Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc fixes from Andrew Morton:
"33 hotfixes. 24 are cc:stable and the remainder address post-6.13
issues or aren't considered necessary for -stable kernels.
26 are for MM and 7 are for non-MM.
- "mm: memory_failure: unmap poisoned folio during migrate properly"
from Ma Wupeng fixes a couple of two year old bugs involving the
migration of hwpoisoned folios.
- "selftests/damon: three fixes for false results" from SeongJae Park
fixes three one year old bugs in the SAMON selftest code.
The remainder are singletons and doubletons. Please see the individual
changelogs for details"
* tag 'mm-hotfixes-stable-2025-03-08-16-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (33 commits)
mm/page_alloc: fix uninitialized variable
rapidio: add check for rio_add_net() in rio_scan_alloc_net()
rapidio: fix an API misues when rio_add_net() fails
MAINTAINERS: .mailmap: update Sumit Garg's email address
Revert "mm/page_alloc.c: don't show protection in zone's ->lowmem_reserve[] for empty zone"
mm: fix finish_fault() handling for large folios
mm: don't skip arch_sync_kernel_mappings() in error paths
mm: shmem: remove unnecessary warning in shmem_writepage()
userfaultfd: fix PTE unmapping stack-allocated PTE copies
userfaultfd: do not block on locking a large folio with raised refcount
mm: zswap: use ATOMIC_LONG_INIT to initialize zswap_stored_pages
mm: shmem: fix potential data corruption during shmem swapin
mm: fix kernel BUG when userfaultfd_move encounters swapcache
selftests/damon/damon_nr_regions: sort collected regiosn before checking with min/max boundaries
selftests/damon/damon_nr_regions: set ops update for merge results check to 100ms
selftests/damon/damos_quota: make real expectation of quota exceeds
include/linux/log2.h: mark is_power_of_2() with __always_inline
NFS: fix nfs_release_folio() to not deadlock via kcompactd writeback
mm, swap: avoid BUG_ON in relocate_cluster()
mm: swap: use correct step in loop to wait all clusters in wait_for_allocation()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab
Pull slab fix from Vlastimil Babka:
- Stable fix for kmem_cache_destroy() called from a WQ_MEM_RECLAIM
workqueue causing a warning due to the new kvfree_rcu_barrier()
(Uladzislau Rezki)
* tag 'slab-for-6.14-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab:
mm/slab/kvfree_rcu: Switch to WQ_MEM_RECLAIM wq
|
|
The fix to atomically read the pipe head and tail state when not holding
the pipe mutex has caused a number of headaches due to the size change
of the involved types.
It turns out that we don't have _that_ many places that access these
fields directly and were affected, but we have more than we strictly
should have, because our low-level helper functions have been designed
to have intimate knowledge of how the pipes work.
And as a result, that random noise of direct 'pipe->head' and
'pipe->tail' accesses makes it harder to pinpoint any actual potential
problem spots remaining.
For example, we didn't have a "is the pipe full" helper function, but
instead had a "given these pipe buffer indexes and this pipe size, is
the pipe full". That's because some low-level pipe code does actually
want that much more complicated interface.
But most other places literally just want a "is the pipe full" helper,
and not having it meant that those places ended up being unnecessarily
much too aware of this all.
It would have been much better if only the very core pipe code that
cared had been the one aware of this all.
So let's fix it - better late than never. This just introduces the
trivial wrappers for "is this pipe full or empty" and to get how many
pipe buffers are used, so that instead of writing
if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
the places that literally just want to know if a pipe is full can just
say
if (pipe_is_full(pipe))
instead. The existing trivial cases were converted with a 'sed' script.
This cuts down on the places that access pipe->head and pipe->tail
directly outside of the pipe code (and core splice code) quite a lot.
The splice code in particular still revels in doing the direct low-level
accesses, and the fuse fuse_dev_splice_write() code also seems a bit
unnecessarily eager to go very low-level, but it's at least a bit better
than it used to be.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The variable "compact_result" is not initialized in function
__alloc_pages_slowpath(). It causes should_compact_retry() to use an
uninitialized value.
Initialize variable "compact_result" with the value COMPACT_SKIPPED.
BUG: KMSAN: uninit-value in __alloc_pages_slowpath+0xee8/0x16c0 mm/page_alloc.c:4416
__alloc_pages_slowpath+0xee8/0x16c0 mm/page_alloc.c:4416
__alloc_frozen_pages_noprof+0xa4c/0xe00 mm/page_alloc.c:4752
alloc_pages_mpol+0x4cd/0x890 mm/mempolicy.c:2270
alloc_frozen_pages_noprof mm/mempolicy.c:2341 [inline]
alloc_pages_noprof mm/mempolicy.c:2361 [inline]
folio_alloc_noprof+0x1dc/0x350 mm/mempolicy.c:2371
filemap_alloc_folio_noprof+0xa6/0x440 mm/filemap.c:1019
__filemap_get_folio+0xb9a/0x1840 mm/filemap.c:1970
grow_dev_folio fs/buffer.c:1039 [inline]
grow_buffers fs/buffer.c:1105 [inline]
__getblk_slow fs/buffer.c:1131 [inline]
bdev_getblk+0x2c9/0xab0 fs/buffer.c:1431
getblk_unmovable include/linux/buffer_head.h:369 [inline]
ext4_getblk+0x3b7/0xe50 fs/ext4/inode.c:864
ext4_bread_batch+0x9f/0x7d0 fs/ext4/inode.c:933
__ext4_find_entry+0x1ebb/0x36c0 fs/ext4/namei.c:1627
ext4_lookup_entry fs/ext4/namei.c:1729 [inline]
ext4_lookup+0x189/0xb40 fs/ext4/namei.c:1797
__lookup_slow+0x538/0x710 fs/namei.c:1793
lookup_slow+0x6a/0xd0 fs/namei.c:1810
walk_component fs/namei.c:2114 [inline]
link_path_walk+0xf29/0x1420 fs/namei.c:2479
path_openat+0x30f/0x6250 fs/namei.c:3985
do_filp_open+0x268/0x600 fs/namei.c:4016
do_sys_openat2+0x1bf/0x2f0 fs/open.c:1428
do_sys_open fs/open.c:1443 [inline]
__do_sys_openat fs/open.c:1459 [inline]
__se_sys_openat fs/open.c:1454 [inline]
__x64_sys_openat+0x2a1/0x310 fs/open.c:1454
x64_sys_call+0x36f5/0x3c30 arch/x86/include/generated/asm/syscalls_64.h:258
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Local variable compact_result created at:
__alloc_pages_slowpath+0x66/0x16c0 mm/page_alloc.c:4218
__alloc_frozen_pages_noprof+0xa4c/0xe00 mm/page_alloc.c:4752
Link: https://lkml.kernel.org/r/tencent_ED1032321D6510B145CDBA8CBA0093178E09@qq.com
Reported-by: syzbot+0cfd5e38e96a5596f2b6@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=0cfd5e38e96a5596f2b6
Signed-off-by: Hao Zhang <zhanghao1@kylinos.cn>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
for empty zone"
Commit 96a5c186efff ("mm/page_alloc.c: don't show protection in zone's
->lowmem_reserve[] for empty zone") removes the protection of lower zones
from allocations targeting memory-less high zones. This had an unintended
impact on the pattern of reclaims because it makes the high-zone-targeted
allocation more likely to succeed in lower zones, which adds pressure to
said zones. I.e, the following corresponding checks in
zone_watermark_ok/zone_watermark_fast are less likely to trigger:
if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
return false;
As a result, we are observing an increase in reclaim and kswapd scans, due
to the increased pressure. This was initially observed as increased
latency in filesystem operations when benchmarking with fio on a machine
with some memory-less zones, but it has since been associated with
increased contention in locks related to memory reclaim. By reverting
this patch, the original performance was recovered on that machine.
The original commit was introduced as a clarification of the
/proc/zoneinfo output, so it doesn't seem there are usecases depending on
it, making the revert a simple solution.
For reference, I collected vmstat with and without this patch on a freshly
booted system running intensive randread io from an nvme for 5 minutes. I
got:
rpm-6.12.0-slfo.1.2 -> pgscan_kswapd 5629543865
Patched -> pgscan_kswapd 33580844
33M scans is similar to what we had in kernels predating this patch.
These numbers is fairly representative of the workload on this machine, as
measured in several runs. So we are talking about a 2-order of magnitude
increase.
Link: https://lkml.kernel.org/r/20250226032258.234099-1-krisman@suse.de
Fixes: 96a5c186efff ("mm/page_alloc.c: don't show protection in zone's ->lowmem_reserve[] for empty zone")
Signed-off-by: Gabriel Krisman Bertazi <krisman@suse.de>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When handling faults for anon shmem finish_fault() will attempt to install
ptes for the entire folio. Unfortunately if it encounters a single
non-pte_none entry in that range it will bail, even if the pte that
triggered the fault is still pte_none. When this situation happens the
fault will be retried endlessly never making forward progress.
This patch fixes this behavior and if it detects that a pte in the range
is not pte_none it will fall back to setting a single pte.
[bgeffon@google.com: tweak whitespace]
Link: https://lkml.kernel.org/r/20250227133236.1296853-1-bgeffon@google.com
Link: https://lkml.kernel.org/r/20250226162341.915535-1-bgeffon@google.com
Fixes: 43e027e41423 ("mm: memory: extend finish_fault() to support large folio")
Signed-off-by: Brian Geffon <bgeffon@google.com>
Suggested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reported-by: Marek Maslanka <mmaslanka@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickens <hughd@google.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Fix callers that previously skipped calling arch_sync_kernel_mappings() if
an error occurred during a pgtable update. The call is still required to
sync any pgtable updates that may have occurred prior to hitting the error
condition.
These are theoretical bugs discovered during code review.
Link: https://lkml.kernel.org/r/20250226121610.2401743-1-ryan.roberts@arm.com
Fixes: 2ba3e6947aed ("mm/vmalloc: track which page-table levels were modified")
Fixes: 0c95cba49255 ("mm: apply_to_pte_range warn and fail if a large pte is encountered")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christop Hellwig <hch@infradead.org>
Cc: "Uladzislau Rezki (Sony)" <urezki@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Although the scenario where shmem_writepage() is called with info->flags &
VM_LOCKED is unlikely to happen, it's still possible, as evidenced by
syzbot [1]. However, the warning in this case isn't necessary because the
situation is already handled correctly [2].
[2] https://lore.kernel.org/lkml/8afe1f7f-31a2-4fc0-1fbd-f9ba8a116fe3@google.com/
Link: https://lkml.kernel.org/r/20250226-20250221-warning-in-shmem_writepage-v1-1-5ad19420e17e@igalia.com
Fixes: 9a976f0c847b ("shmem: skip page split if we're not reclaiming")
Signed-off-by: Ricardo Cañuelo Navarro <rcn@igalia.com>
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Closes: https://lore.kernel.org/lkml/ZZ9PShXjKJkVelNm@xpf.sh.intel.com/ [1]
Suggested-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Florent Revest <revest@chromium.org>
Cc: Luis Chamberalin <mcgrof@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Current implementation of move_pages_pte() copies source and destination
PTEs in order to detect concurrent changes to PTEs involved in the move.
