_enabled; echo 7 > /proc/sys/vm/zone_reclaim_mode - DAMON_tiering. On the baseline, utilize self-tuned DAMON-based memory tiering implementation via DAMON user-space tool. It utilizes two kernel threads, namely promotion thread and demotion thread. Demotion thread monitors access pattern of DRAM node using DAMON with auto-tuned monitoring intervals aiming 4% DAMON-observed access ratio, and demote coldest pages up to 200 MiB per second aiming 0.5% free space of DRAM node. Promotion thread monitors CXL node using same intervals auto-tuning, and promote hot pages in same way but aiming for 99.7% utilization of DRAM node. Because DAMON provides only best-effort accuracy, add young page DAMOS filters to allow only and reject all young pages at promoting and demoting, respectively. It can be reproduced with DAMON user-space tool like below. # ./damo start \ --numa_node 0 --monitoring_intervals_goal 4% 3 5ms 10s \ --damos_action migrate_cold 1 --damos_access_rate 0% 0% \ --damos_apply_interval 1s \ --damos_quota_interval 1s --damos_quota_space 200MB \ --damos_quota_goal node_mem_free_bp 0.5% 0 \ --damos_filter reject young \ --numa_node 1 --monitoring_intervals_goal 4% 3 5ms 10s \ --damos_action migrate_hot 0 --damos_access_rate 5% max \ --damos_apply_interval 1s \ --damos_quota_interval 1s --damos_quota_space 200MB \ --damos_quota_goal node_mem_used_bp 99.7% 0 \ --damos_filter allow young \ --damos_nr_quota_goals 1 1 --damos_nr_filters 1 1 \ --nr_targets 1 1 --nr_schemes 1 1 --nr_ctxs 1 1 Measurment Results ------------------ On each system configuration, run the modified version of Taobench and collect 'score'. 'score' is a metric that calculated and provided by Taobench to represents the performance of the run on the system. To handle the measurement errors, repeat the measurement five times. The results are as below. Config Score Stdev (%) Normalized Baseline 1.6165 0.0319 1.9764 1.0000 Numab_tiering 1.4976 0.0452 3.0209 0.9264 DAMON_tiering 1.6881 0.0249 1.4767 1.0443 'Config' column shows the system config of the measurement. 'Score' column shows the 'score' measurement in average of the five runs on the system config. 'Stdev' column shows the standsard deviation of the five measurements of the scores. '(%)' column shows the 'Stdev' to 'Score' ratio in percentage. Finally, 'Normalized' column shows the averaged score values of the configs that normalized to that of 'Baseline'. The periodic hot pages demotion and cold pages promotion that was conducted to simulate dynamic access pattern was started from the beginning of the workload. It resulted in the DRAM tier utilization always under the watermark, and hence no real demotion was happened for all test runs. This means the above results show no difference between LRU-based and DAMON-based demotions. Only difference between NUMAB-2 and DAMON-based promotions are represented on the results. Numab_tiering config degraded the performance about 7.36 %. We suspect this happened because NUMAB-2's synchronous promotion was blocking the Taobench's real work progress. DAMON_tiering config improved the performance about 4.43 %. We believe this shows effectiveness of DAMON-based promotion that didn't block Taobench's real work progress due to its asynchronous nature. Also this means DAMON's monitoring results are accurate enough to provide visible amount of improvement. Evaluation Limitations ---------------------- As mentioned above, this evaluation shows only comparison of promotion mechanisms. DAMON-based tiering is recommended to be used together with reclaim-based demotion as a faster backup under significant memory pressure, though. From some perspective, the modified version of Taobench may seems making the picture distorted too much. It would be better to evaluate with more realistic workload, or more finely tuned micro benchmarks. Patch Sequence ============== The first patch (patch 1) implements two new quota goal metrics on core layer and expose it to DAMON core kernel API. The second and third ones (patches 2 and 3) further link it to DAMON sysfs interface. Three following patches (patches 4-6) document the new feature and sysfs file on design, usage, and ABI documents. The final one (patch 7) implements a working version of a self-tuned DAMON-based memory tiering solution in an incomplete but easy to understand form as a kernel module under samples/damon/ directory. References ========== [1] https://lore.kernel.org/20231112195602.61525-1-sj@kernel.org/ [2] https://lore.kernel.org/20250303221726.484227-1-sj@kernel.org [3] https://github.com/facebookresearch/DCPerf/blob/main/packages/tao_bench/README.md This patch (of 7): Used and free space ratios for specific NUMA nodes can be useful inputs for NUMA-specific DAMOS schemes' aggressiveness self-tuning feedback loop. Implement DAMOS quota goal metrics for such self-tuned schemes. Link: https://lkml.kernel.org/r/20250420194030.75838-1-sj@kernel.org Link: https://lkml.kernel.org/r/20250420194030.75838-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Yunjeong Mun <yunjeong.mun@sk.com> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-21mm/damon: implement a new DAMOS filter type for active pagesNhat Pham
