summaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)Author
2019-05-14mm/filemap.c: enable error injection at add_to_page_cache()Josef Bacik
Recently I messed up the error handling in filemap_fault() because of an unexpected ENOMEM (related to cgroup memory limits) in add_to_page_cache. Enable error injection at this point so I can add a testcase to xfstests to verify I don't mess this up again. [akpm@linux-foundation.org: include linux/error-injection.h] Link: http://lkml.kernel.org/r/20190403152604.14008-1-josef@toxicpanda.com Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/mmu_notifier: mmu_notifier_range_update_to_read_only() helperJérôme Glisse
Helper to test if a range is updated to read only (it is still valid to read from the range). This is useful for device driver or anyone who wish to optimize out update when they know that they already have the range map read only. Link: http://lkml.kernel.org/r/20190326164747.24405-9-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/mmu_notifier: use correct mmu_notifier events for each invalidationJérôme Glisse
This updates each existing invalidation to use the correct mmu notifier event that represent what is happening to the CPU page table. See the patch which introduced the events to see the rational behind this. Link: http://lkml.kernel.org/r/20190326164747.24405-7-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/mmu_notifier: contextual information for event triggering invalidationJérôme Glisse
CPU page table update can happens for many reasons, not only as a result of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as a result of kernel activities (memory compression, reclaim, migration, ...). Users of mmu notifier API track changes to the CPU page table and take specific action for them. While current API only provide range of virtual address affected by the change, not why the changes is happening. This patchset do the initial mechanical convertion of all the places that calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP event as well as the vma if it is know (most invalidation happens against a given vma). Passing down the vma allows the users of mmu notifier to inspect the new vma page protection. The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier should assume that every for the range is going away when that event happens. A latter patch do convert mm call path to use a more appropriate events for each call. This is done as 2 patches so that no call site is forgotten especialy as it uses this following coccinelle patch: %<---------------------------------------------------------------------- @@ identifier I1, I2, I3, I4; @@ static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1, +enum mmu_notifier_event event, +unsigned flags, +struct vm_area_struct *vma, struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... } @@ @@ -#define mmu_notifier_range_init(range, mm, start, end) +#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end) @@ expression E1, E3, E4; identifier I1; @@ <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, I1, I1->vm_mm, E3, E4) ...> @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(..., struct vm_area_struct *VMA, ...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN, VMA; @@ FN(...) { struct vm_area_struct *VMA; <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, VMA, E2, E3, E4) ...> } @@ expression E1, E2, E3, E4; identifier FN; @@ FN(...) { <... mmu_notifier_range_init(E1, +MMU_NOTIFY_UNMAP, 0, NULL, E2, E3, E4) ...> } ---------------------------------------------------------------------->% Applied with: spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place spatch --sp-file mmu-notifier.spatch --dir mm --in-place Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/mmu_notifier: convert user range->blockable to helper functionJérôme Glisse
Use the mmu_notifier_range_blockable() helper function instead of directly dereferencing the range->blockable field. This is done to make it easier to change the mmu_notifier range field. This patch is the outcome of the following coccinelle patch: %<------------------------------------------------------------------- @@ identifier I1, FN; @@ FN(..., struct mmu_notifier_range *I1, ...) { <... -I1->blockable +mmu_notifier_range_blockable(I1) ...> } ------------------------------------------------------------------->% spatch --in-place --sp-file blockable.spatch --dir . Link: http://lkml.kernel.org/r/20190326164747.24405-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Christian König <christian.koenig@amd.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Felix Kuehling <Felix.Kuehling@amd.com> Cc: Jason Gunthorpe <jgg@mellanox.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: convert various hmm_pfn_* to device_entry which is a better nameJérôme Glisse
Convert hmm_pfn_* to device_entry_* as here we are dealing with device driver specific entry format and hmm provide helpers to allow differents components (including HMM) to create/parse device entry. We keep wrapper with the old name so that we can convert driver to use the new API in stages in each device driver tree. This will get remove once all driver are converted. Link: http://lkml.kernel.org/r/20190403193318.16478-13-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: add a helper function that fault pages and map them to a deviceJérôme Glisse
This is a all in one helper that fault pages in a range and map them to a device so that every single device driver do not have to re-implement this common pattern. This is taken from ODP RDMA in preparation of ODP RDMA convertion. It will be use by nouveau and other drivers. [jglisse@redhat.com: Was using wrong field and wrong enum] Link: http://lkml.kernel.org/r/20190409175340.26614-1-jglisse@redhat.com Link: http://lkml.kernel.org/r/20190403193318.16478-12-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: allow to mirror vma of a file on a DAX backed filesystemJérôme Glisse
HMM mirror is a device driver helpers to mirror range of virtual address. It means that the process jobs running on the device can access the same virtual address as the CPU threads of that process. This patch adds support for mirroring mapping of file that are on a DAX block device (ie range of virtual address that is an mmap of a file in a filesystem on a DAX block device). There is no reason to not support such case when mirroring virtual address on a device. Note that unlike GUP code we do not take page reference hence when we back-off we have nothing to undo. [jglisse@redhat.com: move THP and hugetlbfs code path behind #if KCONFIG] Link: http://lkml.kernel.org/r/20190422163741.13029-1-jglisse@redhat.com Link: http://lkml.kernel.org/r/20190403193318.16478-10-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: mirror hugetlbfs (snapshoting, faulting and DMA mapping)Jérôme Glisse