However these copies are also used to unmap the PTEs, which will fail if
CONFIG_HIGHPTE is enabled because the copies are allocated on the stack.
Fix this by using the actual PTEs which were kmap()ed.
Link: https://lkml.kernel.org/r/20250226185510.2732648-3-surenb@google.com
Fixes: adef440691ba ("userfaultfd: UFFDIO_MOVE uABI")
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reported-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Lokesh recently raised an issue about UFFDIO_MOVE getting into a deadlock
state when it goes into split_folio() with raised folio refcount.
split_folio() expects the reference count to be exactly mapcount +
num_pages_in_folio + 1 (see can_split_folio()) and fails with EAGAIN
otherwise.
If multiple processes are trying to move the same large folio, they raise
the refcount (all tasks succeed in that) then one of them succeeds in
locking the folio, while others will block in folio_lock() while keeping
the refcount raised. The winner of this race will proceed with calling
split_folio() and will fail returning EAGAIN to the caller and unlocking
the folio. The next competing process will get the folio locked and will
go through the same flow. In the meantime the original winner will be
retried and will block in folio_lock(), getting into the queue of waiting
processes only to repeat the same path. All this results in a livelock.
An easy fix would be to avoid waiting for the folio lock while holding
folio refcount, similar to madvise_free_huge_pmd() where folio lock is
acquired before raising the folio refcount. Since we lock and take a
refcount of the folio while holding the PTE lock, changing the order of
these operations should not break anything.
Modify move_pages_pte() to try locking the folio first and if that fails
and the folio is large then return EAGAIN without touching the folio
refcount. If the folio is single-page then split_folio() is not called,
so we don't have this issue. Lokesh has a reproducer [1] and I verified
that this change fixes the issue.
[1] https://github.com/lokeshgidra/uffd_move_ioctl_deadlock
[akpm@linux-foundation.org: reflow comment to 80 cols, s/end/end up/]
Link: https://lkml.kernel.org/r/20250226185510.2732648-2-surenb@google.com
Fixes: adef440691ba ("userfaultfd: UFFDIO_MOVE uABI")
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reported-by: Lokesh Gidra <lokeshgidra@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Acked-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This is currently the only atomic_long_t variable initialized by
ATOMIC_INIT macro found in the kernel by using `grep -r atomic_long_t |
grep ATOMIC_INIT`
This was introduced in 6e1fa555ec77, in which we modified the type of
zswap_stored_pages to atomic_long_t, but didn't change the initialization.
Link: https://lkml.kernel.org/r/20250226153253.19179-1-sunk67188@gmail.com
Fixes: 6e1fa555ec77 ("mm: zswap: modify zswap_stored_pages to be atomic_long_t")
Signed-off-by: Sun YangKai <sunk67188@gmail.com>
Acked-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Alex and Kairui reported some issues (system hang or data corruption) when
swapping out or swapping in large shmem folios. This is especially easy
to reproduce when the tmpfs is mount with the 'huge=within_size'
parameter. Thanks to Kairui's reproducer, the issue can be easily
replicated.
The root cause of the problem is that swap readahead may asynchronously
swap in order 0 folios into the swap cache, while the shmem mapping can
still store large swap entries. Then an order 0 folio is inserted into
the shmem mapping without splitting the large swap entry, which overwrites
the original large swap entry, leading to data corruption.
When getting a folio from the swap cache, we should split the large swap
entry stored in the shmem mapping if the orders do not match, to fix this
issue.
Link: https://lkml.kernel.org/r/2fe47c557e74e9df5fe2437ccdc6c9115fa1bf70.1740476943.git.baolin.wang@linux.alibaba.com
Fixes: 809bc86517cc ("mm: shmem: support large folio swap out")
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reported-by: Alex Xu (Hello71) <alex_y_xu@yahoo.ca>
Reported-by: Kairui Song <ryncsn@gmail.com>
Closes: https://lore.kernel.org/all/1738717785.im3r5g2vxc.none@localhost/
Tested-by: Kairui Song <kasong@tencent.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcow <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
userfaultfd_move() checks whether the PTE entry is present or a
swap entry.
- If the PTE entry is present, move_present_pte() handles folio
migration by setting:
src_folio->index = linear_page_index(dst_vma, dst_addr);
- If the PTE entry is a swap entry, move_swap_pte() simply copies
the PTE to the new dst_addr.
This approach is incorrect because, even if the PTE is a swap entry,
it can still reference a folio that remains in the swap cache.
This creates a race window between steps 2 and 4.
1. add_to_swap: The folio is added to the swapcache.
2. try_to_unmap: PTEs are converted to swap entries.
3. pageout: The folio is written back.
4. Swapcache is cleared.
If userfaultfd_move() occurs in the window between steps 2 and 4,
after the swap PTE has been moved to the destination, accessing the
destination triggers do_swap_page(), which may locate the folio in
the swapcache. However, since the folio's index has not been updated
to match the destination VMA, do_swap_page() will detect a mismatch.
This can result in two critical issues depending on the system
configuration.
If KSM is disabled, both small and large folios can trigger a BUG
during the add_rmap operation due to:
page_pgoff(folio, page) != linear_page_index(vma, address)
[ 13.336953] page: refcount:6 mapcount:1 mapping:00000000f43db19c index:0xffffaf150 pfn:0x4667c
[ 13.337520] head: order:2 mapcount:1 entire_mapcount:0 nr_pages_mapped:1 pincount:0
[ 13.337716] memcg:ffff00000405f000
[ 13.337849] anon flags: 0x3fffc0000020459(locked|uptodate|dirty|owner_priv_1|head|swapbacked|node=0|zone=0|lastcpupid=0xffff)
[ 13.338630] raw: 03fffc0000020459 ffff80008507b538 ffff80008507b538 ffff000006260361
[ 13.338831] raw: 0000000ffffaf150 0000000000004000 0000000600000000 ffff00000405f000
[ 13.339031] head: 03fffc0000020459 ffff80008507b538 ffff80008507b538 ffff000006260361
[ 13.339204] head: 0000000ffffaf150 0000000000004000 0000000600000000 ffff00000405f000
[ 13.339375] head: 03fffc0000000202 fffffdffc0199f01 ffffffff00000000 0000000000000001
[ 13.339546] head: 0000000000000004 0000000000000000 00000000ffffffff 0000000000000000
[ 13.339736] page dumped because: VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address))
[ 13.340190] ------------[ cut here ]------------
[ 13.340316] kernel BUG at mm/rmap.c:1380!
[ 13.340683] Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
[ 13.340969] Modules linked in:
[ 13.341257] CPU: 1 UID: 0 PID: 107 Comm: a.out Not tainted 6.14.0-rc3-gcf42737e247a-dirty #299
[ 13.341470] Hardware name: linux,dummy-virt (DT)
[ 13.341671] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 13.341815] pc : __page_check_anon_rmap+0xa0/0xb0
[ 13.341920] lr : __page_check_anon_rmap+0xa0/0xb0
[ 13.342018] sp : ffff80008752bb20
[ 13.342093] x29: ffff80008752bb20 x28: fffffdffc0199f00 x27: 0000000000000001
[ 13.342404] x26: 0000000000000000 x25: 0000000000000001 x24: 0000000000000001
[ 13.342575] x23: 0000ffffaf0d0000 x22: 0000ffffaf0d0000 x21: fffffdffc0199f00
[ 13.342731] x20: fffffdffc0199f00 x19: ffff000006210700 x18: 00000000ffffffff
[ 13.342881] x17: 6c203d2120296567 x16: 6170202c6f696c6f x15: 662866666f67705f
[ 13.343033] x14: 6567617028454741 x13: 2929737365726464 x12: ffff800083728ab0
[ 13.343183] x11: ffff800082996bf8 x10: 0000000000000fd7 x9 : ffff80008011bc40
[ 13.343351] x8 : 0000000000017fe8 x7 : 00000000fffff000 x6 : ffff8000829eebf8
[ 13.343498] x5 : c0000000fffff000 x4 : 0000000000000000 x3 : 0000000000000000
[ 13.343645] x2 : 0000000000000000 x1 : ffff0000062db980 x0 : 000000000000005f
[ 13.343876] Call trace:
[ 13.344045] __page_check_anon_rmap+0xa0/0xb0 (P)
[ 13.344234] folio_add_anon_rmap_ptes+0x22c/0x320
[ 13.344333] do_swap_page+0x1060/0x1400
[ 13.344417] __handle_mm_fault+0x61c/0xbc8
[ 13.344504] handle_mm_fault+0xd8/0x2e8
[ 13.344586] do_page_fault+0x20c/0x770
[ 13.344673] do_translation_fault+0xb4/0xf0
[ 13.344759] do_mem_abort+0x48/0xa0
[ 13.344842] el0_da+0x58/0x130
[ 13.344914] el0t_64_sync_handler+0xc4/0x138
[ 13.345002] el0t_64_sync+0x1ac/0x1b0
[ 13.345208] Code: aa1503e0 f000f801 910f6021 97ff5779 (d4210000)
[ 13.345504] ---[ end trace 0000000000000000 ]---
[ 13.345715] note: a.out[107] exited with irqs disabled
[ 13.345954] note: a.out[107] exited with preempt_count 2
If KSM is enabled, Peter Xu also discovered that do_swap_page() may
trigger an unexpected CoW operation for small folios because
ksm_might_need_to_copy() allocates a new folio when the folio index
does not match linear_page_index(vma, addr).
This patch also checks the swapcache when handling swap entries. If a
match is found in the swapcache, it processes it similarly to a present
PTE.
However, there are some differences. For example, the folio is no longer
exclusive because folio_try_share_anon_rmap_pte() is performed during
unmapping.
Furthermore, in the case of swapcache, the folio has already been
unmapped, eliminating the risk of concurrent rmap walks and removing the
need to acquire src_folio's anon_vma or lock.
Note that for large folios, in the swapcache handling path, we directly
return -EBUSY since split_folio() will return -EBUSY regardless if
the folio is under writeback or unmapped. This is not an urgent issue,
so a follow-up patch may address it separately.
[v-songbaohua@oppo.com: minor cleanup according to Peter Xu]
Link: https://lkml.kernel.org/r/20250226024411.47092-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20250226001400.9129-1-21cnbao@gmail.com
Fixes: adef440691ba ("userfaultfd: UFFDIO_MOVE uABI")
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Nicolas Geoffray <ngeoffray@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: ZhangPeng <zhangpeng362@huawei.com>
Cc: Tangquan Zheng <zhengtangquan@oppo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add PF_KCOMPACTD flag and current_is_kcompactd() helper to check for it so
nfs_release_folio() can skip calling nfs_wb_folio() from kcompactd.
