Age | Commit message (Collapse) | Author |
|
When kobject_init_and_add() fails during cache creation,
kobj->name can be leaked because SLUB does not call kobject_put(),
which should be invoked per the kobject API documentation.
This has a bit of historical context, though; SLUB does not call
kobject_put() to avoid double-free for struct kmem_cache because
1) simply calling it would free all resources related to the cache, and
2) struct kmem_cache descriptor is always freed by cache_cache()'s
error handling path, causing struct kmem_cache to be freed twice.
This issue can be reproduced by creating new slab caches while applying
failslab for kernfs_node_cache. This makes kobject_add_varg() succeed,
but causes kobject_add_internal() to fail in kobject_init_and_add()
during cache creation.
Historically, this issue has attracted developers' attention several times.
Each time a fix addressed either the leak or the double-free,
it caused the other issue. Let's summarize a bit of history here:
The leak has existed since the early days of SLUB.
Commit 54b6a731025f ("slub: fix leak of 'name' in sysfs_slab_add")
introduced a double-free bug while fixing the leak.
Commit 80da026a8e5d ("mm/slub: fix slab double-free in case of duplicate
sysfs filename") re-introduced the leak while fixing the double-free
error.
Commit dde3c6b72a16 ("mm/slub: fix a memory leak in sysfs_slab_add()")
fixed the memory leak, but it was later reverted by commit 757fed1d0898
("Revert "mm/slub: fix a memory leak in sysfs_slab_add()"") to avoid
the double-free error.
This is where we are now: we've chosen a memory leak over a double-free.
To resolve this memory leak, skip creating sysfs files if it fails
and continue with cache creation regardless (as suggested by Christoph).
This resolves the memory leak because both the cache and the kobject
remain alive on kobject_init_and_add() failure.
If SLUB tries to create an alias for a cache without sysfs files,
its symbolic link will not be generated.
Since a slab cache might not have associated sysfs files, call kobject_del()
only if such files exist.
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
|
|
Boot with slub_debug=UFPZ.
If allocated object failed in alloc_consistency_checks, all objects of
the slab will be marked as used, and then the slab will be removed from
the partial list.
When an object belonging to the slab got freed later, the remove_full()
function is called. Because the slab is neither on the partial list nor
on the full list, it eventually lead to a list corruption (actually a
list poison being detected).
So we need to mark and isolate the slab page with metadata corruption,
do not put it back in circulation.
Because the debug caches avoid all the fastpaths, reusing the frozen bit
to mark slab page with metadata corruption seems to be fine.
[ 4277.385669] list_del corruption, ffffea00044b3e50->next is LIST_POISON1 (dead000000000100)
[ 4277.387023] ------------[ cut here ]------------
[ 4277.387880] kernel BUG at lib/list_debug.c:56!
[ 4277.388680] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[ 4277.389562] CPU: 5 PID: 90 Comm: kworker/5:1 Kdump: loaded Tainted: G OE 6.6.1-1 #1
[ 4277.392113] Workqueue: xfs-inodegc/vda1 xfs_inodegc_worker [xfs]
[ 4277.393551] RIP: 0010:__list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.394518] Code: 48 91 82 e8 37 f9 9a ff 0f 0b 48 89 fe 48 c7 c7 28 49 91 82 e8 26 f9 9a ff 0f 0b 48 89 fe 48 c7 c7 58 49 91
[ 4277.397292] RSP: 0018:ffffc90000333b38 EFLAGS: 00010082
[ 4277.398202] RAX: 000000000000004e RBX: ffffea00044b3e50 RCX: 0000000000000000
[ 4277.399340] RDX: 0000000000000002 RSI: ffffffff828f8715 RDI: 00000000ffffffff
[ 4277.400545] RBP: ffffea00044b3e40 R08: 0000000000000000 R09: ffffc900003339f0
[ 4277.401710] R10: 0000000000000003 R11: ffffffff82d44088 R12: ffff888112cf9910
[ 4277.402887] R13: 0000000000000001 R14: 0000000000000001 R15: ffff8881000424c0
[ 4277.404049] FS: 0000000000000000(0000) GS:ffff88842fd40000(0000) knlGS:0000000000000000
[ 4277.405357] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 4277.406389] CR2: 00007f2ad0b24000 CR3: 0000000102a3a006 CR4: 00000000007706e0
[ 4277.407589] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 4277.408780] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 4277.410000] PKRU: 55555554