Patch series "mm/damon: introduce DAMOS filter type for active pages". The memory reclaim algorithm categorizes pages into active and inactive lists, separately for file and anon pages. The system's performance relies heavily on the (relative and absolute) accuracy of this categorization. This patch series add a new DAMOS filter for pages' activeness, giving us visibility into the access frequency of the pages on each list. This insight can help us diagnose issues with the active-inactive balancing dynamics, and make decisions to optimize reclaim efficiency and memory utilization. For instance, we might decide to enable DAMON_LRU_SORT, if we find that there are pages on the active list that are infrequently accessed, or less frequently accessed than pages on the inactive list. This patch (of 2): Implement a DAMOS filter type for active pages on DAMON kernel API, and add support of it from the physical address space DAMON operations set (paddr). Link: https://lkml.kernel.org/r/20250318183029.2062917-1-nphamcs@gmail.com Link: https://lkml.kernel.org/r/20250318183029.2062917-2-nphamcs@gmail.com Signed-off-by: Nhat Pham <nphamcs@gmail.com> Suggested-by: SeongJae Park <sj@kernel.org> Reviewed-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon/sysfs-schemes: avoid Wformat-security warning on ↵SeongJae Park
damon_sysfs_access_pattern_add_range_dir() When -Wformat-security is given, compiler warns as a potential security issue on damon_sysfs_access_pattern_add_range_dir() as below: mm/damon/sysfs-schemes.c: In function `damon_sysfs_access_pattern_add_range_dir': mm/damon/sysfs-schemes.c:1503:25: warning: format not a string literal and no format arguments [-Wformat-security] 1503 | &access_pattern->kobj, name); | ^ Fix it by using "%s" as the format and the name as the argument. Link: https://lkml.kernel.org/r/20250310165009.652491-1-sj@kernel.org Fixes: 7e84b1f8212a ("mm/damon/sysfs: support DAMON-based Operation Schemes") Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon/sysfs-schemes: remove obsolete comment for ↵SeongJae Park
damon_sysfs_schemes_clear_regions() The comment on damon_sysfs_schemes_clear_regions() function is obsolete, since it has updated to directly called from DAMON sysfs interface code. Remove the outdated comment. Link: https://lkml.kernel.org/r/20250306175908.66300-9-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon/sysfs-schemes: return error when for attempts to install filters on ↵SeongJae Park
wrong sysfs directory Return error if the user tries to install a DAMOS filter on DAMOS filters sysfs directory that assumed to be used for filters that handled by a DAMON layer that not same to that for the installing filter. Link: https://lkml.kernel.org/r/20250305222733.59089-7-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon/sysfs-schemes: record filters of which layer should be added to the ↵SeongJae Park
given filters directory Unlike their name and assumed purposes, {core,ops}_filters DAMOS sysfs directories are allowing installing any type of filters. As a first step for preventing such wrong installments, add information about filters that handled by what layer should the installed to the given filters directory in the DAMOS sysfs internal data structures. Link: https://lkml.kernel.org/r/20250305222733.59089-6-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon/sysfs-schemes: commit filters in {core,ops}_filters directoriesSeongJae Park
Connect user inputs for files under core_filters and ops_filters with DAMON, so that the files can really function. Becasuse {core,ops}_filters are easier to be managed in terms of expecting filters evaluation order, add filters in {core,ops}_filters before 'filters' directory. Link: https://lkml.kernel.org/r/20250305222733.59089-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon/sysfs-schemes: implement core_filters and ops_filters directoriesSeongJae Park
Implement two DAMOS sysfs directories for managing core and operations layer handled filters separately. Those are named as 'core_filters' and 'ops_filters', and have files hierarchy same to 'filters'. This commit is only populating and cleaning up the directories, not really connecting the files with DAMON. Following changes will make the connections. Link: https://lkml.kernel.org/r/20250305222733.59089-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/damon/sysfs-schemes: let damon_sysfs_scheme_set_filters() be used for ↵SeongJae Park