HMM mirror is a device driver helpers to mirror range of virtual address. It means that the process jobs running on the device can access the same virtual address as the CPU threads of that process. This patch adds support for hugetlbfs mapping (ie range of virtual address that are mmap of a hugetlbfs). [rcampbell@nvidia.com: fix initial PFN for hugetlbfs pages] Link: http://lkml.kernel.org/r/20190419233536.8080-1-rcampbell@nvidia.com Link: http://lkml.kernel.org/r/20190403193318.16478-9-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: add default fault flags to avoid the need to pre-fill pfns arraysJérôme Glisse
The HMM mirror API can be use in two fashions. The first one where the HMM user coalesce multiple page faults into one request and set flags per pfns for of those faults. The second one where the HMM user want to pre-fault a range with specific flags. For the latter one it is a waste to have the user pre-fill the pfn arrays with a default flags value. This patch adds a default flags value allowing user to set them for a range without having to pre-fill the pfn array. Link: http://lkml.kernel.org/r/20190403193318.16478-8-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: improve driver API to work and wait over a rangeJérôme Glisse
A common use case for HMM mirror is user trying to mirror a range and before they could program the hardware it get invalidated by some core mm event. Instead of having user re-try right away to mirror the range provide a completion mechanism for them to wait for any active invalidation affecting the range. This also changes how hmm_range_snapshot() and hmm_range_fault() works by not relying on vma so that we can drop the mmap_sem when waiting and lookup the vma again on retry. Link: http://lkml.kernel.org/r/20190403193318.16478-7-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: improve and rename hmm_vma_fault() to hmm_range_fault()Jérôme Glisse
Minor optimization around hmm_pte_need_fault(). Rename for consistency between code, comments and documentation. Also improves the comments on all the possible returns values. Improve the function by returning the number of populated entries in pfns array. Link: http://lkml.kernel.org/r/20190403193318.16478-6-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: improve and rename hmm_vma_get_pfns() to hmm_range_snapshot()Jérôme Glisse
Rename for consistency between code, comments and documentation. Also improves the comments on all the possible returns values. Improve the function by returning the number of populated entries in pfns array. Link: http://lkml.kernel.org/r/20190403193318.16478-5-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: do not erase snapshot when a range is invalidatedJérôme Glisse
Users of HMM might be using the snapshot information to do preparatory step like dma mapping pages to a device before checking for invalidation through hmm_vma_range_done() so do not erase that information and assume users will do the right thing. Link: http://lkml.kernel.org/r/20190403193318.16478-4-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: use reference counting for HMM structJérôme Glisse
Every time I read the code to check that the HMM structure does not vanish before it should thanks to the many lock protecting its removal i get a headache. Switch to reference counting instead it is much easier to follow and harder to break. This also remove some code that is no longer needed with refcounting. Link: http://lkml.kernel.org/r/20190403193318.16478-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hmm: select mmu notifier when selecting HMMJérôme Glisse
To avoid random config build issue, select mmu notifier when HMM is selected. In any cases when HMM get selected it will be by users that will also wants the mmu notifier. Link: http://lkml.kernel.org/r/20190403193318.16478-2-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Acked-by: Balbir Singh <bsingharora@gmail.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14hugetlb: use same fault hash key for shared and private mappingsMike Kravetz
hugetlb uses a fault mutex hash table to prevent page faults of the same pages concurrently. The key for shared and private mappings is different. Shared keys off address_space and file index. Private keys off mm and virtual address. Consider a private mappings of a populated hugetlbfs file. A fault will map the page from the file and if needed do a COW to map a writable page. Hugetlbfs hole punch uses the fault mutex to prevent mappings of file pages. It uses the address_space file index key. However, private mappings will use a different key and could race with this code to map the file page. This causes problems (BUG) for the page cache remove code as it expects the page to be unmapped. A sample stack is: page dumped because: VM_BUG_ON_PAGE(page_mapped(page)) kernel BUG at mm/filemap.c:169! ... RIP: 0010:unaccount_page_cache_page+0x1b8/0x200 ... Call Trace: __delete_from_page_cache+0x39/0x220 delete_from_page_cache+0x45/0x70 remove_inode_hugepages+0x13c/0x380 ? __add_to_page_cache_locked+0x162/0x380 hugetlbfs_fallocate+0x403/0x540 ? _cond_resched+0x15/0x30 ? __inode_security_revalidate+0x5d/0x70 ? selinux_file_permission+0x100/0x130 vfs_fallocate+0x13f/0x270 ksys_fallocate+0x3c/0x80 __x64_sys_fallocate+0x1a/0x20 do_syscall_64+0x5b/0x180 entry_SYSCALL_64_after_hwframe+0x44/0xa9 There seems to be another potential COW issue/race with this approach of different private and shared keys as noted in commit 8382d914ebf7 ("mm, hugetlb: improve page-fault scalability"). Since every hugetlb mapping (even anon and private) is actually a file mapping, just use the address_space index key for all mappings. This results in potentially more hash collisions. However, this should not be the common case. Link: http://lkml.kernel.org/r/20190328234704.27083-3-mike.kravetz@oracle.com Link: http://lkml.kernel.org/r/20190412165235.t4sscoujczfhuiyt@linux-r8p5 Fixes: b5cec28d36f5 ("hugetlbfs: truncate_hugepages() takes a range of pages") Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Davidlohr Bueso <dbueso@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14hugetlbfs: on restore reserve error path retain subpool reservationMike Kravetz
When a huge page is allocated, PagePrivate() is set if the allocation consumed a reservation. When freeing a huge page, PagePrivate is checked. If set, it indicates the reservation should be restored. PagePrivate being set at free huge page time mostly happens on error paths. When huge page reservations are created, a check is made to determine if the mapping is associated with an explicitly mounted filesystem. If so, pages are also reserved within the filesystem. The default action when freeing a huge page is to decrement the usage count in any associated explicitly mounted filesystem. However, if the reservation is to be restored the reservation/use count within the filesystem should not be decrementd. Otherwise, a subsequent page allocation and free for the same mapping location will cause the file filesystem usage to go 'negative'. Filesystem Size Used Avail Use% Mounted on nodev 4.0G -4.0M 4.1G - /opt/hugepool To fix, when freeing a huge page do not adjust filesystem usage if PagePrivate() is set to indicate the reservation should be restored. I did not cc stable as the problem has been around since reserves were added to hugetlbfs and nobody has noticed. Link: http://lkml.kernel.org/r/20190328234704.27083-2-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/sparse.c: clean up obsolete code commentBaoquan He