[ 4277.410645] Call Trace:
[ 4277.411234] <TASK>
[ 4277.411777] ? die+0x32/0x80
[ 4277.412439] ? do_trap+0xd6/0x100
[ 4277.413150] ? __list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.414158] ? do_error_trap+0x6a/0x90
[ 4277.414948] ? __list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.415915] ? exc_invalid_op+0x4c/0x60
[ 4277.416710] ? __list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.417675] ? asm_exc_invalid_op+0x16/0x20
[ 4277.418482] ? __list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.419466] ? __list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.420410] free_to_partial_list+0x515/0x5e0
[ 4277.421242] ? xfs_iext_remove+0x41a/0xa10 [xfs]
[ 4277.422298] xfs_iext_remove+0x41a/0xa10 [xfs]
[ 4277.423316] ? xfs_inodegc_worker+0xb4/0x1a0 [xfs]
[ 4277.424383] xfs_bmap_del_extent_delay+0x4fe/0x7d0 [xfs]
[ 4277.425490] __xfs_bunmapi+0x50d/0x840 [xfs]
[ 4277.426445] xfs_itruncate_extents_flags+0x13a/0x490 [xfs]
[ 4277.427553] xfs_inactive_truncate+0xa3/0x120 [xfs]
[ 4277.428567] xfs_inactive+0x22d/0x290 [xfs]
[ 4277.429500] xfs_inodegc_worker+0xb4/0x1a0 [xfs]
[ 4277.430479] process_one_work+0x171/0x340
[ 4277.431227] worker_thread+0x277/0x390
[ 4277.431962] ? __pfx_worker_thread+0x10/0x10
[ 4277.432752] kthread+0xf0/0x120
[ 4277.433382] ? __pfx_kthread+0x10/0x10
[ 4277.434134] ret_from_fork+0x2d/0x50
[ 4277.434837] ? __pfx_kthread+0x10/0x10
[ 4277.435566] ret_from_fork_asm+0x1b/0x30
[ 4277.436280] </TASK>
Fixes: 643b113849d8 ("slub: enable tracking of full slabs")
Suggested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: yuan.gao <yuan.gao@ucloud.cn>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
|
|
For current krealloc(), one problem is its caller doesn't pass the old
request size, say the object is 64 bytes kmalloc one, but caller may
only requested 48 bytes. Then when krealloc() shrinks or grows in the
same object, or allocate a new bigger object, it lacks this 'original
size' information to do accurate data preserving or zeroing (when
__GFP_ZERO is set).
Thus with slub debug redzone and object tracking enabled, parts of the
object after krealloc() might contain redzone data instead of zeroes,
which is violating the __GFP_ZERO guarantees. Good thing is in this
case, kmalloc caches do have this 'orig_size' feature. So solve the
problem by utilize 'org_size' to do accurate data zeroing and preserving.
[Thanks to syzbot and V, Narasimhan for discovering kfence and big
kmalloc related issues in early patch version]
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
|
|
When 'orig_size' of kmalloc object is enabled by debug option, it
should either contains the actual requested size or the cache's
'object_size'.
But it's not true if that object is a kfence-allocated one, and the
data at 'orig_size' offset of metadata could be zero or other values.
This is not a big issue for current 'orig_size' usage, as init_object()
and check_object() during alloc/free process will be skipped for kfence
addresses. But it could cause trouble for other usage in future.
Use the existing kfence helper kfence_ksize() which can return the
real original request size.
Signed-off-by: Feng Tang <feng.tang@intel.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
|
|
cma_init_reserved_mem() checks base and size alignment with
CMA_MIN_ALIGNMENT_BYTES. However, some users might call this during early
boot when pageblock_order is 0. That means if base and size does not have
pageblock_order alignment, it can cause functional failures during cma
activate area.
So let's enforce pageblock_order to be non-zero during
cma_init_reserved_mem() to catch such wrong usages.
1. This was seen with fadump on PowerPC which was calling
cma_init_reserved_mem() before the pageblock_order was initialized.
This is now fixed in the fadump on PowerPC itself. The details of that
can be found in the patch including the userspace-visible effect of the
issue [1].
2. However it was also decided that we should add a stronger
enforcement check within cma_init_reserved_mem() to catch such wrong
usages [2]. Hence this patch. This is ok to be in -next and there is
no "Fixes" tag required for this patch.