different named directories Patch series "mm/damon: add sysfs dirs for managing DAMOS filters based on handling layers". DAMOS filters are categorized into two groups based on their handling layers, namely core and operations layers. The categorization affects when each filter is evaluated. Core layer handled filters are evaluated first. The order meant nothing before, but introduction of allow filters changed that. DAMOS sysfs interface provides single directory for filters, namely 'filters'. Users can install any filters in any order there. DAMON will internally categorize those into core and operations layer handled ones, and apply the evaluation order rule. The ordering rule is clearly documented. But the interface could still confuse users since it is allowed to install filters on the directory in mixed ways. Add two sysfs directories for managing filters by handling layers, namely 'core_filters' and 'ops_filters' for filters that handled by core and operations layer, respectively. Those are avoided to be used for installing filters that not handled by the assumed layers. For backward compatibility, keep 'filters' directory with its curernt behavior. Filters installed in the directory will be added to DAMON after those of 'core_filters' and 'ops_filters' directories, with the automatic categorizations. Also recommend users to use the new directories while noticing 'filters' directory could be deprecated in future on the usage documents. Note that new directories provide all features that were provided with 'filters', but just in a more clear way. Deprecating 'filters' in future will hence not make an irreversal feature loss. This patch (of 8): damon_sysfs_scheme_set_filters() is using a hard-coded directory name, "filters". Refactor for general named directories of same files hierarchy, to use from upcoming changes for adding sibling directories having files same to those of "filters", and named as "core_filters" and "ops_filters". [arnd@arndb.deL avoid Wformat-security warning] Link: https://lkml.kernel.org/r/20250310135142.4176976-1-arnd@kernel.org Link: https://lkml.kernel.org/r/20250305222733.59089-1-sj@kernel.org Link: https://lkml.kernel.org/r/20250305222733.59089-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm/damon: implement a new DAMOS filter type for unmapped pagesSeongJae Park
Patch series "mm/damon: introduce DAMOS filter type for unmapped pages". User decides whether their memory will be mapped or unmapped. It implies that the two types of memory can have different characteristics and management requirements. Provide the DAMON-observaibility DAMOS-operation capability for the different types by introducing a new DAMOS filter type for unmapped pages. This patch (of 2): Implement yet another DAMOS filter type for unmapped pages on DAMON kernel API, and add support of it from the physical address space DAMON operations set (paddr). Since it is for only unmapped pages, support from the virtual address spaces DAMON operations set (vaddr) is not required. Link: https://lkml.kernel.org/r/20250219220146.133650-1-sj@kernel.org Link: https://lkml.kernel.org/r/20250219220146.133650-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm/damon/sysfs-schemes: add files for setting damos_filter->sz_rangeUsama Arif
Add min and max files for damon filters to let the userspace decide the min/max folio size to operate on. This will be needed to decide what folio sizes to give pa_stat for. Link: https://lkml.kernel.org/r/20250211124437.278873-3-usamaarif642@gmail.com Signed-off-by: Usama Arif <usamaarif642@gmail.com> Reviewed-by: SeongJae Park <sj@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm/damon: introduce DAMOS filter type hugepage_sizeUsama Arif
Patch series "mm/damon: add support for hugepage_size DAMOS filter", v5. hugepage_size DAMOS filter can be used to gather statistics to check if memory regions of specific access tempratures are backed by hugepages of a size in a specific range. This filter can help to observe and prove the effectivenes of different schemes for shrinking/collapsing hugepages. This patch (of 4): This is to gather statistics to check if memory regions of specific access tempratures are backed by pages of a size in a specific range. This filter can help to observe and prove the effectivenes of different schemes for shrinking/collapsing hugepages. [sj@kernel.org: add kernel-doc comment for damos_filter->sz_range] Link: https://lkml.kernel.org/r/20250218223058.52459-1-sj@kernel.org Link: https://lkml.kernel.org/r/20250211124437.278873-1-usamaarif642@gmail.com Link: https://lkml.kernel.org/r/20250211124437.278873-2-usamaarif642@gmail.com Signed-off-by: Usama Arif <usamaarif642@gmail.com> Reviewed-by: SeongJae Park <sj@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Usama Arif <usamaarif642@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/sysfs-schemes: add a file for setting damos_filter->allowSeongJae Park
Only kernel-space DAMON API users can use inclusive DAMOS filters. Add a sysfs file named 'allow' under DAMOS filter directory of DAMON sysfs interface, to let the user-space users use inclusive DAMOS filters. Link: https://lkml.kernel.org/r/20250109175126.57878-7-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon: add 'allow' argument to damos_new_filter()SeongJae Park
DAMON API users should set damos_filter->allow manually to use a DAMOS allow-filter, since damos_new_filter() unsets the field always. It is cumbersome and easy to mistake. Add an arugment for setting the field to damos_new_filter(). Link: https://lkml.kernel.org/r/20250109175126.57878-6-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/sysfs-schemes: expose per-region filter-passed bytesSeongJae Park