Otherwise NFS can deadlock waiting for kcompactd enduced writeback which
recurses back to NFS (which triggers writeback to NFSD via NFS loopback
mount on the same host, NFSD blocks waiting for XFS's call to
__filemap_get_folio):
6070.550357] INFO: task kcompactd0:58 blocked for more than 4435 seconds.
{---
[58] "kcompactd0"
[<0>] folio_wait_bit+0xe8/0x200
[<0>] folio_wait_writeback+0x2b/0x80
[<0>] nfs_wb_folio+0x80/0x1b0 [nfs]
[<0>] nfs_release_folio+0x68/0x130 [nfs]
[<0>] split_huge_page_to_list_to_order+0x362/0x840
[<0>] migrate_pages_batch+0x43d/0xb90
[<0>] migrate_pages_sync+0x9a/0x240
[<0>] migrate_pages+0x93c/0x9f0
[<0>] compact_zone+0x8e2/0x1030
[<0>] compact_node+0xdb/0x120
[<0>] kcompactd+0x121/0x2e0
[<0>] kthread+0xcf/0x100
[<0>] ret_from_fork+0x31/0x40
[<0>] ret_from_fork_asm+0x1a/0x30
---}
[akpm@linux-foundation.org: fix build]
Link: https://lkml.kernel.org/r/20250225022002.26141-1-snitzer@kernel.org
Fixes: 96780ca55e3c ("NFS: fix up nfs_release_folio() to try to release the page")
Signed-off-by: Mike Snitzer <snitzer@kernel.org>
Cc: Anna Schumaker <anna.schumaker@oracle.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If allocation is racy with swapoff, we may call free_cluster for cluster
already in free list and trigger BUG_ON() as following:
Allocation Swapoff
cluster_alloc_swap_entry
...
/* may get a free cluster with offset */
offset = xxx;
if (offset)
ci = lock_cluster(si, offset);
...
del_from_avail_list(p, true);
si->flags &= ~SWP_WRITEOK;
alloc_swap_scan_cluster(si, ci, ...)
...
/* failed to alloc entry from free entry */
if (!cluster_alloc_range(...))
break;
...
/* add back a free cluster */
relocate_cluster(si, ci);
if (!ci->count)
free_cluster(si, ci);
VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
To prevent the BUG_ON(), call free_cluster() for free cluster to move the
cluster to tail of list.
Check cluster is not free before calling free_cluster() in
relocate_cluster() to avoid BUG_ON().
Link: https://lkml.kernel.org/r/20250222160850.505274-4-shikemeng@huaweicloud.com
Fixes: 3b644773eefd ("mm, swap: reduce contention on device lock")
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Use correct step in loop to wait all clusters in wait_for_allocation().
If we miss some cluster in wait_for_allocation(), use after free may occur
as follows:
shmem_writepage swapoff
folio_alloc_swap
get_swap_pages
scan_swap_map_slots
cluster_alloc_swap_entry
alloc_swap_scan_cluster
cluster_alloc_range
/* SWP_WRITEOK is valid */
if (!(si->flags & SWP_WRITEOK))
...
del_from_avail_list(p, true);
...
/* miss the cluster in shmem_writepage */
wait_for_allocation()
...
try_to_unuse()
memset(si->swap_map + start, usage, nr_pages);
swap_range_alloc(si, nr_pages);
ci->count += nr_pages;
/* return a valid entry */
...
exit_swap_address_space(p->type);
...
...
add_to_swap_cache
/* dereference swap_address_space(entry) which is NULL */
xas_lock_irq(&xas);
Link: https://lkml.kernel.org/r/20250222160850.505274-3-shikemeng@huaweicloud.com
Fixes: 9a0ddeb79880 ("mm, swap: hold a reference during scan and cleanup flag usage")
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If no swap cache is reclaimed, cluster taken off from full_clusters list
will not be put in any list and we can't reclaime HAS_CACHE slots
efficiently. Do relocate_cluster for such cluster to avoid inefficiency.
Link: https://lkml.kernel.org/r/20250224113910.522439-1-shikemeng@huaweicloud.com
Fixes: 3b644773eefd ("mm, swap: reduce contention on device lock")
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The remainder of vma_modify() relies upon the vmg state remaining pristine
after a merge attempt.
Usually this is the case, however in the one edge case scenario of a merge
attempt failing not due to the specified range being unmergeable, but
rather due to an out of memory error arising when attempting to commit the
merge, this assumption becomes untrue.
This results in vmg->start, end being modified, and thus the proceeding
attempts to split the VMA will be done with invalid start/end values.
Thankfully, it is likely practically impossible for us to hit this in
reality, as it would require a maple tree node pre-allocation failure that
would likely never happen due to it being 'too small to fail', i.e. the
kernel would simply keep retrying reclaim until it succeeded.
However, this scenario remains theoretically possible, and what we are
doing here is wrong so we must correct it.
The safest option is, when this scenario occurs, to simply give up the
operation. If we cannot allocate memory to merge, then we cannot allocate
memory to split either (perhaps moreso!).
Any scenario where this would be happening would be under very extreme
(likely fatal) memory pressure, so it's best we give up early.
So there is no doubt it is appropriate to simply bail out in this
scenario.
However, in general we must if at all possible never assume VMG state is
stable after a merge attempt, since merge operations update VMG fields.
As a result, additionally also make this clear by storing start, end in
local variables.
The issue was reported originally by syzkaller, and by Brad Spengler (via
an off-list discussion), and in both instances it manifested as a
triggering of the assert:
VM_WARN_ON_VMG(start >= end, vmg);
In vma_merge_existing_range().
It seems at least one scenario in which this is occurring is one in which
the merge being attempted is due to an madvise() across multiple VMAs
which looks like this:
start end
|<------>|
|----------|------|
| vma | next |
|----------|------|
When madvise_walk_vmas() is invoked, we first find vma in the above
(determining prev to be equal to vma as we are offset into vma), and then
enter the loop.
We determine the end of vma that forms part of the range we are
madvise()'ing by setting 'tmp' to this value:
/* Here vma->vm_start <= start < (end|vma->vm_end) */
tmp = vma->vm_end;
We then invoke the madvise() operation via visit(), letting prev get
updated to point to vma as part of the operation:
/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
error = visit(vma, &prev, start, tmp, arg);
Where the visit() function pointer in this instance is
madvise_vma_behavior().
As observed in syzkaller reports, it is ultimately madvise_update_vma()
that is invoked, calling vma_modify_flags_name() and vma_modify() in turn.
Then, in vma_modify(), we attempt the merge:
merged = vma_merge_existing_range(vmg);
if (merged)
return merged;
We invoke this with vmg->start, end set to start, tmp as such:
start tmp
|<--->|
|----------|------|
| vma | next |
|----------|------|
We find ourselves in the merge right scenario, but the one in which we
cannot remove the middle (we are offset into vma).
Here we have a special case where vmg->start, end get set to perhaps
unintuitive values - we intended to shrink the middle VMA and expand the
next.
This means vmg->start, end are set to... vma->vm_start, start.
Now the commit_merge() fails, and vmg->start, end are left like this.
This means we return to the rest of vma_modify() with vmg->start, end
(here denoted as start', end') set as:
start' end'
|<-->|
|----------|------|
| vma | next |
|----------|------|
So we now erroneously try to split accordingly. This is where the
unfortunate stuff begins.
We start with:
/* Split any preceding portion of the VMA. */
if (vma->vm_start < vmg->start) {
...
}
This doesn't trigger as we are no longer offset into vma at the start.
But then we invoke:
/* Split any trailing portion of the VMA. */
if (vma->vm_end > vmg->end) {
...
}
Which does get invoked. This leaves us with:
start' end'
|<-->|
|----|-----|------|
| vma| new | next |
|----|-----|------|
We then return ultimately to madvise_walk_vmas(). Here 'new' is unknown,
and putting back the values known in this function we are faced with:
start tmp end
| | |
|----|-----|------|
| vma| new | next |
|----|-----|------|
prev
Then:
start = tmp;
So:
start end
| |
|----|-----|------|
| vma| new | next |
|----|-----|------|
prev
The following code does not cause anything to happen:
if (prev && start < prev->vm_end)
start = prev->vm_end;
if (start >= end)
break;
And then we invoke:
if (prev)
vma = find_vma(mm, prev->vm_end);
Which is where a problem occurs - we don't know about 'new' so we
essentially look for the vma after prev, which is new, whereas we actually
intended to discover next!
So we end up with:
start end
| |
|----|-----|------|
|prev| vma | next |
|----|-----|------|
And we have successfully bypassed all of the checks madvise_walk_vmas()
has to ensure early exit should we end up moving out of range.
We loop around, and hit:
/* Here vma->vm_start <= start < (end|vma->vm_end) */
tmp = vma->vm_end;
Oh dear. Now we have:
tmp
start end
| |
|----|-----|------|
|prev| vma | next |
|----|-----|------|
We then invoke:
/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
error = visit(vma, &prev, start, tmp, arg);
Where start == tmp. That is, a zero range. This is not good.
We invoke visit() which is madvise_vma_behavior() which does not check the
range (for good reason, it assumes all checks have been done before it was
called), which in turn finally calls madvise_update_vma().
The madvise_update_vma() function calls vma_modify_flags_name() in turn,
which ultimately invokes vma_modify() with... start == end.
vma_modify() calls vma_merge_existing_range() and finally we hit:
VM_WARN_ON_VMG(start >= end, vmg);
Which triggers, as start == end.
While it might be useful to add some CONFIG_DEBUG_VM asserts in these
instances to catch this kind of error, since we have just eliminated any
possibility of that happening, we will add such asserts separately as to
reduce churn and aid backporting.
Link: https://lkml.kernel.org/r/20250222161952.41957-1-lorenzo.stoakes@oracle.com
Fixes: 2f1c6611b0a8 ("mm: introduce vma_merge_struct and abstract vma_merge(),vma_modify()")
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Tested-by: Brad Spengler <brad.spengler@opensrcsec.com>
Reported-by: Brad Spengler <brad.spengler@opensrcsec.com>
Reported-by: syzbot+46423ed8fa1f1148c6e4@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/linux-mm/6774c98f.050a0220.25abdd.0991.GAE@google.com/
Cc: Jann Horn <jannh@google.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since the introduction of commit c77c0a8ac4c52 ("mm/hugetlb: defer freeing
of huge pages if in non-task context"), which supports deferring the
freeing of hugetlb pages, the allocation of contiguous memory through
cma_alloc() may fail probabilistically.
In the CMA allocation process, if it is found that the CMA area is
occupied by in-use hugetlb folios, these in-use hugetlb folios need to be
migrated to another location. When there are no available hugetlb folios
in the free hugetlb pool during the migration of in-use hugetlb folios,
new folios are allocated from the buddy system. A temporary state is set
on the newly allocated folio. Upon completion of the hugetlb folio
migration, the temporary state is transferred from the new folios to the
old folios. Normally, when the old folios with the temporary state are
freed, it is directly released back to the buddy system. However, due to
the deferred freeing of hugetlb pages, the PageBuddy() check fails,
ultimately leading to the failure of cma_alloc().