The code comment above sparse_add_one_section() is obsolete and incorrect. Clean it up and write a new one. Link: http://lkml.kernel.org/r/20190329144250.14315-1-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Mukesh Ojha <mojha@codeaurora.org> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/swap.c: __pagevec_lru_add_fn: typo fixPeng Fan
There is no function named munlock_vma_pages(). Correct it to munlock_vma_page(). Link: http://lkml.kernel.org/r/20190402095609.27181-1-peng.fan@nxp.com Signed-off-by: Peng Fan <peng.fan@nxp.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mukesh Ojha <mojha@codeaurora.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/hugetlb: get rid of NODEMASK_ALLOCOscar Salvador
NODEMASK_ALLOC is used to allocate a nodemask bitmap, and it does it by first determining whether it should be allocated on the stack or dynamically, depending on NODES_SHIFT. Right now, it goes the dynamic path whenever the nodemask_t is above 32 bytes. Although we could bump it to a reasonable value, the largest a nodemask_t can get is 128 bytes, so since __nr_hugepages_store_common is called from a rather short stack we can just get rid of the NODEMASK_ALLOC call here. This reduces some code churn and complexity. Link: http://lkml.kernel.org/r/20190402133415.21983-1-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Alex Ghiti <alex@ghiti.fr> Cc: David Rientjes <rientjes@google.com> Cc: Jing Xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14hugetlbfs: fix potential over/underflow setting node specific nr_hugepagesMike Kravetz
The number of node specific huge pages can be set via a file such as: /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages When a node specific value is specified, the global number of huge pages must also be adjusted. This adjustment is calculated as the specified node specific value + (global value - current node value). If the node specific value provided by the user is large enough, this calculation could overflow an unsigned long leading to a smaller than expected number of huge pages. To fix, check the calculation for overflow. If overflow is detected, use ULONG_MAX as the requested value. This is inline with the user request to allocate as many huge pages as possible. It was also noticed that the above calculation was done outside the hugetlb_lock. Therefore, the values could be inconsistent and result in underflow. To fix, the calculation is moved within the routine set_max_huge_pages() where the lock is held. In addition, the code in __nr_hugepages_store_common() which tries to handle the case of not being able to allocate a node mask would likely result in incorrect behavior. Luckily, it is very unlikely we will ever take this path. If we do, simply return ENOMEM. Link: http://lkml.kernel.org/r/20190328220533.19884-1-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reported-by: Jing Xiangfeng <jingxiangfeng@huawei.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Alex Ghiti <alex@ghiti.fr> Cc: Jing Xiangfeng <jingxiangfeng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mem-hotplug: fix node spanned pages when we have a node with only ZONE_MOVABLELinxu Fang
342332e6a925 ("mm/page_alloc.c: introduce kernelcore=mirror option") and later patches rewrote the calculation of node spanned pages. e506b99696a2 ("mem-hotplug: fix node spanned pages when we have a movable node"), but the current code still has problems, When we have a node with only zone_movable and the node id is not zero, the size of node spanned pages is double added. That's because we have an empty normal zone, and zone_start_pfn or zone_end_pfn is not between arch_zone_lowest_possible_pfn and arch_zone_highest_possible_pfn, so we need to use clamp to constrain the range just like the commit <96e907d13602> (bootmem: Reimplement __absent_pages_in_range() using for_each_mem_pfn_range()). e.g. Zone ranges: DMA [mem 0x0000000000001000-0x0000000000ffffff] DMA32 [mem 0x0000000001000000-0x00000000ffffffff] Normal [mem 0x0000000100000000-0x000000023fffffff] Movable zone start for each node Node 0: 0x0000000100000000 Node 1: 0x0000000140000000 Early memory node ranges node 0: [mem 0x0000000000001000-0x000000000009efff] node 0: [mem 0x0000000000100000-0x00000000bffdffff] node 0: [mem 0x0000000100000000-0x000000013fffffff] node 1: [mem 0x0000000140000000-0x000000023fffffff] node 0 DMA spanned:0xfff present:0xf9e absent:0x61 node 0 DMA32 spanned:0xff000 present:0xbefe0 absent:0x40020 node 0 Normal spanned:0 present:0 absent:0 node 0 Movable spanned:0x40000 present:0x40000 absent:0 On node 0 totalpages(node_present_pages): 1048446 node_spanned_pages:1310719 node 1 DMA spanned:0 present:0 absent:0 node 1 DMA32 spanned:0 present:0 absent:0 node 1 Normal spanned:0x100000 present:0x100000 absent:0 node 1 Movable spanned:0x100000 present:0x100000 absent:0 On node 1 totalpages(node_present_pages): 2097152 node_spanned_pages:2097152 Memory: 6967796K/12582392K available (16388K kernel code, 3686K rwdata, 4468K rodata, 2160K init, 10444K bss, 5614596K reserved, 0K cma-reserved) It shows that the current memory of node 1 is double added. After this patch, the problem is fixed. node 0 DMA spanned:0xfff present:0xf9e absent:0x61 node 0 DMA32 spanned:0xff000 present:0xbefe0 absent:0x40020 node 0 Normal spanned:0 present:0 absent:0 node 0 Movable spanned:0x40000 present:0x40000 absent:0 On node 0 totalpages(node_present_pages): 1048446 node_spanned_pages:1310719 node 1 DMA spanned:0 present:0 absent:0 node 1 DMA32 spanned:0 present:0 absent:0 node 1 Normal spanned:0 present:0 absent:0 node 1 Movable spanned:0x100000 present:0x100000 absent:0 On node 1 totalpages(node_present_pages): 1048576 node_spanned_pages:1048576 memory: 6967796K/8388088K available (16388K kernel code, 3686K rwdata, 4468K rodata, 2160K init, 10444K bss, 1420292K reserved, 0K cma-reserved) Link: http://lkml.kernel.org/r/1554178276-10372-1-git-send-email-fanglinxu@huawei.com Signed-off-by: Linxu Fang <fanglinxu@huawei.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/vmscan: drop may_writepage and classzone_idx from direct reclaim begin ↵Yafang Shao