Per-region operations set-handled DAMOS filters passed memory size information is provided to only DAMON core API users. Further expose it to the user space by adding a new DAMON sysfs interface file under each scheme tried region directory. Link: https://lkml.kernel.org/r/20250106193401.109161-14-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/syfs-schemes: implement per-scheme filter-passed bytes statSeongJae Park
Add a new DAMON sysfs interface file under scheme stat directory, namely 'sz_ops_filter_passed'. It represents total bytes that passed region-internal DAMOS filters of the scheme that handled by the DAMON operations set layer. Link: https://lkml.kernel.org/r/20250106193401.109161-9-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/sysfs: remove unused code for schemes tried regions updateSeongJae Park
DAMON sysfs interface was using damon_callback with its own complicated synchronization logics to update DAMOS scheme applied regions directories and files. But it is replaced to use damos_walk(), and the additional synchronization logics are no more being used. Remove those. Link: https://lkml.kernel.org/r/20250103174400.54890-11-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/sysfs: use damos_walk() for update_schemes_tried_{bytes,regions}SeongJae Park
DAMON sysfs interface uses damon_callback with its own complicated synchronization facility to handle update_schemes_tried_bytes and update_schemes_tried_regions commands. But damos_walk() can support the use case without the additional synchronizations. Convert the code to use damos_walk() instead. Link: https://lkml.kernel.org/r/20250103174400.54890-10-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/sysfs: handle clear_schemes_tried_regions from DAMON sysfs contextSeongJae Park
DAMON sysfs interface handles clear_schemes_tried_regions request from the DAMON callback context (damon_sysfs_cmd_request_callback()), which is designed to be used for safe access to the related DAMON context internal data. But no DAMON context internal data is accessed for the work. Directly handle it from DAMON sysfs interface context, namely damon_sysfs_handle_cmd(). Link: https://lkml.kernel.org/r/20250103174400.54890-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/damon/sysfs-schemes: remove unnecessary schemes existence check in ↵SeongJae Park
damon_sysfs_schemes_clear_regions() Patch series "mm/damon: replace most damon_callback usages in sysfs with new core functions". DAMON provides damon_callback API that notifies monitoring events and allows safe access to damon_ctx internal data. The usage is simple. Users register and deregister callback functions for different monitoring events in damon_ctx. Then the DAMON worker thread (kdamond) of the damon_ctx calls back the registered functions on the events. It is designed in such simple way because it was sufficient for usages of DAMON at the early days. We also wanted to make it flexible so that API user code can implement any required additional features on top of damon_callback on their demands. As expected, more sophisticated usages have invented. Online updates of DAMON parameters and DAMOS auto-tuning inputs, and online retrieval of DAMOS statistics and tried regions information are such usages. Because damon_callback doesn't provide any explicit synchronization mechanism, the user ABIs for exposing such functionalities are implemented in asynchronous ways (DAMON_RECLAIM and DAMON_LRU_SORT}), or synchronous ways (DAMON_SYSFS) with additional synchronization mechanisms that built inside the ABI implementation, on top of damon_callback. So damon_callback is working as expected. However, the additional mechanisms built inside ABI on top of damon_callback is becoming somewhat too big and not easy to maintain. The additional mechanisms can be smaller and easier to maintain when implemented inside the core logic layer. Introduce two new DAMON core API, namely 'damon_call()' and 'damos_walk()'. The two functions support synchronous access to - damon_ctx internal data including DAMON parameters and monitoring results, and - DAMOS-specific data such as regions that each DAMOS action is applied, respectively. And replace most of damon_callback usages in DAMON sysfs interface with the new core API functions. damon_callback usage for online DAMON parameters tuning is not replaced in this series, since it has specific callback timing assumptions that require more works. Patch sequence ============== First two patches are fixups for simplifying the following changes. Those remove a unnecessary condition check and a synchronization, respectively. Third patch implements one of the new DAMON core APIs, namely damon_call(). Three patches replacing damon_callback usages in DAMON sysfs interface using damon_call() follow. Then, seventh and eighth patches introduces the other new DAMON API, damos_walk(), and document it on the design doc. Ninth patch replaces two damon_callback usages in DAMON sysfs interface using damos_walk(). The tenth patch finally cleans up code that no more being used. This patch (of 10): damon_sysfs_schemes_clear_regions() skips removing the scheme tried region directories only if the matching scheme is still ongoing. It is unnecessary check, since what users want is just removing the entire region directories. Remove the unnecessary check. Link: https://lkml.kernel.org/r/20250103174400.54890-1-sj@kernel.org Link: https://lkml.kernel.org/r/20250103174400.54890-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/sysfs-schemes: rename ↵SeongJae Park