Here is a simplified call trace illustrating the process:
cma_alloc()
->__alloc_contig_migrate_range() // Migrate in-use hugetlb folios
->unmap_and_move_huge_page()
->folio_putback_hugetlb() // Free old folios
->test_pages_isolated()
->__test_page_isolated_in_pageblock()
->PageBuddy(page) // Check if the page is in buddy
To resolve this issue, we have implemented a function named
wait_for_freed_hugetlb_folios(). This function ensures that the hugetlb
folios are properly released back to the buddy system after their
migration is completed. By invoking wait_for_freed_hugetlb_folios()
before calling PageBuddy(), we ensure that PageBuddy() will succeed.
Link: https://lkml.kernel.org/r/1739936804-18199-1-git-send-email-yangge1116@126.com
Fixes: c77c0a8ac4c5 ("mm/hugetlb: defer freeing of huge pages if in non-task context")
Signed-off-by: Ge Yang <yangge1116@126.com>
Reviewed-by: Muchun Song <muchun.song@linux.dev>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add a NULL check on the return value of swp_swap_info in __swap_duplicate
to prevent crashes caused by NULL pointer dereference.
The reason why swp_swap_info() returns NULL is unclear; it may be due
to CPU cache issues or DDR bit flips. The probability of this issue is
very small - it has been observed to occur approximately 1 in 500,000
times per week. The stack info we encountered is as follows:
Unable to handle kernel NULL pointer dereference at virtual address
0000000000000058
[RB/E]rb_sreason_str_set: sreason_str set null_pointer
Mem abort info:
ESR = 0x0000000096000005
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x05: level 1 translation fault
Data abort info:
ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 39-bit VAs, pgdp=00000008a80e5000
[0000000000000058] pgd=0000000000000000, p4d=0000000000000000,
pud=0000000000000000
Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
Skip md ftrace buffer dump for: 0x1609e0
...
pc : swap_duplicate+0x44/0x164
lr : copy_page_range+0x508/0x1e78
sp : ffffffc0f2a699e0
x29: ffffffc0f2a699e0 x28: ffffff8a5b28d388 x27: ffffff8b06603388
x26: ffffffdf7291fe70 x25: 0000000000000006 x24: 0000000000100073
x23: 00000000002d2d2f x22: 0000000000000008 x21: 0000000000000000
x20: 00000000002d2d2f x19: 18000000002d2d2f x18: ffffffdf726faec0
x17: 0000000000000000 x16: 0010000000000001 x15: 0040000000000001
x14: 0400000000000001 x13: ff7ffffffffffb7f x12: ffeffffffffffbff
x11: ffffff8a5c7e1898 x10: 0000000000000018 x9 : 0000000000000006
x8 : 1800000000000000 x7 : 0000000000000000 x6 : ffffff8057c01f10
x5 : 000000000000a318 x4 : 0000000000000000 x3 : 0000000000000000
x2 : 0000006daf200000 x1 : 0000000000000001 x0 : 18000000002d2d2f
Call trace:
swap_duplicate+0x44/0x164
copy_page_range+0x508/0x1e78
copy_process+0x1278/0x21cc
kernel_clone+0x90/0x438
__arm64_sys_clone+0x5c/0x8c
invoke_syscall+0x58/0x110
do_el0_svc+0x8c/0xe0
el0_svc+0x38/0x9c
el0t_64_sync_handler+0x44/0xec
el0t_64_sync+0x1a8/0x1ac
Code: 9139c35a 71006f3f 54000568 f8797b55 (f9402ea8)
---[ end trace 0000000000000000 ]---
Kernel panic - not syncing: Oops: Fatal exception
SMP: stopping secondary CPUs
The patch seems to only provide a workaround, but there are no more
effective software solutions to handle the bit flips problem. This path
will change the issue from a system crash to a process exception, thereby
reducing the impact on the entire machine.
akpm: this is probably a kernel bug, but this patch keeps the system
running and doesn't reduce that bug's debuggability.
Link: https://lkml.kernel.org/r/e223b0e6ba2f4924984b1917cc717bd5@honor.com
Signed-off-by: gao xu <gaoxu2@honor.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
kmsan_handle_dma() is used by virtio_ring() which can be built as a
module. kmsan_handle_dma() needs to be exported otherwise building the
virtio_ring fails.
Export kmsan_handle_dma for modules.
Link: https://lkml.kernel.org/r/20250218091411.MMS3wBN9@linutronix.de
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202502150634.qjxwSeJR-lkp@intel.com/
Fixes: 7ade4f10779c ("dma: kmsan: unpoison DMA mappings")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Macro Elver <elver@google.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit b15c87263a69 ("hwpoison, memory_hotplug: allow hwpoisoned pages to
be offlined) add page poison checks in do_migrate_range in order to make
offline hwpoisoned page possible by introducing isolate_lru_page and
try_to_unmap for hwpoisoned page. However folio lock must be held before
calling try_to_unmap. Add it to fix this problem.
Warning will be produced if folio is not locked during unmap:
------------[ cut here ]------------
kernel BUG at ./include/linux/swapops.h:400!
Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in:
CPU: 4 UID: 0 PID: 411 Comm: bash Tainted: G W 6.13.0-rc1-00016-g3c434c7ee82a-dirty #41
Tainted: [W]=WARN
Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
pstate: 40400005 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : try_to_unmap_one+0xb08/0xd3c
lr : try_to_unmap_one+0x3dc/0xd3c
Call trace:
try_to_unmap_one+0xb08/0xd3c (P)
try_to_unmap_one+0x3dc/0xd3c (L)
rmap_walk_anon+0xdc/0x1f8
rmap_walk+0x3c/0x58
try_to_unmap+0x88/0x90
unmap_poisoned_folio+0x30/0xa8
do_migrate_range+0x4a0/0x568
offline_pages+0x5a4/0x670
memory_block_action+0x17c/0x374
memory_subsys_offline+0x3c/0x78
device_offline+0xa4/0xd0
state_store+0x8c/0xf0
dev_attr_store+0x18/0x2c
sysfs_kf_write+0x44/0x54
kernfs_fop_write_iter+0x118/0x1a8
vfs_write+0x3a8/0x4bc
ksys_write+0x6c/0xf8
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x44/0x100
el0_svc_common.constprop.0+0x40/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x30/0xd0
el0t_64_sync_handler+0xc8/0xcc
el0t_64_sync+0x198/0x19c
Code: f9407be0 b5fff320 d4210000 17ffff97 (d4210000)
---[ end trace 0000000000000000 ]---
Link: https://lkml.kernel.org/r/20250217014329.3610326-4-mawupeng1@huawei.com
Fixes: b15c87263a69 ("hwpoison, memory_hotplug: allow hwpoisoned pages to be offlined")
Signed-off-by: Ma Wupeng <mawupeng1@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If a folio has an increased reference count, folio_try_get() will acquire
it, perform necessary operations, and then release it. In the case of a
poisoned folio without an elevated reference count (which is unlikely for
memory-failure), folio_try_get() will simply bypass it.
Therefore, relocate the folio_try_get() function, responsible for checking
and acquiring this reference count at first.
Link: https://lkml.kernel.org/r/20250217014329.3610326-3-mawupeng1@huawei.com
Signed-off-by: Ma Wupeng <mawupeng1@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: memory_failure: unmap poisoned folio during migrate
properly", v3.
Fix two bugs during folio migration if the folio is poisoned.
This patch (of 3):
Commit 6da6b1d4a7df ("mm/hwpoison: convert TTU_IGNORE_HWPOISON to
TTU_HWPOISON") introduce TTU_HWPOISON to replace TTU_IGNORE_HWPOISON in
order to stop send SIGBUS signal when accessing an error page after a
memory error on a clean folio. However during page migration, anon folio
must be set with TTU_HWPOISON during unmap_*(). For pagecache we need
some policy just like the one in hwpoison_user_mappings to set this flag.
So move this policy from hwpoison_user_mappings to unmap_poisoned_folio to
handle this warning properly.
Warning will be produced during unamp poison folio with the following log:
------------[ cut here ]------------
WARNING: CPU: 1 PID: 365 at mm/rmap.c:1847 try_to_unmap_one+0x8fc/0xd3c
Modules linked in:
CPU: 1 UID: 0 PID: 365 Comm: bash Tainted: G W 6.13.0-rc1-00018-gacdb4bbda7ab #42
Tainted: [W]=WARN
Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
pstate: 20400005 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : try_to_unmap_one+0x8fc/0xd3c
lr : try_to_unmap_one+0x3dc/0xd3c
Call trace:
try_to_unmap_one+0x8fc/0xd3c (P)
try_to_unmap_one+0x3dc/0xd3c (L)
rmap_walk_anon+0xdc/0x1f8
rmap_walk+0x3c/0x58
try_to_unmap+0x88/0x90
unmap_poisoned_folio+0x30/0xa8
do_migrate_range+0x4a0/0x568
offline_pages+0x5a4/0x670
memory_block_action+0x17c/0x374
memory_subsys_offline+0x3c/0x78
device_offline+0xa4/0xd0
state_store+0x8c/0xf0
dev_attr_store+0x18/0x2c
sysfs_kf_write+0x44/0x54
kernfs_fop_write_iter+0x118/0x1a8
vfs_write+0x3a8/0x4bc
ksys_write+0x6c/0xf8
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x44/0x100
el0_svc_common.constprop.0+0x40/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x30/0xd0
el0t_64_sync_handler+0xc8/0xcc
el0t_64_sync+0x198/0x19c
---[ end trace 0000000000000000 ]---
[mawupeng1@huawei.com: unmap_poisoned_folio(): remove shadowed local `mapping', per Miaohe]
Link: https://lkml.kernel.org/r/20250219060653.3849083-1-mawupeng1@huawei.com
Link: https://lkml.kernel.org/r/20250217014329.3610326-1-mawupeng1@huawei.com
Link: https://lkml.kernel.org/r/20250217014329.3610326-2-mawupeng1@huawei.com
Fixes: 6da6b1d4a7df ("mm/hwpoison: convert TTU_IGNORE_HWPOISON to TTU_HWPOISON")
Signed-off-by: Ma Wupeng <mawupeng1@huawei.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Ma Wupeng <mawupeng1@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently kvfree_rcu() APIs use a system workqueue which is
"system_unbound_wq" to driver RCU machinery to reclaim a memory.
Recently, it has been noted that the following kernel warning can
be observed:
<snip>
workqueue: WQ_MEM_RECLAIM nvme-wq:nvme_scan_work is flushing !WQ_MEM_RECLAIM events_unbound:kfree_rcu_work
WARNING: CPU: 21 PID: 330 at kernel/workqueue.c:3719 check_flush_dependency+0x112/0x120
Modules linked in: intel_uncore_frequency(E) intel_uncore_frequency_common(E) skx_edac(E) ...