template There are three tracepoints using this template, which are mm_vmscan_direct_reclaim_begin, mm_vmscan_memcg_reclaim_begin, mm_vmscan_memcg_softlimit_reclaim_begin. Regarding mm_vmscan_direct_reclaim_begin, sc.may_writepage is !laptop_mode, that's a static setting, and reclaim_idx is derived from gfp_mask which is already show in this tracepoint. Regarding mm_vmscan_memcg_reclaim_begin, may_writepage is !laptop_mode too, and reclaim_idx is (MAX_NR_ZONES-1), which are both static value. mm_vmscan_memcg_softlimit_reclaim_begin is the same with mm_vmscan_memcg_reclaim_begin. So we can drop them all. Link: http://lkml.kernel.org/r/1553736322-32235-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: page_mkclean vs MADV_DONTNEED raceAneesh Kumar K.V
MADV_DONTNEED is handled with mmap_sem taken in read mode. We call page_mkclean without holding mmap_sem. MADV_DONTNEED implies that pages in the region are unmapped and subsequent access to the pages in that range is handled as a new page fault. This implies that if we don't have parallel access to the region when MADV_DONTNEED is run we expect those range to be unallocated. w.r.t page_mkclean() we need to make sure that we don't break the MADV_DONTNEED semantics. MADV_DONTNEED check for pmd_none without holding pmd_lock. This implies we skip the pmd if we temporarily mark pmd none. Avoid doing that while marking the page clean. Keep the sequence same for dax too even though we don't support MADV_DONTNEED for dax mapping The bug was noticed by code review and I didn't observe any failures w.r.t test run. This is similar to commit 58ceeb6bec86d9140f9d91d71a710e963523d063 Author: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Date: Thu Apr 13 14:56:26 2017 -0700 thp: fix MADV_DONTNEED vs. MADV_FREE race commit ced108037c2aa542b3ed8b7afd1576064ad1362a Author: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Date: Thu Apr 13 14:56:20 2017 -0700 thp: fix MADV_DONTNEED vs. numa balancing race Link: http://lkml.kernel.org/r/20190321040610.14226-1-aneesh.kumar@linux.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc:"Kirill A . Shutemov" <kirill@shutemov.name> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: introduce put_user_page*(), placeholder versionsJohn Hubbard
A discussion of the overall problem is below. As mentioned in patch 0001, the steps are to fix the problem are: 1) Provide put_user_page*() routines, intended to be used for releasing pages that were pinned via get_user_pages*(). 2) Convert all of the call sites for get_user_pages*(), to invoke put_user_page*(), instead of put_page(). This involves dozens of call sites, and will take some time. 3) After (2) is complete, use get_user_pages*() and put_user_page*() to implement tracking of these pages. This tracking will be separate from the existing struct page refcounting. 4) Use the tracking and identification of these pages, to implement special handling (especially in writeback paths) when the pages are backed by a filesystem. Overview ======== Some kernel components (file systems, device drivers) need to access memory that is specified via process virtual address. For a long time, the API to achieve that was get_user_pages ("GUP") and its variations. However, GUP has critical limitations that have been overlooked; in particular, GUP does not interact correctly with filesystems in all situations. That means that file-backed memory + GUP is a recipe for potential problems, some of which have already occurred in the field. GUP was first introduced for Direct IO (O_DIRECT), allowing filesystem code to get the struct page behind a virtual address and to let storage hardware perform a direct copy to or from that page. This is a short-lived access pattern, and as such, the window for a concurrent writeback of GUP'd page was small enough that there were not (we think) any reported problems. Also, userspace was expected to understand and accept that Direct IO was not synchronized with memory-mapped access to that data, nor with any process address space changes such as munmap(), mremap(), etc. Over the years, more GUP uses have appeared (virtualization, device drivers, RDMA) that can keep the pages they get via GUP for a long period of time (seconds, minutes, hours, days, ...). This long-term pinning makes an underlying design problem more obvious. In fact, there are a number of key problems inherent to GUP: Interactions with file systems ============================== File systems expect to be able to write back data, both to reclaim pages, and for data integrity. Allowing other hardware (NICs, GPUs, etc) to gain write access to the file memory pages means that such hardware can dirty the pages, without the filesystem being aware. This can, in some cases (depending on filesystem, filesystem options, block device, block device options, and other variables), lead to data corruption, and also to kernel bugs of the form: kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899! backtrace: ext4_writepage __writepage write_cache_pages ext4_writepages do_writepages __writeback_single_inode writeback_sb_inodes __writeback_inodes_wb wb_writeback wb_workfn process_one_work worker_thread kthread ret_from_fork ...which is due to the file system asserting that there are still buffer heads attached: ({ \ BUG_ON(!PagePrivate(page)); \ ((struct buffer_head *)page_private(page)); \ }) Dave Chinner's description of this is very clear: "The fundamental issue is that ->page_mkwrite must be called on every write access to a clean file backed page, not just the first one. How long the GUP reference lasts is irrelevant, if the page is clean and you need to dirty it, you must call ->page_mkwrite before it is marked writeable and dirtied. Every. Time." This is just one symptom of the larger design problem: real filesystems that actually write to a backing device, do not actually support get_user_pages() being called on their pages, and letting hardware write directly to those pages--even though that pattern has been going on since about 2005 or so. Long term GUP ============= Long term GUP is an issue when FOLL_WRITE is specified to GUP (so, a writeable mapping is created), and the pages are file-backed. That can lead to filesystem corruption. What happens is that when a file-backed page is being written back, it is first mapped read-only in all of the CPU page tables; the file system then assumes that nobody can write to the page, and that the page content is therefore stable. Unfortunately, the GUP callers generally do not monitor changes to the CPU pages tables; they instead assume that the following pattern is safe (it's not): get_user_pages() Hardware can keep a reference to those pages for a very long time, and write to it at any time. Because "hardware" here means "devices that are not a CPU", this activity occurs without any interaction with the kernel's file system code. for each page set_page_dirty put_page() In fact, the GUP documentation even recommends that pattern. Anyway, the file system assumes that the page is stable (nothing is writing to the page), and that is a problem: stable page content is necessary for many filesystem actions during writeback, such as checksum, encryption, RAID striping, etc. Furthermore, filesystem