*_set_{schemes,scheme_filters,quota_score,schemes}() The functions were for updating DAMON structs that may or may not be partially populated. Hence it was not for only adding items, but also removing unnecessary items and updating items in-place. A previous commit has changed the functions to assume the structs are not partially populated, and do only adding items. Make the names better explain the behavior. Link: https://lkml.kernel.org/r/20240618181809.82078-9-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/sysfs-schemes: remove unnecessary online tuning handling codeSeongJae Park
damon/sysfs-schemes.c contains code for handling of online DAMON parameters update edge cases. The logics are no more necessary since damon_commit_ctx() and damon_commit_quota_goals() takes care of the cases. Remove the unnecessary code. Link: https://lkml.kernel.org/r/20240618181809.82078-8-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/sysfs-schemes: use damos_commit_quota_goals()SeongJae Park
DAMON_SYSFS manually manipulates the DAMOS quota structs for online quotal goals parameter update. Since the struct contains not only input parameters but also internal status and operation results, it is not that simple. Now DAMON core layer provides a function for the usage, namely damon_commit_quota_goals(). Replace the manual manipulation logic with the function. The core layer function could have its own bugs, but this change removes a source of bugs. Link: https://lkml.kernel.org/r/20240618181809.82078-5-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/paddr: introduce DAMOS_MIGRATE_HOT action for promotionHyeongtak Ji
This patch introduces DAMOS_MIGRATE_HOT action, which is similar to DAMOS_MIGRATE_COLD, but proritizes hot pages. It migrates pages inside the given region to the 'target_nid' NUMA node in the sysfs. Here is one of the example usage of this 'migrate_hot' action. $ cd /sys/kernel/mm/damon/admin/kdamonds/<N> $ cat contexts/<N>/schemes/<N>/action migrate_hot $ echo 0 > contexts/<N>/schemes/<N>/target_nid $ echo commit > state $ numactl -p 2 ./hot_cold 500M 600M & $ numastat -c -p hot_cold Per-node process memory usage (in MBs) PID Node 0 Node 1 Node 2 Total -------------- ------ ------ ------ ----- 701 (hot_cold) 501 0 601 1101 Link: https://lkml.kernel.org/r/20240614030010.751-7-honggyu.kim@sk.com Signed-off-by: Hyeongtak Ji <hyeongtak.ji@sk.com> Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Gregory Price <gregory.price@memverge.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Rakie Kim <rakie.kim@sk.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/paddr: introduce DAMOS_MIGRATE_COLD action for demotionHonggyu Kim
This patch introduces DAMOS_MIGRATE_COLD action, which is similar to DAMOS_PAGEOUT, but migrate folios to the given 'target_nid' in the sysfs instead of swapping them out. The 'target_nid' sysfs knob informs the migration target node ID. Here is one of the example usage of this 'migrate_cold' action. $ cd /sys/kernel/mm/damon/admin/kdamonds/<N> $ cat contexts/<N>/schemes/<N>/action migrate_cold $ echo 2 > contexts/<N>/schemes/<N>/target_nid $ echo commit > state $ numactl -p 0 ./hot_cold 500M 600M & $ numastat -c -p hot_cold Per-node process memory usage (in MBs) PID Node 0 Node 1 Node 2 Total -------------- ------ ------ ------ ----- 701 (hot_cold) 501 0 601 1101 Since there are some common routines with pageout, many functions have similar logics between pageout and migrate cold. damon_pa_migrate_folio_list() is a minimized version of shrink_folio_list(). Link: https://lkml.kernel.org/r/20240614030010.751-6-honggyu.kim@sk.com Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Signed-off-by: Hyeongtak Ji <hyeongtak.ji@sk.com> Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Gregory Price <gregory.price@memverge.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Rakie Kim <rakie.kim@sk.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm/damon/sysfs-schemes: add target_nid on sysfs-schemesHyeongtak Ji
This patch adds target_nid under /sys/kernel/mm/damon/admin/kdamonds/<N>/contexts/<N>/schemes/<N>/ The 'target_nid' can be used as the destination node for DAMOS actions such as DAMOS_MIGRATE_{HOT,COLD} in the follow up patches. [sj@kernel.org: document target_nid file] Link: https://lkml.kernel.org/r/20240618213630.84846-3-sj@kernel.org Link: https://lkml.kernel.org/r/20240614030010.751-4-honggyu.kim@sk.com Signed-off-by: Hyeongtak Ji <hyeongtak.ji@sk.com> Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Gregory Price <gregory.price@memverge.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Rakie Kim <rakie.kim@sk.com> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-05mm/damon: add DAMOS filter type YOUNGSeongJae Park