[1]: https://lore.kernel.org/all/3ae208e48c0d9cefe53d2dc4f593388067405b7d.1729146153.git.ritesh.list@gmail.com/
[2]: https://lore.kernel.org/all/83eb128e-4f06-4725-a843-a4563f246a44@redhat.com/
Link: https://lkml.kernel.org/r/e274344b44d5f80fa54c52f530387257fe99ec65.1731505681.git.ritesh.list@gmail.com
Signed-off-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Faults from copy_from_kernel_nofault() need to be handled by fixup table
and should not be handled by kfence. Otherwise while reading /proc/kcore
which uses copy_from_kernel_nofault(), kfence can generate false
negatives. This can happen when /proc/kcore ends up reading an unmapped
address from kfence pool.
Let's add a testcase to cover this case.
Link: https://lkml.kernel.org/r/210e561f7845697a32de44b643393890f180069f.1729272697.git.ritesh.list@gmail.com
Signed-off-by: Nirjhar Roy <nirjhar@linux.ibm.com>
Co-developed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Tested-by: Marco Elver <elver@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This patch introduces a new counter to memory.stat that tracks hugeTLB
usage, only if hugeTLB accounting is done to memory.current. This feature
is enabled the same way hugeTLB accounting is enabled, via the
memory_hugetlb_accounting mount flag for cgroupsv2.
1. Why is this patch necessary?
Currently, memcg hugeTLB accounting is an opt-in feature [1] that adds
hugeTLB usage to memory.current. However, the metric is not reported in
memory.stat. Given that users often interpret memory.stat as a breakdown
of the value reported in memory.current, the disparity between the two
reports can be confusing. This patch solves this problem by including the
metric in memory.stat as well, but only if it is also reported in
memory.current (it would also be confusing if the value was reported in
memory.stat, but not in memory.current)
Aside from the consistency between the two files, we also see benefits in
observability. Userspace might be interested in the hugeTLB footprint of
cgroups for many reasons. For instance, system admins might want to
verify that hugeTLB usage is distributed as expected across tasks: i.e.
memory-intensive tasks are using more hugeTLB pages than tasks that don't
consume a lot of memory, or are seen to fault frequently. Note that this
is separate from wanting to inspect the distribution for limiting purposes
(in which case, hugeTLB controller makes more sense).
2. We already have a hugeTLB controller. Why not use that?
It is true that hugeTLB tracks the exact value that we want. In fact, by
enabling the hugeTLB controller, we get all of the observability benefits
that I mentioned above, and users can check the total hugeTLB usage,
verify if it is distributed as expected, etc.
With this said, there are 2 problems:
(a) They are still not reported in memory.stat, which means the
disparity between the memcg reports are still there.
(b) We cannot reasonably expect users to enable the hugeTLB controller
just for the sake of hugeTLB usage reporting, especially since
they don't have any use for hugeTLB usage enforcing [2].
3. Implementation Details:
In the alloc / free hugetlb functions, we call lruvec_stat_mod_folio
regardless of whether memcg accounts hugetlb. mem_cgroup_commit_charge
which is called from alloc_hugetlb_folio will set memcg for the folio only
if the CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING cgroup mount option is used, so
lruvec_stat_mod_folio accounts per-memcg hugetlb counters only if the
feature is enabled. Regardless of whether memcg accounts for hugetlb, the
newly added global counter is updated and shown in /proc/vmstat.
The global counter is added because vmstats is the preferred framework for
cgroup stats. It makes stat items consistent between global and cgroups.
It also provides a per-node breakdown, which is useful. Because it does
not use cgroup-specific hooks, we also keep generic MM code separate from
memcg code.
[1] https://lore.kernel.org/all/20231006184629.155543-1-nphamcs@gmail.com/
[2] Of course, we can't make a new patch for every feature that can be
duplicated. However, since the existing solution of enabling the
hugeTLB controller is an imperfect solution that still leaves a
discrepancy between memory.stat and memory.curent, I think that it
is reasonable to isolate the feature in this case.
Link: https://lkml.kernel.org/r/20241101204402.1885383-1-joshua.hahnjy@gmail.com
Signed-off-by: Joshua Hahn <joshua.hahnjy@gmail.com>
Suggested-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Shakeel Butt <shakeel.butt@linux.dev>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since 5.14-rc1, NUMA events will only be folded from per-CPU statistics to
per zone and global statistics when the user actually needs it.