features like COW (copy on write) or snapshot also rely on being able to use a new page for as memory for that memory range inside the file. Corruption during write back is clearly possible here. To solve that, one idea is to identify pages that have active GUP, so that we can use a bounce page to write stable data to the filesystem. The filesystem would work on the bounce page, while any of the active GUP might write to the original page. This would avoid the stable page violation problem, but note that it is only part of the overall solution, because other problems remain. Other filesystem features that need to replace the page with a new one can be inhibited for pages that are GUP-pinned. This will, however, alter and limit some of those filesystem features. The only fix for that would be to require GUP users to monitor and respond to CPU page table updates. Subsystems such as ODP and HMM do this, for example. This aspect of the problem is still under discussion. Direct IO ========= Direct IO can cause corruption, if userspace does Direct-IO that writes to a range of virtual addresses that are mmap'd to a file. The pages written to are file-backed pages that can be under write back, while the Direct IO is taking place. Here, Direct IO races with a write back: it calls GUP before page_mkclean() has replaced the CPU pte with a read-only entry. The race window is pretty small, which is probably why years have gone by before we noticed this problem: Direct IO is generally very quick, and tends to finish up before the filesystem gets around to do anything with the page contents. However, it's still a real problem. The solution is to never let GUP return pages that are under write back, but instead, force GUP to take a write fault on those pages. That way, GUP will properly synchronize with the active write back. This does not change the required GUP behavior, it just avoids that race. Details ======= Introduces put_user_page(), which simply calls put_page(). This provides a way to update all get_user_pages*() callers, so that they call put_user_page(), instead of put_page(). Also introduces put_user_pages(), and a few dirty/locked variations, as a replacement for release_pages(), and also as a replacement for open-coded loops that release multiple pages. These may be used for subsequent performance improvements, via batching of pages to be released. This is the first step of fixing a problem (also described in [1] and [2]) with interactions between get_user_pages ("gup") and filesystems. Problem description: let's start with a bug report. Below, is what happens sometimes, under memory pressure, when a driver pins some pages via gup, and then marks those pages dirty, and releases them. Note that the gup documentation actually recommends that pattern. The problem is that the filesystem may do a writeback while the pages were gup-pinned, and then the filesystem believes that the pages are clean. So, when the driver later marks the pages as dirty, that conflicts with the filesystem's page tracking and results in a BUG(), like this one that I experienced: kernel BUG at /build/linux-fQ94TU/linux-4.4.0/fs/ext4/inode.c:1899! backtrace: ext4_writepage __writepage write_cache_pages ext4_writepages do_writepages __writeback_single_inode writeback_sb_inodes __writeback_inodes_wb wb_writeback wb_workfn process_one_work worker_thread kthread ret_from_fork ...which is due to the file system asserting that there are still buffer heads attached: ({ \ BUG_ON(!PagePrivate(page)); \ ((struct buffer_head *)page_private(page)); \ }) Dave Chinner's description of this is very clear: "The fundamental issue is that ->page_mkwrite must be called on every write access to a clean file backed page, not just the first one. How long the GUP reference lasts is irrelevant, if the page is clean and you need to dirty it, you must call ->page_mkwrite before it is marked writeable and dirtied. Every. Time." This is just one symptom of the larger design problem: real filesystems that actually write to a backing device, do not actually support get_user_pages() being called on their pages, and letting hardware write directly to those pages--even though that pattern has been going on since about 2005 or so. The steps are to fix it are: 1) (This patch): provide put_user_page*() routines, intended to be used for releasing pages that were pinned via get_user_pages*(). 2) Convert all of the call sites for get_user_pages*(), to invoke put_user_page*(), instead of put_page(). This involves dozens of call sites, and will take some time. 3) After (2) is complete, use get_user_pages*() and put_user_page*() to implement tracking of these pages. This tracking will be separate from the existing struct page refcounting. 4) Use the tracking and identification of these pages, to implement special handling (especially in writeback paths) when the pages are backed by a filesystem. [1] https://lwn.net/Articles/774411/ : "DMA and get_user_pages()" [2] https://lwn.net/Articles/753027/ : "The Trouble with get_user_pages()" Link: http://lkml.kernel.org/r/20190327023632.13307-2-jhubbard@nvidia.com Signed-off-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> [docs] Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Christoph Lameter <cl@linux.com> Tested-by: Ira Weiny <ira.weiny@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14hugetlb: allow to free gigantic pages regardless of the configurationAlexandre Ghiti
On systems without CONTIG_ALLOC activated but that support gigantic pages, boottime reserved gigantic pages can not be freed at all. This patch simply enables the possibility to hand back those pages to memory allocator. Link: http://lkml.kernel.org/r/20190327063626.18421-5-alex@ghiti.fr Signed-off-by: Alexandre Ghiti <alex@ghiti.fr> Acked-by: David S. Miller <davem@davemloft.net> [sparc] Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: simplify MEMORY_ISOLATION && COMPACTION || CMA into CONTIG_ALLOCAlexandre Ghiti
This condition allows to define alloc_contig_range, so simplify it into a more accurate naming. Link: http://lkml.kernel.org/r/20190327063626.18421-4-alex@ghiti.fr Signed-off-by: Alexandre Ghiti <alex@ghiti.fr> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/cma.c: fix crash on CMA allocation if bitmap allocation failsYue Hu
f022d8cb7ec7 ("mm: cma: Don't crash on allocation if CMA area can't be activated") fixes the crash issue when activation fails via setting cma->count as 0, same logic exists if bitmap allocation fails. Link: http://lkml.kernel.org/r/20190325081309.6004-1-zbestahu@gmail.com Signed-off-by: Yue Hu <huyue2@yulong.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Laura Abbott <labbott@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: memcontrol: quarantine the mem_cgroup_[node_]nr_lru_pages() APIJohannes Weiner