Define yet another DAMOS filter type, YOUNG. Like anon and memcg, the type of filter will be applied to each page in the memory region, and see if the page is accessed since the last check. Based on the 'matching' parameter, the page is filtered out or in. Note that this commit is adding only the type definition. The implementation should be made by DAMON operations sets. A commit for the implementation on 'paddr' DAMON operations set will follow. Link: https://lkml.kernel.org/r/20240426195247.100306-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Tested-by: Honggyu Kim <honggyu.kim@sk.com> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/sysfs-schemes: support PSI-based quota auto-tuneSeongJae Park
Extend DAMON sysfs interface to support the PSI-based quota auto-tuning by adding a new file, 'target_metric' under the quota goal directory. Old users don't get any behavioral changes since the default value of the metric is 'user input'. Link: https://lkml.kernel.org/r/20240219194431.159606-15-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: support multiple metrics for quota goalSeongJae Park
DAMOS quota auto-tuning asks users to assess the current tuned quota and provide the feedback in a manual and repeated way. It allows users generate the feedback from a source that the kernel cannot access, and writing a script or a function for doing the manual and repeated feeding is not a big deal. However, additional works are additional works, and it could be more efficient if DAMOS could do the fetch itself, especially in case of DAMON sysfs interface use case, since it can avoid the context switches between the user-space and the kernel-space, though the overhead would be only trivial in most cases. Also in many cases, feedbacks could be made from kernel-accessible sources, such as PSI, CPU usage, etc. Make the quota goal to support multiple types of metrics including such ones. Link: https://lkml.kernel.org/r/20240219194431.159606-13-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: let goal specified with only target and current valuesSeongJae Park
DAMOS quota auto-tuning feature let users to set the goal by providing a function for getting the current score of the tuned quota. It allows flexible goal setup, but only simple user-set quota is currently being used. As a result, the only user of the DAMOS quota auto-tuning is using a silly void pointer casting based score value passing function. Simplify the interface and the user code by letting user directly set the target and the current value. Link: https://lkml.kernel.org/r/20240219194431.159606-12-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/sysfs: use only quota->goalsSeongJae Park
DAMON sysfs interface implements multiple quota auto-tuning goals on its level since the DAMOS core logic was supporting only single goal. Now the core logic supports multiple goals on its level. Update DAMON sysfs interface to reuse the core logic and drop unnecessary duplicated multiple goals implementation. Link: https://lkml.kernel.org/r/20240219194431.159606-10-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/core: split out quota goal related fields to a structSeongJae Park
'struct damos_quota' is not small now. Split out fields for quota goal to a separate struct for easier reading. Link: https://lkml.kernel.org/r/20240219194431.159606-8-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/sysfs: implement a kdamond command for updating schemes' effective ↵SeongJae Park
quotas Implement yet another kdamond 'state' file input command, namely 'update_schemes_effective_quotas'. If it is written, the 'effective_bytes' files of the kdamond will be updated to provide the current effective size quota of each scheme in bytes. Link: https://lkml.kernel.org/r/20240219194431.159606-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-23mm/damon/sysfs-schemes: implement quota effective_bytes fileSeongJae Park
DAMON sysfs interface allows users to set two types of quotas, namely time quota and size quota. DAMOS converts time quota to a size quota and use smaller one among the resulting two size quotas. The resulting effective size quota can be helpful for debugging and analysis, but not exposed to the user. The recently added feedback-driven quota auto-tuning is making it even more mysterious. Implement a DAMON sysfs interface read-only empty file, namely 'effective_bytes', under the quota goal DAMON sysfs directory. It will be extended to expose the effective quota to the end user. Link: https://lkml.kernel.org/r/20240219194431.159606-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/damon/sysfs: handle 'state' file inputs for every sampling interval if ↵SeongJae Park