CPU: 21 UID: 0 PID: 330 Comm: kworker/u144:6 Tainted: G E 6.13.2-0_g925d379822da #1
Hardware name: Wiwynn Twin Lakes MP/Twin Lakes Passive MP, BIOS YMM20 02/01/2023
Workqueue: nvme-wq nvme_scan_work
RIP: 0010:check_flush_dependency+0x112/0x120
Code: 05 9a 40 14 02 01 48 81 c6 c0 00 00 00 48 8b 50 18 48 81 c7 c0 00 00 00 48 89 f9 48 ...
RSP: 0018:ffffc90000df7bd8 EFLAGS: 00010082
RAX: 000000000000006a RBX: ffffffff81622390 RCX: 0000000000000027
RDX: 00000000fffeffff RSI: 000000000057ffa8 RDI: ffff88907f960c88
RBP: 0000000000000000 R08: ffffffff83068e50 R09: 000000000002fffd
R10: 0000000000000004 R11: 0000000000000000 R12: ffff8881001a4400
R13: 0000000000000000 R14: ffff88907f420fb8 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88907f940000(0000) knlGS:0000000000000000
CR2: 00007f60c3001000 CR3: 000000107d010005 CR4: 00000000007726f0
PKRU: 55555554
Call Trace:
<TASK>
? __warn+0xa4/0x140
? check_flush_dependency+0x112/0x120
? report_bug+0xe1/0x140
? check_flush_dependency+0x112/0x120
? handle_bug+0x5e/0x90
? exc_invalid_op+0x16/0x40
? asm_exc_invalid_op+0x16/0x20
? timer_recalc_next_expiry+0x190/0x190
? check_flush_dependency+0x112/0x120
? check_flush_dependency+0x112/0x120
__flush_work.llvm.1643880146586177030+0x174/0x2c0
flush_rcu_work+0x28/0x30
kvfree_rcu_barrier+0x12f/0x160
kmem_cache_destroy+0x18/0x120
bioset_exit+0x10c/0x150
disk_release.llvm.6740012984264378178+0x61/0xd0
device_release+0x4f/0x90
kobject_put+0x95/0x180
nvme_put_ns+0x23/0xc0
nvme_remove_invalid_namespaces+0xb3/0xd0
nvme_scan_work+0x342/0x490
process_scheduled_works+0x1a2/0x370
worker_thread+0x2ff/0x390
? pwq_release_workfn+0x1e0/0x1e0
kthread+0xb1/0xe0
? __kthread_parkme+0x70/0x70
ret_from_fork+0x30/0x40
? __kthread_parkme+0x70/0x70
ret_from_fork_asm+0x11/0x20
</TASK>
---[ end trace 0000000000000000 ]---
<snip>
To address this switch to use of independent WQ_MEM_RECLAIM
workqueue, so the rules are not violated from workqueue framework
point of view.
Apart of that, since kvfree_rcu() does reclaim memory it is worth
to go with WQ_MEM_RECLAIM type of wq because it is designed for
this purpose.
Fixes: 6c6c47b063b5 ("mm, slab: call kvfree_rcu_barrier() from kmem_cache_destroy()"),
Reported-by: Keith Busch <kbusch@kernel.org>
Closes: https://lore.kernel.org/all/Z7iqJtCjHKfo8Kho@kbusch-mbp/
Cc: stable@vger.kernel.org
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Joel Fernandes <joelagnelf@nvidia.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"Ryan's been hard at work finding and fixing mm bugs in the arm64 code,
so here's a small crop of fixes for -rc5.
The main changes are to fix our zapping of non-present PTEs for
hugetlb entries created using the contiguous bit in the page-table
rather than a block entry at the level above. Prior to these fixes, we
were pulling the contiguous bit back out of the PTE in order to
determine the size of the hugetlb page but this is clearly bogus if
the thing isn't present and consequently both the clearing of the
PTE(s) and the TLB invalidation were unreliable.
Although the problem was found by code inspection, we really don't
want this sitting around waiting to trigger and the changes are CC'd
to stable accordingly.
Note that the diffstat looks a lot worse than it really is;
huge_ptep_get_and_clear() now takes a size argument from the core code
and so all the arch implementations of that have been updated in a
pretty mechanical fashion.
- Fix a sporadic boot failure due to incorrect randomization of the
linear map on systems that support it
- Fix the zapping (both clearing the entries *and* invalidating the
TLB) of hugetlb PTEs constructed using the contiguous bit"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: hugetlb: Fix flush_hugetlb_tlb_range() invalidation level
arm64: hugetlb: Fix huge_ptep_get_and_clear() for non-present ptes
mm: hugetlb: Add huge page size param to huge_ptep_get_and_clear()
arm64/mm: Fix Boot panic on Ampere Altra
|
|
In order to fix a bug, arm64 needs to be told the size of the huge page
for which the huge_pte is being cleared in huge_ptep_get_and_clear().
Provide for this by adding an `unsigned long sz` parameter to the
function. This follows the same pattern as huge_pte_clear() and
set_huge_pte_at().
This commit makes the required interface modifications to the core mm as
well as all arches that implement this function (arm64, loongarch, mips,
parisc, powerpc, riscv, s390, sparc). The actual arm64 bug will be fixed
in a separate commit.
Cc: stable@vger.kernel.org
Fixes: 66b3923a1a0f ("arm64: hugetlb: add support for PTE contiguous bit")
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com> # riscv
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com> # s390
Link: https://lore.kernel.org/r/20250226120656.2400136-2-ryan.roberts@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs fixes from Christian Brauner:
- Use __readahead_folio() in fuse again to fix a UAF issue
when using splice
- Remove d_op->d_delete method from pidfs
- Remove d_op->d_delete method from nsfs
- Simplify iomap_dio_bio_iter()
- Fix a UAF in ovl_dentry_update_reval
- Fix a miscalulated file range for filemap_fdatawrite_range_kick()
- Don't skip skip dirty page in folio_unmap_invalidate()
* tag 'vfs-6.14-rc5.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
iomap: Minor code simplification in iomap_dio_bio_iter()
nsfs: remove d_op->d_delete
pidfs: remove d_op->d_delete
mm/truncate: don't skip dirty page in folio_unmap_invalidate()
mm/filemap: fix miscalculated file range for filemap_fdatawrite_range_kick()
fuse: don't truncate cached, mutated symlink
ovl: fix UAF in ovl_dentry_update_reval by moving dput() in ovl_link_up
fuse: revert back to __readahead_folio() for readahead
|
|
... otherwise this is a behavior change for the previous callers of
invalidate_complete_folio2(), e.g. the page invalidation routine.
Fixes: 4a9e23159fd3 ("mm/truncate: add folio_unmap_invalidate() helper")
Signed-off-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Link: https://lore.kernel.org/r/20250218120209.88093-3-jefflexu@linux.alibaba.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
iocb->ki_pos has been updated with the number of written bytes since
generic_perform_write().
Besides __filemap_fdatawrite_range() accepts the inclusive end of the
data range.
Fixes: 1d4457576570 ("mm: call filemap_fdatawrite_range_kick() after IOCB_DONTCACHE issue")
Signed-off-by: Jingbo Xu <jefflexu@linux.alibaba.com>
Link: https://lore.kernel.org/r/20250218120209.88093-2-jefflexu@linux.alibaba.com
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
The following bug report was found when running a PREEMPT_RT debug kernel.
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 140605, name: kunit_try_catch
preempt_count: 1, expected: 0
Call trace:
rt_spin_lock+0x70/0x140
find_vmap_area+0x84/0x168
find_vm_area+0x1c/0x50
print_address_description.constprop.0+0x2a0/0x320
print_report+0x108/0x1f8
kasan_report+0x90/0xc8
Since commit e30a0361b851 ("kasan: make report_lock a raw spinlock"),
report_lock was changed to raw_spinlock_t to fix another similar
PREEMPT_RT problem. That alone isn't enough to cover other corner cases.
print_address_description() is always invoked under the report_lock. The
context under this lock is always atomic even on PREEMPT_RT.
find_vm_area() acquires vmap_node::busy.lock which is a spinlock_t,
becoming a sleeping lock on PREEMPT_RT and must not be acquired in atomic
context.
Don't invoke find_vm_area() on PREEMPT_RT and just print the address.
Non-PREEMPT_RT builds remain unchanged. Add a DEFINE_WAIT_OVERRIDE_MAP()
macro to tell lockdep that this lock nesting is allowed because the
PREEMPT_RT part (which is invalid) has been taken care of. This macro was
first introduced in commit 0cce06ba859a ("debugobjects,locking: Annotate
debug_object_fill_pool() wait type violation").
Link: https://lkml.kernel.org/r/20250217204402.60533-1-longman@redhat.com
Fixes: e30a0361b851 ("kasan: make report_lock a raw spinlock")
Signed-off-by: Waiman Long <longman@redhat.com>
Suggested-by: Andrey Konovalov <andreyknvl@gmail.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mariano Pache <npache@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When using the HugeTLB kernel command-line to allocate 1G pages from a
specific node, such as:
default_hugepagesz=1G hugepages=1:1
If node 1 happens to not have enough memory for the requested number of 1G
pages, the allocation falls back to other nodes. A quick way to reproduce
this is by creating a KVM guest with a memory-less node and trying to
allocate 1 1G page from it. Instead of failing, the allocation will
fallback to other nodes.
This defeats the purpose of node specific allocation. Also, specific node
allocation for 2M pages don't have this behavior: the allocation will just
fail for the pages it can't satisfy.
This issue happens because HugeTLB calls memblock_alloc_try_nid_raw() for
1G boot-time allocation as this function falls back to other nodes if the
allocation can't be satisfied. Use memblock_alloc_exact_nid_raw()
instead, which ensures that the allocation will only be satisfied from the
specified node.
Link: https://lkml.kernel.org/r/20250211034856.629371-1-luizcap@redhat.com
Fixes: b5389086ad7b ("hugetlbfs: extend the definition of hugepages parameter to support node allocation")
Signed-off-by: Luiz Capitulino <luizcap@redhat.com>
Acked-by: Oscar Salvador <osalvador@suse.de>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Zhenguo Yao <yaozhenguo1@gmail.com>
Cc: Frank van der Linden <fvdl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
A softlockup issue was found with stress test:
watchdog: BUG: soft lockup - CPU#27 stuck for 26s! [migration/27:181]
CPU: 27 UID: 0 PID: 181 Comm: migration/27 6.14.0-rc2-next-20250210 #1
Stopper: multi_cpu_stop <- stop_machine_from_inactive_cpu
RIP: 0010:stop_machine_yield+0x2/0x10
RSP: 0000:ff4a0dcecd19be48 EFLAGS: 00000246
RAX: ffffffff89c0108f RBX: ff4a0dcec03afe44 RCX: 0000000000000000
RDX: ff1cdaaf6eba5808 RSI: 0000000000000282 RDI: ff1cda80c1775a40
RBP: 0000000000000001 R08: 00000011620096c6 R09: 7fffffffffffffff
R10: 0000000000000001 R11: 0000000000000100 R12: ff1cda80c1775a40
R13: 0000000000000000 R14: 0000000000000001 R15: ff4a0dcec03afe20
FS: 0000000000000000(0000) GS:ff1cdaaf6eb80000(0000)
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000025e2c2a001 CR4: 0000000000773ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
multi_cpu_stop+0x8f/0x100
cpu_stopper_thread+0x90/0x140
smpboot_thread_fn+0xad/0x150
kthread+0xc2/0x100
ret_from_fork+0x2d/0x50
The stress test involves CPU hotplug operations and memory control group
(memcg) operations. The scenario can be described as follows:
echo xx > memory.max cache_ap_online oom_reaper
(CPU23) (CPU50)
xx < usage stop_machine_from_inactive_cpu
for(;;) // all active cpus
trigger OOM queue_stop_cpus_work
// waiting oom_reaper
multi_cpu_stop(migration/xx)
// sync all active cpus ack
// waiting cpu23 ack
// CPU50 loops in multi_cpu_stop
waiting cpu50
Detailed explanation:
1. When the usage is larger than xx, an OOM may be triggered. If the
process does not handle with ths kill signal immediately, it will loop
in the memory_max_write.