Only memcg_numa_stat_show() uses those wrappers and the lru bitmasks, group them together. Link: http://lkml.kernel.org/r/20190228163020.24100-7-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: memcontrol: push down mem_cgroup_nr_lru_pages()Johannes Weiner
mem_cgroup_nr_lru_pages() is just a convenience wrapper around memcg_page_state() that takes bitmasks of lru indexes and aggregates the counts for those. Replace callsites where the bitmask is simple enough with direct memcg_page_state() call(s). Link: http://lkml.kernel.org/r/20190228163020.24100-6-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: memcontrol: push down mem_cgroup_node_nr_lru_pages()Johannes Weiner
mem_cgroup_node_nr_lru_pages() is just a convenience wrapper around lruvec_page_state() that takes bitmasks of lru indexes and aggregates the counts for those. Replace callsites where the bitmask is simple enough with direct lruvec_page_state() calls. This removes the last extern user of mem_cgroup_node_nr_lru_pages(), so make that function private again, too. Link: http://lkml.kernel.org/r/20190228163020.24100-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: memcontrol: replace node summing with memcg_page_state()Johannes Weiner
Instead of adding up the node counters, use memcg_page_state() to get the memcg state directly. This is a bit cheaper and more stream-lined. Link: http://lkml.kernel.org/r/20190228163020.24100-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: memcontrol: replace zone summing with lruvec_page_state()Johannes Weiner
Instead of adding up the zone counters, use lruvec_page_state() to get the node state directly. This is a bit cheaper and more stream-lined. Link: http://lkml.kernel.org/r/20190228163020.24100-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/vmscan: add tracepoints for node reclaimYafang Shao
The page alloc fast path it may perform node reclaim, which may cause a latency spike. We should add tracepoint for this event, and also measure the latency it causes. So bellow two tracepoints are introduced, mm_vmscan_node_reclaim_begin mm_vmscan_node_reclaim_end Link: http://lkml.kernel.org/r/1551421452-5385-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Souptick Joarder <jrdr.linux@gmail.com> Cc: <shaoyafang@didiglobal.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/page_isolation.c: remove redundant pfn_valid_within() in __first_valid_page()Anshuman Khandual
pfn_valid_within() calls pfn_valid() when CONFIG_HOLES_IN_ZONE making it redundant for both definitions (w/wo CONFIG_MEMORY_HOTPLUG) of the helper pfn_to_online_page() which either calls pfn_valid() or pfn_valid_within(). pfn_valid_within() being 1 when !CONFIG_HOLES_IN_ZONE is irrelevant either way. This does not change functionality. Link: http://lkml.kernel.org/r/1553141595-26907-1-git-send-email-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/cma.c: fix the bitmap status to show failed allocation reasonYue Hu
Currently one bit in cma bitmap represents number of pages rather than one page, cma->count means cma size in pages. So to find available pages via find_next_zero_bit()/find_next_bit() we should use cma size not in pages but in bits although current free pages number is correct due to zero value of order_per_bit. Once order_per_bit is changed the bitmap status will be incorrect. The size input in cma_debug_show_areas() is not correct. It will affect the available pages at some position to debug the failure issue. This is an example with order_per_bit = 1 Before this change: [ 4.120060] cma: number of available pages: 1@93+4@108+7@121+7@137+7@153+7@169+7@185+7@201+3@213+3@221+3@229+3@237+3@245+3@253+3@261+3@269+3@277+3@285+3@293+3@301+3@309+3@317+3@325+19@333+15@369+512@512=> 638 free of 1024 total pages After this change: [ 4.143234] cma: number of available pages: 2@93+8@108+14@121+14@137+14@153+14@169+14@185+14@201+6@213+6@221+6@229+6@237+6@245+6@253+6@261+6@269+6@277+6@285+6@293+6@301+6@309+6@317+6@325+38@333+30@369=> 252 free of 1024 total pages Obviously the bitmap status before is incorrect. Link: http://lkml.kernel.org/r/20190320060829.9144-1-zbestahu@gmail.com Signed-off-by: Yue Hu <huyue2@yulong.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Laura Abbott <labbott@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/compaction.c: fix an undefined behaviourQian Cai
In a low-memory situation, cc->fast_search_fail can keep increasing as it is unable to find an available page to isolate in fast_isolate_freepages(). As the result, it could trigger an error below, so just compare with the maximum bits can be shifted first. UBSAN: Undefined behaviour in mm/compaction.c:1160:30 shift exponent 64 is too large for 64-bit type 'unsigned long' CPU: 131 PID: 1308 Comm: kcompactd1 Kdump: loaded Tainted: G W L 5.0.0+ #17 Call trace: dump_backtrace+0x0/0x450 show_stack+0x20/0x2c dump_stack+0xc8/0x14c __ubsan_handle_shift_out_of_bounds+0x7e8/0x8c4 compaction_alloc+0x2344/0x2484 unmap_and_move+0xdc/0x1dbc migrate_pages+0x274/0x1310 compact_zone+0x26ec/0x43bc kcompactd+0x15b8/0x1a24 kthread+0x374/0x390 ret_from_fork+0x10/0x18 [akpm@linux-foundation.org: code cleanup] Link: http://lkml.kernel.org/r/20190320203338.53367-1-cai@lca.pw Fixes: 70b44595eafe ("mm, compaction: use free lists to quickly locate a migration source") Signed-off-by: Qian Cai <cai@lca.pw> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/memory_hotplug.c: fix the wrong usage of N_HIGH_MEMORYBaoquan He
In node_states_check_changes_online(), N_HIGH_MEMORY is used to substitute ZONE_HIGHMEM directly. This is not right. N_HIGH_MEMORY is to mark the memory state of node. Here zone index is checked, which should be compared with 'ZONE_HIGHMEM' accordingly. Replace it with ZONE_HIGHMEM. This is a code cleanup - no known runtime effects. Link: http://lkml.kernel.org/r/20190320080732.14933-1-bhe@redhat.com Fixes: 8efe33f40f3e ("mm/memory_hotplug.c: simplify node_states_check_changes_online") Signed-off-by: Baoquan He <bhe@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm,memory_hotplug: drop redundant hugepage_migration_supported checkOscar Salvador
has_unmovable_pages() already checks whether the hugetlb page supports migration, so all non-migratable hugetlb pages should have been caught there. Let us drop the check from scan_movable_pages() as is redundant. Link: http://lkml.kernel.org/r/20190320152658.10855-3-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm,memory_hotplug: unlock 1GB-hugetlb on x86_64Oscar Salvador