possible DAMON sysfs interface need to access kdamond-touching data for some of kdamond user commands. It uses ->after_aggregation() kdamond callback to safely access the data in the case. It had to use the aggregation interval callback because that was the only callback that users can access complete monitoring results. Since patch series "mm/damon: provide pseudo-moving sum based access rate", which starts from commit 78fbfb155d20 ("mm/damon/core: define and use a dedicated function for region access rate update"), DAMON provides good-to-use quality moitoring results for every sampling interval. It aims to help users who need to quickly retrieve the monitoring results. When the aggregation interval is set too long and therefore waiting for the aggregation interval can degrade user experience, or when the access pattern is expected to be significantly changed[1] could be such cases. However, because DAMON sysfs interface is still handling the commands per aggregation interval, the end user cannot get the benefit. Update DAMON sysfs interface to handle kdamond commands for every sampling interval if applicable. Specifically, all kdamond data accessing commands except 'commit' command are applicable. [1] https://lore.kernel.org/r/20240129121316.GA9706@cuiyangpei Link: https://lkml.kernel.org/r/20240206025158.203097-1-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: xiongping1 <xiongping1@xiaomi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-20mm/damon/sysfs-schemes: handle schemes sysfs dir removal before ↵SeongJae Park
commit_schemes_quota_goals 'commit_schemes_quota_goals' command handler, damos_sysfs_set_quota_scores() assumes the number of schemes sysfs directory will be same to the number of schemes of the DAMON context. The assumption is wrong since users can remove schemes sysfs directories while DAMON is running. In the case, illegal memory accesses can happen. Fix it by checking the case. Link: https://lkml.kernel.org/r/20240213023633.124928-1-sj@kernel.org Fixes: d91beaa505a0 ("mm/damon/sysfs-schemes: implement a command for scheme quota goals only commit") Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-07mm/damon/sysfs-schemes: fix wrong DAMOS tried regions update timeout setupSeongJae Park
DAMON sysfs interface's update_schemes_tried_regions command has a timeout of two apply intervals of the DAMOS scheme. Having zero value DAMOS scheme apply interval means it will use the aggregation interval as the value. However, the timeout setup logic is mistakenly using the sampling interval insted of the aggregartion interval for the case. This could cause earlier-than-expected timeout of the command. Fix it. Link: https://lkml.kernel.org/r/20240202191956.88791-1-sj@kernel.org Fixes: 7d6fa31a2fd7 ("mm/damon/sysfs-schemes: add timeout for update_schemes_tried_regions") Signed-off-by: SeongJae Park <sj@kernel.org> Cc: <stable@vger.kernel.org> # 6.7.x Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-12mm/damon/sysfs-schemes: implement a command for scheme quota goals only commitSeongJae Park
To update DAMOS quota goals, users need to enter 'commit' command to the 'state' file of the kdamond, which applies not only the goals but entire inputs. It is inefficient. Implement yet another 'state' file input command for reading and committing only the scheme quota goals, namely 'commit_schemes_quota_goals'. Link: https://lkml.kernel.org/r/20231130023652.50284-5-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Gow <davidgow@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-12mm/damon/sysfs-schemes: commit damos quota goals user input to DAMOSSeongJae Park
Make DAMON sysfs interface to read the user inputs for DAMOS quota goals and pass those to DAMOS, so that the users can use the quota auto-tuning feature. It uses the DAMON sysfs interface's user input commit mechanism, which applies all user inputs for initial starting of DAMON and online input updates, which can be done by writing 'on' and 'commit' to the kdamond's 'state' file, respectively. In other words, the user should periodically write appropriate value to 'current_value' files and 'commit' command to the 'state' file. 'target_value' files could also be similarly updated at any time. Note that the interface is supporting multiple goals while the core logic supports only one goal. DAMON sysfs interface passes only best feedback among the given inputs, to avoid making DAMOS too aggressive. Link: https://lkml.kernel.org/r/20231130023652.50284-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Gow <davidgow@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-12mm/damon/sysfs-schemes: implement files for scheme quota goals setupSeongJae Park
Implement DAMON sysfs directories and files for the goals of DAMOS quota. Those allow users set multiple goals for their aim, with target values. Users can further enter the current score value for each goal as feedback for DAMOS. Note that this commit is implementing only the basic file operations, and not connecting the files with the DAMOS core logic. Hence writing something to the files makes no real effect. The following commit will connect the file operations and the core logic. Link: https://lkml.kernel.org/r/20231130023652.50284-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Gow <davidgow@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-06mm/damon/sysfs-schemes: add timeout for update_schemes_tried_regionsSeongJae Park