2. When cache_ap_online is triggered, the multi_cpu_stop is queued to the
active cpus. Within the multi_cpu_stop function, it attempts to
synchronize the CPU states. However, the CPU23 didn't acknowledge
because it is stuck in a loop within the for(;;).
3. The oom_reaper process is blocked because CPU50 is in a loop, waiting
for CPU23 to acknowledge the synchronization request.
4. Finally, it formed cyclic dependency and lead to softlockup and dead
loop.
To fix this issue, add cond_resched() in the memory_max_write, so that it
will not block migration task.
Link: https://lkml.kernel.org/r/20250211081819.33307-1-chenridong@huaweicloud.com
Fixes: b6e6edcfa405 ("mm: memcontrol: reclaim and OOM kill when shrinking memory.max below usage")
Signed-off-by: Chen Ridong <chenridong@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Wang Weiyang <wangweiyang2@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In zap_pte_range(), if the pte lock was released midway, the pte entries
may be refilled with physical pages by another thread, which may cause a
non-empty PTE page to be reclaimed and eventually cause the system to
crash.
To fix it, fall back to the slow path in this case to recheck if all pte
entries are still none.
Link: https://lkml.kernel.org/r/20250211072625.89188-1-zhengqi.arch@bytedance.com
Fixes: 6375e95f381e ("mm: pgtable: reclaim empty PTE page in madvise(MADV_DONTNEED)")
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reported-by: Christian Brauner <brauner@kernel.org>
Closes: https://lore.kernel.org/all/20250207-anbot-bankfilialen-acce9d79a2c7@brauner/
Reported-by: Qu Wenruo <quwenruo.btrfs@gmx.com>
Closes: https://lore.kernel.org/all/152296f3-5c81-4a94-97f3-004108fba7be@gmx.com/
Tested-by: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
migrate_device_finalize()
If migration succeeded, we called
folio_migrate_flags()->mem_cgroup_migrate() to migrate the memcg from the
old to the new folio. This will set memcg_data of the old folio to 0.
Similarly, if migration failed, memcg_data of the dst folio is left unset.
If we call folio_putback_lru() on such folios (memcg_data == 0), we will
add the folio to be freed to the LRU, making memcg code unhappy. Running
the hmm selftests:
# ./hmm-tests
...
# RUN hmm.hmm_device_private.migrate ...
[ 102.078007][T14893] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x7ff27d200 pfn:0x13cc00
[ 102.079974][T14893] anon flags: 0x17ff00000020018(uptodate|dirty|swapbacked|node=0|zone=2|lastcpupid=0x7ff)
[ 102.082037][T14893] raw: 017ff00000020018 dead000000000100 dead000000000122 ffff8881353896c9
[ 102.083687][T14893] raw: 00000007ff27d200 0000000000000000 00000001ffffffff 0000000000000000
[ 102.085331][T14893] page dumped because: VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled())
[ 102.087230][T14893] ------------[ cut here ]------------
[ 102.088279][T14893] WARNING: CPU: 0 PID: 14893 at ./include/linux/memcontrol.h:726 folio_lruvec_lock_irqsave+0x10e/0x170
[ 102.090478][T14893] Modules linked in:
[ 102.091244][T14893] CPU: 0 UID: 0 PID: 14893 Comm: hmm-tests Not tainted 6.13.0-09623-g6c216bc522fd #151
[ 102.093089][T14893] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
[ 102.094848][T14893] RIP: 0010:folio_lruvec_lock_irqsave+0x10e/0x170
[ 102.096104][T14893] Code: ...
[ 102.099908][T14893] RSP: 0018:ffffc900236c37b0 EFLAGS: 00010293
[ 102.101152][T14893] RAX: 0000000000000000 RBX: ffffea0004f30000 RCX: ffffffff8183f426
[ 102.102684][T14893] RDX: ffff8881063cb880 RSI: ffffffff81b8117f RDI: ffff8881063cb880
[ 102.104227][T14893] RBP: 0000000000000000 R08: 0000000000000005 R09: 0000000000000000
[ 102.105757][T14893] R10: 0000000000000001 R11: 0000000000000002 R12: ffffc900236c37d8
[ 102.107296][T14893] R13: ffff888277a2bcb0 R14: 000000000000001f R15: 0000000000000000
[ 102.108830][T14893] FS: 00007ff27dbdd740(0000) GS:ffff888277a00000(0000) knlGS:0000000000000000
[ 102.110643][T14893] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 102.111924][T14893] CR2: 00007ff27d400000 CR3: 000000010866e000 CR4: 0000000000750ef0
[ 102.113478][T14893] PKRU: 55555554
[ 102.114172][T14893] Call Trace:
[ 102.114805][T14893] <TASK>
[ 102.115397][T14893] ? folio_lruvec_lock_irqsave+0x10e/0x170
[ 102.116547][T14893] ? __warn.cold+0x110/0x210
[ 102.117461][T14893] ? folio_lruvec_lock_irqsave+0x10e/0x170
[ 102.118667][T14893] ? report_bug+0x1b9/0x320
[ 102.119571][T14893] ? handle_bug+0x54/0x90
[ 102.120494][T14893] ? exc_invalid_op+0x17/0x50
[ 102.121433][T14893] ? asm_exc_invalid_op+0x1a/0x20
[ 102.122435][T14893] ? __wake_up_klogd.part.0+0x76/0xd0
[ 102.123506][T14893] ? dump_page+0x4f/0x60
[ 102.124352][T14893] ? folio_lruvec_lock_irqsave+0x10e/0x170
[ 102.125500][T14893] folio_batch_move_lru+0xd4/0x200
[ 102.126577][T14893] ? __pfx_lru_add+0x10/0x10
[ 102.127505][T14893] __folio_batch_add_and_move+0x391/0x720
[ 102.128633][T14893] ? __pfx_lru_add+0x10/0x10
[ 102.129550][T14893] folio_putback_lru+0x16/0x80
[ 102.130564][T14893] migrate_device_finalize+0x9b/0x530
[ 102.131640][T14893] dmirror_migrate_to_device.constprop.0+0x7c5/0xad0
[ 102.133047][T14893] dmirror_fops_unlocked_ioctl+0x89b/0xc80
Likely, nothing else goes wrong: putting the last folio reference will
remove the folio from the LRU again. So besides memcg complaining, adding
the folio to be freed to the LRU is just an unnecessary step.
The new flow resembles what we have in migrate_folio_move(): add the dst
to the lru, remove migration ptes, unlock and unref dst.
Link: https://lkml.kernel.org/r/20250210161317.717936-1-david@redhat.com
Fixes: 8763cb45ab96 ("mm/migrate: new memory migration helper for use with device memory")
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add a sanity check to madvise_dontneed_free() to address a corner case in
madvise where a race condition causes the current vma being processed to
be backed by a different page size.
During a madvise(MADV_DONTNEED) call on a memory region registered with a
userfaultfd, there's a period of time where the process mm lock is
temporarily released in order to send a UFFD_EVENT_REMOVE and let
userspace handle the event. During this time, the vma covering the
current address range may change due to an explicit mmap done concurrently
by another thread.
If, after that change, the memory region, which was originally backed by
4KB pages, is now backed by hugepages, the end address is rounded down to
a hugepage boundary to avoid data loss (see "Fixes" below). This rounding
may cause the end address to be truncated to the same address as the
start.
Make this corner case follow the same semantics as in other similar cases
where the requested region has zero length (ie. return 0).
This will make madvise_walk_vmas() continue to the next vma in the range
(this time holding the process mm lock) which, due to the prev pointer
becoming stale because of the vma change, will be the same hugepage-backed
vma that was just checked before. The next time madvise_dontneed_free()
runs for this vma, if the start address isn't aligned to a hugepage
boundary, it'll return -EINVAL, which is also in line with the madvise
api.
From userspace perspective, madvise() will return EINVAL because the start
address isn't aligned according to the new vma alignment requirements
(hugepage), even though it was correctly page-aligned when the call was
issued.
Link: https://lkml.kernel.org/r/20250203075206.1452208-1-rcn@igalia.com
Fixes: 8ebe0a5eaaeb ("mm,madvise,hugetlb: fix unexpected data loss with MADV_DONTNEED on hugetlbfs")
Signed-off-by: Ricardo Cañuelo Navarro <rcn@igalia.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Florent Revest <revest@google.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit b7c0ccdfbafd ("mm: zswap: support large folios in zswap_store()")
skips charging any zswap entries when it failed to zswap the entire folio.
However, when some base pages are zswapped but it failed to zswap the
entire folio, the zswap operation is rolled back. When freeing zswap
entries for those pages, zswap_entry_free() uncharges the zswap entries
that were not previously charged, causing zswap charging to become
inconsistent.
This inconsistency triggers two warnings with following steps:
# On a machine with 64GiB of RAM and 36GiB of zswap
$ stress-ng --bigheap 2 # wait until the OOM-killer kills stress-ng
$ sudo reboot
The two warnings are:
in mm/memcontrol.c:163, function obj_cgroup_release():
WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
in mm/page_counter.c:60, function page_counter_cancel():
if (WARN_ONCE(new < 0, "page_counter underflow: %ld nr_pages=%lu\n",
new, nr_pages))
zswap_stored_pages also becomes inconsistent in the same way.
As suggested by Kanchana, increment zswap_stored_pages and charge zswap
entries within zswap_store_page() when it succeeds. This way,
zswap_entry_free() will decrement the counter and uncharge the entries
when it failed to zswap the entire folio.
While this could potentially be optimized by batching objcg charging and
incrementing the counter, let's focus on fixing the bug this time and
leave the optimization for later after some evaluation.
After resolving the inconsistency, the warnings disappear.