On x86_64, 1GB-hugetlb pages could never be offlined due to the fact that hugepage_migration_supported() returned false for PUD_SHIFT. So whenever we wanted to offline a memblock containing a gigantic hugetlb page, we never got beyond has_unmovable_pages() check. This changed with [1], where now we also return true for PUD_SHIFT. After that patch, the check in has_unmovable_pages() and scan_movable_pages() returned true, but we still had a final barrier in do_migrate_range(): if (compound_order(head) > PFN_SECTION_SHIFT) { ret = -EBUSY; break; } This is not really nice, and we do not really need it. It is perfectly possible to migrate a gigantic page as long as another node has a spare gigantic page for us. In alloc_huge_page_nodemask(), we calculate the __real__ number of free pages, and if any, we try to dequeue one from another node. This all works fine when we do have another node with a spare gigantic page, but if that is not the case, alloc_huge_page_nodemask() ends up calling alloc_migrate_huge_page() which bails out if the wanted page is gigantic. That is mainly because finding a 1GB (or even 16GB on powerpc) contiguous memory is quite unlikely when the system has been running for a while. In that situation, we will keep looping forever because scan_movable_pages() will give us the same page and we will fail again because there is no node where we can dequeue a gigantic page from. This is not nice, and it has been raised that we might want to treat -ENOMEM as a fatal error in do_migrate_range(), but this has to be checked further. Anyway, I would tend say that this is the administrator's job, to make sure that the system can keep up with the memory to be offlined, so that would mean that if we want to use gigantic pages, make sure that the other nodes have at least enough gigantic pages to keep up in case we need to offline memory. Just for the sake of completeness, this is one of the tests done: # echo 1 > /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages # echo 1 > /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/nr_hugepages # cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages 1 # cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/free_hugepages 1 # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/nr_hugepages 1 # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/free_hugepages 1 (hugetlb1gb is a program that maps 1GB region using MAP_HUGE_1GB) # numactl -m 1 ./hugetlb1gb # cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/free_hugepages 0 # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/free_hugepages 1 # offline node1 memory # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/free_hugepages 0 [1] https://lore.kernel.org/patchwork/patch/998796/ Link: http://lkml.kernel.org/r/20190320152658.10855-2-osalvador@suse.de Signed-off-by: Oscar Salvador <osalvador@suse.de> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/gup: add FOLL_LONGTERM capability to GUP fastIra Weiny
DAX pages were previously unprotected from longterm pins when users called get_user_pages_fast(). Use the new FOLL_LONGTERM flag to check for DEVMAP pages and fall back to regular GUP processing if a DEVMAP page is encountered. [ira.weiny@intel.com: v3] Link: http://lkml.kernel.org/r/20190328084422.29911-5-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190328084422.29911-5-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190317183438.2057-5-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Hogan <jhogan@kernel.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Mike Marshall <hubcap@omnibond.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/gup: change GUP fast to use flags rather than a write 'bool'Ira Weiny
To facilitate additional options to get_user_pages_fast() change the singular write parameter to be gup_flags. This patch does not change any functionality. New functionality will follow in subsequent patches. Some of the get_user_pages_fast() call sites were unchanged because they already passed FOLL_WRITE or 0 for the write parameter. NOTE: It was suggested to change the ordering of the get_user_pages_fast() arguments to ensure that callers were converted. This breaks the current GUP call site convention of having the returned pages be the final parameter. So the suggestion was rejected. Link: http://lkml.kernel.org/r/20190328084422.29911-4-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190317183438.2057-4-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Mike Marshall <hubcap@omnibond.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Hogan <jhogan@kernel.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/gup: change write parameter to flags in fast walkIra Weiny
In order to support more options in the GUP fast walk, change the write parameter to flags throughout the call stack. This patch does not change functionality and passes FOLL_WRITE where write was previously used. Link: http://lkml.kernel.org/r/20190328084422.29911-3-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190317183438.2057-3-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Hogan <jhogan@kernel.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Mike Marshall <hubcap@omnibond.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm/gup: replace get_user_pages_longterm() with FOLL_LONGTERMIra Weiny
Pach series "Add FOLL_LONGTERM to GUP fast and use it". HFI1, qib, and mthca, use get_user_pages_fast() due to its performance advantages. These pages can be held for a significant time. But get_user_pages_fast() does not protect against mapping FS DAX pages. Introduce FOLL_LONGTERM and use this flag in get_user_pages_fast() which retains the performance while also adding the FS DAX checks. XDP has also shown interest in using this functionality.[1] In addition we change get_user_pages() to use the new FOLL_LONGTERM flag and remove the specialized get_user_pages_longterm call. [1] https://lkml.org/lkml/2019/3/19/939 "longterm" is a relative thing and at this point is probably a misnomer. This is really flagging a pin which is going to be given to hardware and can't move. I've thought of a couple of alternative names but I think we have to settle on if we are going to use FL_LAYOUT or something else to solve the "longterm" problem. Then I think we can change the flag to a better name. Secondly, it depends on how often you are registering memory. I have spoken with some RDMA users who consider MR in the performance path... For the overall application performance. I don't have the numbers as the tests for HFI1 were done a long time ago. But there was a significant advantage. Some of which is probably due to the fact that you don't have to hold mmap_sem. Finally, architecturally I think it would be good for everyone to use *_fast. There are patches submitted to the RDMA list which would allow the use of *_fast (they reworking the use of mmap_sem) and as soon as they are accepted I'll submit a patch to convert the RDMA core as well. Also to this point others are looking to use *_fast. As an aside, Jasons pointed out in my previous submission that *_fast and *_unlocked look very much the same. I agree and I think further cleanup will be coming. But I'm focused on getting the final solution for DAX at the moment. This patch (of 7): This patch starts a series which aims to support FOLL_LONGTERM in get_user_pages_fast(). Some callers who would like to do a longterm (user controlled pin) of pages with the fast variant of GUP for performance purposes. Rather than have a separate get_user_pages_longterm() call, introduce