If a scheme is set to not applied to any monitoring target region for any reasons including the target access pattern, quota, filters, or watermarks, writing 'update_schemes_tried_regions' to 'state' DAMON sysfs file can indefinitely hang. Fix the case by implementing a timeout for the operation. The time limit is two apply intervals of each scheme. Link: https://lkml.kernel.org/r/20231124213840.39157-1-sj@kernel.org Fixes: 4d4e41b68299 ("mm/damon/sysfs-schemes: do not update tried regions more than one DAMON snapshot") Signed-off-by: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-11-15mm/damon/sysfs-schemes: handle tried region directory allocation failureSeongJae Park
DAMON sysfs interface's before_damos_apply callback (damon_sysfs_before_damos_apply()), which creates the DAMOS tried regions for each DAMOS action applied region, is not handling the allocation failure for the sysfs directory data. As a result, NULL pointer derefeence is possible. Fix it by handling the case. Link: https://lkml.kernel.org/r/20231106233408.51159-4-sj@kernel.org Fixes: f1d13cacabe1 ("mm/damon/sysfs: implement DAMOS tried regions update command") Signed-off-by: SeongJae Park <sj@kernel.org> Cc: <stable@vger.kernel.org> [6.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-11-15mm/damon/sysfs-schemes: handle tried regions sysfs directory allocation failureSeongJae Park
DAMOS tried regions sysfs directory allocation function (damon_sysfs_scheme_regions_alloc()) is not handling the memory allocation failure. In the case, the code will dereference NULL pointer. Handle the failure to avoid such invalid access. Link: https://lkml.kernel.org/r/20231106233408.51159-3-sj@kernel.org Fixes: 9277d0367ba1 ("mm/damon/sysfs-schemes: implement scheme region directory") Signed-off-by: SeongJae Park <sj@kernel.org> Cc: <stable@vger.kernel.org> [6.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18mm/damon/sysfs: avoid empty scheme tried regions for large apply intervalSeongJae Park
DAMON_SYSFS assumes all schemes will be applied for at least one DAMON monitoring results snapshot within one aggregation interval, or makes no sense to wait for it while DAMON is deactivated by the watermarks. That for deactivated status still makes sense, but the aggregation interval based assumption is invalid now because each scheme can has its own apply interval. For schemes having larger than the aggregation or watermarks check interval, DAMOS tried regions update request can be finished without the update. Avoid the case by explicitly checking the status of the schemes tried regions update and watermarks based DAMON deactivation. Link: https://lkml.kernel.org/r/20231012192256.33556-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18mm/damon/sysfs-schemes: do not update tried regions more than one DAMON snapshotSeongJae Park
Patch series "mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval". DAMOS tried regions update feature of DAMON sysfs interface is doing the update for one aggregation interval after the request is made. Since the per-scheme apply interval is supported, that behavior makes no much sense. That is, the tried regions directory will have regions from multiple DAMON monitoring results snapshots, or no region for apply intervals that much shorter than, or longer than the aggregation interval, respectively. Update the behavior to update the regions for each scheme for only its apply interval, and update the document. Since DAMOS apply interval is the aggregation by default, this change makes no visible behavioral difference to old users who don't explicitly set the apply intervals. Patches Sequence ---------------- The first two patches makes schemes of apply intervals that much shorter or longer than the aggregation interval to keep the maximum and minimum times for continuing the update. After the two patches, the update aligns with the each scheme's apply interval. Finally, the third patch updates the document to reflect the behavior. This patch (of 3): DAMON_SYSFS exposes every DAMON-found region that eligible for applying the scheme action for one aggregation interval. However, each DAMON-based operation scheme has its own apply interval. Hence, for a scheme that having its apply interval much smaller than the aggregation interval, DAMON_SYSFS will expose the scheme regions that applied to more than one DAMON monitoring results snapshots. Since the purpose of DAMON tried regions is exposing single snapshot, this makes no much sense. Track progress of each scheme's tried regions update and avoid the case. Link: https://lkml.kernel.org/r/20231012192256.33556-1-sj@kernel.org Link: https://lkml.kernel.org/r/20231012192256.33556-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04mm/damon/sysfs-schemes: support DAMOS apply intervalSeongJae Park
Update DAMON sysfs interface to support DAMOS apply intervals by adding a new file, 'apply_interval_us' in each scheme directory. Users can set and get the interval for each scheme in microseconds by writing to and reading from the file. Link: https://lkml.kernel.org/r/20230916020945.47296-7-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>