[42.hyeyoo@gmail.com: refactor zswap_store_page()]
Link: https://lkml.kernel.org/r/20250131082037.2426-1-42.hyeyoo@gmail.com
Link: https://lkml.kernel.org/r/20250129100844.2935-1-42.hyeyoo@gmail.com
Fixes: b7c0ccdfbafd ("mm: zswap: support large folios in zswap_store()")
Co-developed-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Signed-off-by: Kanchana P Sridhar <kanchana.p.sridhar@intel.com>
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Pull misc vfs cleanups from Al Viro:
"Two unrelated patches - one is a removal of long-obsolete include in
overlayfs (it used to need fs/internal.h, but the extern it wanted has
been moved back to include/linux/namei.h) and another introduces
convenience helper constructing struct qstr by a NUL-terminated
string"
* tag 'pull-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
add a string-to-qstr constructor
fs/overlayfs/namei.c: get rid of include ../internal.h
|
|
gather_bootmem_prealloc() assumes the start nid as 0 and size as
num_node_state(N_MEMORY). That means in case if memory attached numa
nodes are interleaved, then gather_bootmem_prealloc_parallel() will fail
to scan few of these nodes.
Since memory attached numa nodes can be interleaved in any fashion, hence
ensure that the current code checks for all numa node ids
(.size = nr_node_ids). Let's still keep max_threads as N_MEMORY, so that
it can distributes all nr_node_ids among the these many no. threads.
e.g. qemu cmdline
========================
numa_cmd="-numa node,nodeid=1,memdev=mem1,cpus=2-3 -numa node,nodeid=0,cpus=0-1 -numa dist,src=0,dst=1,val=20"
mem_cmd="-object memory-backend-ram,id=mem1,size=16G"
w/o this patch for cmdline (default_hugepagesz=1GB hugepagesz=1GB hugepages=2):
==========================
~ # cat /proc/meminfo |grep -i huge
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 1048576 kB
Hugetlb: 0 kB
with this patch for cmdline (default_hugepagesz=1GB hugepagesz=1GB hugepages=2):
===========================
~ # cat /proc/meminfo |grep -i huge
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 2
HugePages_Free: 2
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 1048576 kB
Hugetlb: 2097152 kB
Link: https://lkml.kernel.org/r/f8d8dad3a5471d284f54185f65d575a6aaab692b.1736592534.git.ritesh.list@gmail.com
Fixes: b78b27d02930 ("hugetlb: parallelize 1G hugetlb initialization")
Signed-off-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Reported-by: Pavithra Prakash <pavrampu@linux.ibm.com>
Suggested-by: Muchun Song <muchun.song@linux.dev>
Tested-by: Sourabh Jain <sourabhjain@linux.ibm.com>
Reviewed-by: Luiz Capitulino <luizcap@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Donet Tom <donettom@linux.ibm.com>
Cc: Gang Li <gang.li@linux.dev>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We can run into an infinite loop in __get_longterm_locked() when
collect_longterm_unpinnable_folios() finds only folios that are isolated
from the LRU or were never added to the LRU. This can happen when all
folios to be pinned are never added to the LRU, for example when
vm_ops->fault allocated pages using cma_alloc() and never added them to
the LRU.
Fix it by simply taking a look at the list in the single caller, to see if
anything was added.
[zhaoyang.huang@unisoc.com: move definition of local]
Link: https://lkml.kernel.org/r/20250122012604.3654667-1-zhaoyang.huang@unisoc.com
Link: https://lkml.kernel.org/r/20250121020159.3636477-1-zhaoyang.huang@unisoc.com
Fixes: 67e139b02d99 ("mm/gup.c: refactor check_and_migrate_movable_pages()")
Signed-off-by: Zhaoyang Huang <zhaoyang.huang@unisoc.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Aijun Sun <aijun.sun@unisoc.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There is a code error that will cause the swap entry allocator to reclaim
and check the whole cluster with an unexpected tail offset instead of the
part that needs to be reclaimed. This may cause corruption of the swap
map, so fix it.
Link: https://lkml.kernel.org/r/20250130115131.37777-1-ryncsn@gmail.com
Fixes: 3b644773eefd ("mm, swap: reduce contention on device lock")
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Chris Li <chrisl@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
On NUMA systems, __GFP_THISNODE indicates that an allocation _must_ be on
a particular node, and failure to allocate on the desired node will result
in a failed allocation.
Skip __GFP_THISNODE allocations if we are running on a NUMA system, since
KFENCE can't guarantee which node its pool pages are allocated on.
Link: https://lkml.kernel.org/r/20250124120145.410066-1-elver@google.com
Fixes: 236e9f153852 ("kfence: skip all GFP_ZONEMASK allocations")
Signed-off-by: Marco Elver <elver@google.com>
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Chistoph Lameter <cl@linux.com>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There are 4 NUMA nodes on my machine, and each NUMA node has 32GB of
memory. I have configured 16GB of CMA memory on each NUMA node, and
starting a 32GB virtual machine with device passthrough is extremely slow,
taking almost an hour.
Long term GUP cannot allocate memory from CMA area, so a maximum of 16 GB
of no-CMA memory on a NUMA node can be used as virtual machine memory.
There is 16GB of free CMA memory on a NUMA node, which is sufficient to
pass the order-0 watermark check, causing the __compaction_suitable()
function to consistently return true.
For costly allocations, if the __compaction_suitable() function always
returns true, it causes the __alloc_pages_slowpath() function to fail to
exit at the appropriate point. This prevents timely fallback to
allocating memory on other nodes, ultimately resulting in excessively long
virtual machine startup times.
Call trace:
__alloc_pages_slowpath
if (compact_result == COMPACT_SKIPPED ||
compact_result == COMPACT_DEFERRED)
goto nopage; // should exit __alloc_pages_slowpath() from here
We could use the real unmovable allocation context to have
__zone_watermark_unusable_free() subtract CMA pages, and thus we won't
pass the order-0 check anymore once the non-CMA part is exhausted. There
is some risk that in some different scenario the compaction could in fact
migrate pages from the exhausted non-CMA part of the zone to the CMA part
and succeed, and we'll skip it instead. But only __GFP_NORETRY
allocations should be affected in the immediate "goto nopage" when
compaction is skipped, others will attempt with DEF_COMPACT_PRIORITY
anyway and won't fail without trying to compact-migrate the non-CMA
pageblocks into CMA pageblocks first, so it should be fine.
After this fix, it only takes a few tens of seconds to start a 32GB
virtual machine with device passthrough functionality.
Link: https://lore.kernel.org/lkml/1736335854-548-1-git-send-email-yangge1116@126.com/
Link: https://lkml.kernel.org/r/1737788037-8439-1-git-send-email-yangge1116@126.com
Signed-off-by: yangge <yangge1116@126.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Barry Song <21cnbao@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Memblock allocations are registered by kmemleak separately, based on their
physical address. During the scanning stage, it checks whether an object
is within the min_low_pfn and max_low_pfn boundaries and ignores it
otherwise.
With the recent addition of __percpu pointer leak detection (commit
6c99d4eb7c5e ("kmemleak: enable tracking for percpu pointers")), kmemleak
started reporting leaks in setup_zone_pageset() and
setup_per_cpu_pageset(). These were caused by the node_data[0] object
(initialised in alloc_node_data()) ending on the PFN_PHYS(max_low_pfn)
boundary. The non-strict upper boundary check introduced by commit
84c326299191 ("mm: kmemleak: check physical address when scan") causes the
pg_data_t object to be ignored (not scanned) and the __percpu pointers it
contains to be reported as leaks.
Make the max_low_pfn upper boundary check strict when deciding whether to
ignore a physical address object and not scan it.
Link: https://lkml.kernel.org/r/20250127184233.2974311-1-catalin.marinas@arm.com
Fixes: 84c326299191 ("mm: kmemleak: check physical address when scan")
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Jakub Kicinski <kuba@kernel.org>
Tested-by: Matthieu Baerts (NGI0) <matttbe@kernel.org>
Cc: Patrick Wang <patrick.wang.shcn@gmail.com>
Cc: <stable@vger.kernel.org> [6.0.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In shrink_folio_list(), demote_folio_list() can be called 2 times.
Currently stat->nr_demoted will only store the last nr_demoted( the later
nr_demoted is always zero, the former nr_demoted will get lost), as a
result number of demoted pages is not accurate.
Accumulate the nr_demoted count across multiple calls to
demote_folio_list(), ensuring accurate reporting of demotion statistics.
[lizhijian@fujitsu.com: introduce local nr_demoted to fix nr_reclaimed double counting]
Link: https://lkml.kernel.org/r/20250111015253.425693-1-lizhijian@fujitsu.com
Link: https://lkml.kernel.org/r/20250110122133.423481-1-lizhijian@fujitsu.com
Fixes: f77f0c751478 ("mm,memcg: provide per-cgroup counters for NUMA balancing operations")
Signed-off-by: Li Zhijian <lizhijian@fujitsu.com>
Acked-by: Kaiyang Zhao <kaiyang2@cs.cmu.edu>
Tested-by: Donet Tom <donettom@linux.ibm.com>
Reviewed-by: Donet Tom <donettom@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit c1b3bb73d55e ("mm/zsmalloc: use zpdesc in
trylock_zspage()/lock_zspage()") introduces is_first_zpdesc() function.
However, the function is only used when CONFIG_DEBUG_VM=y.
When building with LLVM=1 and W=1 option, the following warning is
generated:
$ make -j12 W=1 LLVM=1 mm/zsmalloc.o
mm/zsmalloc.c:455:20: error: function 'is_first_zpdesc' is not needed and will not be emitted [-Werror,-Wunneeded-internal-declaration]
455 | static inline bool is_first_zpdesc(struct zpdesc *zpdesc)
| ^~~~~~~~~~~~~~~
1 error generated.
Fix the warning by adding __maybe_unused attribute to the function.
No functional change intended.