FOLL_LONGTERM and change the longterm callers to use it. This patch does not change any functionality. In the short term "longterm" or user controlled pins are unsafe for Filesystems and FS DAX in particular has been blocked. However, callers of get_user_pages_fast() were not "protected". FOLL_LONGTERM can _only_ be supported with get_user_pages[_fast]() as it requires vmas to determine if DAX is in use. NOTE: In merging with the CMA changes we opt to change the get_user_pages() call in check_and_migrate_cma_pages() to a call of __get_user_pages_locked() on the newly migrated pages. This makes the code read better in that we are calling __get_user_pages_locked() on the pages before and after a potential migration. As a side affect some of the interfaces are cleaned up but this is not the primary purpose of the series. In review[1] it was asked: <quote> > This I don't get - if you do lock down long term mappings performance > of the actual get_user_pages call shouldn't matter to start with. > > What do I miss? A couple of points. First "longterm" is a relative thing and at this point is probably a misnomer. This is really flagging a pin which is going to be given to hardware and can't move. I've thought of a couple of alternative names but I think we have to settle on if we are going to use FL_LAYOUT or something else to solve the "longterm" problem. Then I think we can change the flag to a better name. Second, It depends on how often you are registering memory. I have spoken with some RDMA users who consider MR in the performance path... For the overall application performance. I don't have the numbers as the tests for HFI1 were done a long time ago. But there was a significant advantage. Some of which is probably due to the fact that you don't have to hold mmap_sem. Finally, architecturally I think it would be good for everyone to use *_fast. There are patches submitted to the RDMA list which would allow the use of *_fast (they reworking the use of mmap_sem) and as soon as they are accepted I'll submit a patch to convert the RDMA core as well. Also to this point others are looking to use *_fast. As an asside, Jasons pointed out in my previous submission that *_fast and *_unlocked look very much the same. I agree and I think further cleanup will be coming. But I'm focused on getting the final solution for DAX at the moment. </quote> [1] https://lore.kernel.org/lkml/20190220180255.GA12020@iweiny-DESK2.sc.intel.com/T/#md6abad2569f3bf6c1f03686c8097ab6563e94965 [ira.weiny@intel.com: v3] Link: http://lkml.kernel.org/r/20190328084422.29911-2-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190328084422.29911-2-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190317183438.2057-2-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Rich Felker <dalias@libc.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: James Hogan <jhogan@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Mike Marshall <hubcap@omnibond.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: generalize putback scan functionsKirill Tkhai
This combines two similar functions move_active_pages_to_lru() and putback_inactive_pages() into single move_pages_to_lru(). This remove duplicate code and makes object file size smaller. Before: text data bss dec hex filename 57082 4732 128 61942 f1f6 mm/vmscan.o After: text data bss dec hex filename 55112 4600 128 59840 e9c0 mm/vmscan.o Note, that now we are checking for !page_evictable() coming from shrink_active_list(), which shouldn't change any behavior since that path works with evictable pages only. Link: http://lkml.kernel.org/r/155290129627.31489.8321971028677203248.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: remove pages_to_free argument of move_active_pages_to_lru()Kirill Tkhai
We may use input argument list as output argument too. This makes the function more similar to putback_inactive_pages(). Link: http://lkml.kernel.org/r/155290129079.31489.16180612694090502942.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: move nr_deactivate accounting to shrink_active_list()Kirill Tkhai
We know which LRU is not active. [chris@chrisdown.name: fix build on !CONFIG_MEMCG] Link: http://lkml.kernel.org/r/20190322150513.GA22021@chrisdown.name Link: http://lkml.kernel.org/r/155290128498.31489.18250485448913338607.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: Chris Down <chris@chrisdown.name> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: move recent_rotated pages calculation to shrink_inactive_list()Kirill Tkhai
Patch series "mm: Generalize putback functions"] putback_inactive_pages() and move_active_pages_to_lru() are almost similar, so this patchset merges them ina single function. This patch (of 4): The patch moves the calculation from putback_inactive_pages() to shrink_inactive_list(). This makes putback_inactive_pages() looking more similar to move_active_pages_to_lru(). To do that, we account activated pages in reclaim_stat::nr_activate. Since a page may change its LRU type from anon to file cache inside shrink_page_list() (see ClearPageSwapBacked()), we have to account pages for the both types. So, nr_activate becomes an array. Previously we used nr_activate to account PGACTIVATE events, but now we account them into pgactivate variable (since they are about number of pages in general, not about sum of hpage_nr_pages). Link: http://lkml.kernel.org/r/155290127956.31489.3393586616054413298.stgit@localhost.localdomain Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm, page_alloc: disallow __GFP_COMP in alloc_pages_exact()Vlastimil Babka
alloc_pages_exact*() allocates a page of sufficient order and then splits it to return only the number of pages requested. That makes it incompatible with __GFP_COMP, because compound pages cannot be split. As shown by [1] things may silently work until the requested size (possibly depending on user) stops being power of two. Then for CONFIG_DEBUG_VM, BUG_ON() triggers in split_page(). Without CONFIG_DEBUG_VM, consequences are unclear. There are several options here, none of them great: 1) Don't do the splitting when __GFP_COMP is passed, and return the whole compound page. However if caller then returns it via free_pages_exact(), that will be unexpected and the freeing actions there will be wrong. 2) Warn and remove __GFP_COMP from the flags. But the caller may have really wanted it, so things may break later somewhere. 3) Warn and return NULL. However NULL may be unexpected, especially for small sizes. This patch picks option 2, because as Michal Hocko put it: "callers wanted it" is much less probable than "caller is simply confused and more gfp flags is surely better than fewer". [1] https://lore.kernel.org/lkml/20181126002805.GI18977@shao2-debian/T/#u Link: http://lkml.kernel.org/r/0c6393eb-b28d-4607-c386-862a71f09de6@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Takashi Iwai <tiwai@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>