Link: https://lkml.kernel.org/r/20250127231631.4363-1-42.hyeyoo@gmail.com
Fixes: c1b3bb73d55e ("mm/zsmalloc: use zpdesc in trylock_zspage()/lock_zspage()")
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202501240958.4ILzuBrH-lkp@intel.com/
Cc: Alex Shi <alexs@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This fixes the following hard lockup in isolate_lru_folios() during memory
reclaim. If the LRU mostly contains ineligible folios this may trigger
watchdog.
watchdog: Watchdog detected hard LOCKUP on cpu 173
RIP: 0010:native_queued_spin_lock_slowpath+0x255/0x2a0
Call Trace:
_raw_spin_lock_irqsave+0x31/0x40
folio_lruvec_lock_irqsave+0x5f/0x90
folio_batch_move_lru+0x91/0x150
lru_add_drain_per_cpu+0x1c/0x40
process_one_work+0x17d/0x350
worker_thread+0x27b/0x3a0
kthread+0xe8/0x120
ret_from_fork+0x34/0x50
ret_from_fork_asm+0x1b/0x30
lruvec->lru_lock owner:
PID: 2865 TASK: ffff888139214d40 CPU: 40 COMMAND: "kswapd0"
#0 [fffffe0000945e60] crash_nmi_callback at ffffffffa567a555
#1 [fffffe0000945e68] nmi_handle at ffffffffa563b171
#2 [fffffe0000945eb0] default_do_nmi at ffffffffa6575920
#3 [fffffe0000945ed0] exc_nmi at ffffffffa6575af4
#4 [fffffe0000945ef0] end_repeat_nmi at ffffffffa6601dde
[exception RIP: isolate_lru_folios+403]
RIP: ffffffffa597df53 RSP: ffffc90006fb7c28 RFLAGS: 00000002
RAX: 0000000000000001 RBX: ffffc90006fb7c60 RCX: ffffea04a2196f88
RDX: ffffc90006fb7c60 RSI: ffffc90006fb7c60 RDI: ffffea04a2197048
RBP: ffff88812cbd3010 R8: ffffea04a2197008 R9: 0000000000000001
R10: 0000000000000000 R11: 0000000000000001 R12: ffffea04a2197008
R13: ffffea04a2197048 R14: ffffc90006fb7de8 R15: 0000000003e3e937
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
<NMI exception stack>
#5 [ffffc90006fb7c28] isolate_lru_folios at ffffffffa597df53
#6 [ffffc90006fb7cf8] shrink_active_list at ffffffffa597f788
#7 [ffffc90006fb7da8] balance_pgdat at ffffffffa5986db0
#8 [ffffc90006fb7ec0] kswapd at ffffffffa5987354
#9 [ffffc90006fb7ef8] kthread at ffffffffa5748238
crash>
Scenario:
User processe are requesting a large amount of memory and keep page active.
Then a module continuously requests memory from ZONE_DMA32 area.
Memory reclaim will be triggered due to ZONE_DMA32 watermark alarm reached.
However pages in the LRU(active_anon) list are mostly from
the ZONE_NORMAL area.
Reproduce:
Terminal 1: Construct to continuously increase pages active(anon).
mkdir /tmp/memory
mount -t tmpfs -o size=1024000M tmpfs /tmp/memory
dd if=/dev/zero of=/tmp/memory/block bs=4M
tail /tmp/memory/block
Terminal 2:
vmstat -a 1
active will increase.
procs ---memory--- ---swap-- ---io---- -system-- ---cpu--- ...
r b swpd free inact active si so bi bo
1 0 0 1445623076 45898836 83646008 0 0 0
1 0 0 1445623076 43450228 86094616 0 0 0
1 0 0 1445623076 41003480 88541364 0 0 0
1 0 0 1445623076 38557088 90987756 0 0 0
1 0 0 1445623076 36109688 93435156 0 0 0
1 0 0 1445619552 33663256 95881632 0 0 0
1 0 0 1445619804 31217140 98327792 0 0 0
1 0 0 1445619804 28769988 100774944 0 0 0
1 0 0 1445619804 26322348 103222584 0 0 0
1 0 0 1445619804 23875592 105669340 0 0 0
cat /proc/meminfo | head
Active(anon) increase.
MemTotal: 1579941036 kB
MemFree: 1445618500 kB
MemAvailable: 1453013224 kB
Buffers: 6516 kB
Cached: 128653956 kB
SwapCached: 0 kB
Active: 118110812 kB
Inactive: 11436620 kB
Active(anon): 115345744 kB
Inactive(anon): 945292 kB
When the Active(anon) is 115345744 kB, insmod module triggers
the ZONE_DMA32 watermark.
perf record -e vmscan:mm_vmscan_lru_isolate -aR
perf script
isolate_mode=0 classzone=1 order=1 nr_requested=32 nr_scanned=2
nr_skipped=2 nr_taken=0 lru=active_anon
isolate_mode=0 classzone=1 order=1 nr_requested=32 nr_scanned=0
nr_skipped=0 nr_taken=0 lru=active_anon
isolate_mode=0 classzone=1 order=0 nr_requested=32 nr_scanned=28835844
nr_skipped=28835844 nr_taken=0 lru=active_anon
isolate_mode=0 classzone=1 order=1 nr_requested=32 nr_scanned=28835844
nr_skipped=28835844 nr_taken=0 lru=active_anon
isolate_mode=0 classzone=1 order=0 nr_requested=32 nr_scanned=29
nr_skipped=29 nr_taken=0 lru=active_anon
isolate_mode=0 classzone=1 order=0 nr_requested=32 nr_scanned=0
nr_skipped=0 nr_taken=0 lru=active_anon
See nr_scanned=28835844.
28835844 * 4k = 115343376KB approximately equal to 115345744 kB.
If increase Active(anon) to 1000G then insmod module triggers
the ZONE_DMA32 watermark. hard lockup will occur.
In my device nr_scanned = 0000000003e3e937 when hard lockup.
Convert to memory size 0x0000000003e3e937 * 4KB = 261072092 KB.
[ffffc90006fb7c28] isolate_lru_folios at ffffffffa597df53
ffffc90006fb7c30: 0000000000000020 0000000000000000
ffffc90006fb7c40: ffffc90006fb7d40 ffff88812cbd3000
ffffc90006fb7c50: ffffc90006fb7d30 0000000106fb7de8
ffffc90006fb7c60: ffffea04a2197008 ffffea0006ed4a48
ffffc90006fb7c70: 0000000000000000 0000000000000000
ffffc90006fb7c80: 0000000000000000 0000000000000000
ffffc90006fb7c90: 0000000000000000 0000000000000000
ffffc90006fb7ca0: 0000000000000000 0000000003e3e937
ffffc90006fb7cb0: 0000000000000000 0000000000000000
ffffc90006fb7cc0: 8d7c0b56b7874b00 ffff88812cbd3000
About the Fixes:
Why did it take eight years to be discovered?
The problem requires the following conditions to occur:
1. The device memory should be large enough.
2. Pages in the LRU(active_anon) list are mostly from the ZONE_NORMAL area.
3. The memory in ZONE_DMA32 needs to reach the watermark.
If the memory is not large enough, or if the usage design of ZONE_DMA32
area memory is reasonable, this problem is difficult to detect.
notes:
The problem is most likely to occur in ZONE_DMA32 and ZONE_NORMAL,
but other suitable scenarios may also trigger the problem.
Link: https://lkml.kernel.org/r/20241119060842.274072-1-liuye@kylinos.cn
Fixes: b2e18757f2c9 ("mm, vmscan: begin reclaiming pages on a per-node basis")
Signed-off-by: liuye <liuye@kylinos.cn>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Yang Shi <yang@os.amperecomputing.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl
Pull sysctl table constification from Joel Granados:
"All ctl_table declared outside of functions and that remain unmodified
after initialization are const qualified.
This prevents unintended modifications to proc_handler function
pointers by placing them in the .rodata section.
This is a continuation of the tree-wide effort started a few releases
ago with the constification of the ctl_table struct arguments in the
sysctl API done in 78eb4ea25cd5 ("sysctl: treewide: constify the
ctl_table argument of proc_handlers")"
* tag 'constfy-sysctl-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl:
treewide: const qualify ctl_tables where applicable
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core and debugfs updates from Greg KH:
"Here is the big set of driver core and debugfs updates for 6.14-rc1.
Included in here is a bunch of driver core, PCI, OF, and platform rust
bindings (all acked by the different subsystem maintainers), hence the
merge conflict with the rust tree, and some driver core api updates to
mark things as const, which will also require some fixups due to new
stuff coming in through other trees in this merge window.
There are also a bunch of debugfs updates from Al, and there is at
least one user that does have a regression with these, but Al is
working on tracking down the fix for it. In my use (and everyone
else's linux-next use), it does not seem like a big issue at the
moment.
Here's a short list of the things in here:
- driver core rust bindings for PCI, platform, OF, and some i/o
functions.
We are almost at the "write a real driver in rust" stage now,
depending on what you want to do.
- misc device rust bindings and a sample driver to show how to use
them
- debugfs cleanups in the fs as well as the users of the fs api for
places where drivers got it wrong or were unnecessarily doing
things in complex ways.
- driver core const work, making more of the api take const * for
different parameters to make the rust bindings easier overall.
- other small fixes and updates
All of these have been in linux-next with all of the aforementioned
merge conflicts, and the one debugfs issue, which looks to be resolved
"soon""
* tag 'driver-core-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (95 commits)
rust: device: Use as_char_ptr() to avoid explicit cast
rust: device: Replace CString with CStr in property_present()
devcoredump: Constify 'struct bin_attribute'
devcoredump: Define 'struct bin_attribute' through macro
rust: device: Add property_present()
saner replacement for debugfs_rename()
orangefs-debugfs: don't mess with ->d_name
octeontx2: don't mess with ->d_parent or ->d_parent->d_name
arm_scmi: don't mess with ->d_parent->d_name
slub: don't mess with ->d_name
sof-client-ipc-flood-test: don't mess with ->d_name
qat: don't mess with ->d_name
xhci: don't mess with ->d_iname
mtu3: don't mess wiht ->d_iname
greybus/camera - stop messing with ->d_iname
mediatek: stop messing with ->d_iname
netdevsim: don't embed file_operations into your structs
b43legacy: make use of debugfs_get_aux()
b43: stop embedding struct file_operations into their objects
carl9170: stop embedding file_operations into their objects
...
|
|
Add the const qualifier to all the ctl_tables in the tree except for
watchdog_hardlockup_sysctl, memory_allocation_profiling_sysctls,
loadpin_sysctl_table and the ones calling register_net_sysctl (./net,
drivers/inifiniband dirs). These are special cases as they use a
registration function with a non-const qualified ctl_table argument or
modify the arrays before passing them on to the registration function.
Constifying ctl_table structs will prevent the modification of
proc_handler function pointers as the arrays would reside in .rodata.
This is made possible after commit 78eb4ea25cd5 ("sysctl: treewide:
constify the ctl_table argument of proc_handlers") constified all the
proc_handlers.
Created this by running an spatch followed by a sed command:
Spatch:
virtual patch
@
depends on !(file in "net")
disable optional_qualifier
@
identifier table_name != {
watchdog_hardlockup_sysctl,
iwcm_ctl_table,
ucma_ctl_table,
memory_allocation_profiling_sysctls,
loadpin_sysctl_table
};
@@
+ const
struct ctl_table table_name [] = { ... };
sed:
sed --in-place \
-e "s/struct ctl_table .table = &uts_kern/const struct ctl_table *table = \&uts_kern/" \
kernel/utsname_sysctl.c
Reviewed-by: Song Liu <song@kernel.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org> # for kernel/trace/
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> # SCSI
Reviewed-by: Darrick J. Wong <djwong@kernel.org> # xfs
Acked-by: Jani Nikula <jani.nikula@intel.com>
Acked-by: Corey Minyard <cminyard@mvista.com>
Acked-by: Wei Liu <wei.liu@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Bill O'Donnell <bodonnel@redhat.com>
Acked-by: Baoquan He <bhe@redhat.com>
Acked-by: Ashutosh Dixit <ashutosh.dixit@intel.com>
Acked-by: Anna Schumaker <anna.schumaker@oracle.com>
Signed-off-by: Joel Granados <joel.granados@kernel.org>
|