Currently, the kernel has performs the fold operation when reading
/proc/vmstat, but does not perform the fold operation in /proc/zoneinfo.
This can lead to inaccuracies in the following statistics in zoneinfo:
- numa_hit
- numa_miss
- numa_foreign
- numa_interleave
- numa_local
- numa_other
Therefore, before printing per-zone vm_numa_event when reading
/proc/zoneinfo, we should also perform the fold operation.
Link: https://lkml.kernel.org/r/1730433998-10461-1-git-send-email-mengensun@tencent.com
Fixes: f19298b9516c ("mm/vmstat: convert NUMA statistics to basic NUMA counters")
Signed-off-by: MengEn Sun <mengensun@tencent.com>
Reviewed-by: JinLiang Zheng <alexjlzheng@tencent.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We triggered a NULL pointer dereference for ac.preferred_zoneref->zone in
alloc_pages_bulk_noprof() when the task is migrated between cpusets.
When cpuset is enabled, in prepare_alloc_pages(), ac->nodemask may be
¤t->mems_allowed. when first_zones_zonelist() is called to find
preferred_zoneref, the ac->nodemask may be modified concurrently if the
task is migrated between different cpusets. Assuming we have 2 NUMA Node,
when traversing Node1 in ac->zonelist, the nodemask is 2, and when
traversing Node2 in ac->zonelist, the nodemask is 1. As a result, the
ac->preferred_zoneref points to NULL zone.
In alloc_pages_bulk_noprof(), for_each_zone_zonelist_nodemask() finds a
allowable zone and calls zonelist_node_idx(ac.preferred_zoneref), leading
to NULL pointer dereference.
__alloc_pages_noprof() fixes this issue by checking NULL pointer in commit
ea57485af8f4 ("mm, page_alloc: fix check for NULL preferred_zone") and
commit df76cee6bbeb ("mm, page_alloc: remove redundant checks from alloc
fastpath").
To fix it, check NULL pointer for preferred_zoneref->zone.
Link: https://lkml.kernel.org/r/20241113083235.166798-1-tujinjiang@huawei.com
Fixes: 387ba26fb1cb ("mm/page_alloc: add a bulk page allocator")
Signed-off-by: Jinjiang Tu <tujinjiang@huawei.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Lobakin <alobakin@pm.me>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
On 32-bit platforms, it is possible for the expression `len + old_addr <
old_end` to be false-positive if `len + old_addr` wraps around.
`old_addr` is the cursor in the old range up to which page table entries
have been moved; so if the operation succeeded, `old_addr` is the *end* of
the old region, and adding `len` to it can wrap.
The overflow causes mremap() to mistakenly believe that PTEs have been
copied; the consequence is that mremap() bails out, but doesn't move the
PTEs back before the new VMA is unmapped, causing anonymous pages in the
region to be lost. So basically if userspace tries to mremap() a
private-anon region and hits this bug, mremap() will return an error and
the private-anon region's contents appear to have been zeroed.
The idea of this check is that `old_end - len` is the original start
address, and writing the check that way also makes it easier to read; so
fix the check by rearranging the comparison accordingly.
(An alternate fix would be to refactor this function by introducing an
"orig_old_start" variable or such.)
Tested in a VM with a 32-bit X86 kernel; without the patch:
```
user@horn:~/big_mremap$ cat test.c
#define _GNU_SOURCE
#include <stdlib.h>
#include <stdio.h>
#include <err.h>
#include <sys/mman.h>
#define ADDR1 ((void*)0x60000000)
#define ADDR2 ((void*)0x10000000)
#define SIZE 0x50000000uL
int main(void) {
unsigned char *p1 = mmap(ADDR1, SIZE, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED_NOREPLACE, -1, 0);
if (p1 == MAP_FAILED)
err(1, "mmap 1");
unsigned char *p2 = mmap(ADDR2, SIZE, PROT_NONE,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED_NOREPLACE, -1, 0);
if (p2 == MAP_FAILED)
err(1, "mmap 2");
*p1 = 0x41;
printf("first char is 0x%02hhx\n", *p1);
unsigned char *p3 = mremap(p1, SIZE, SIZE,
MREMAP_MAYMOVE|MREMAP_FIXED, p2);
if (p3 == MAP_FAILED) {
printf("mremap() failed; first char is 0x%02hhx\n", *p1);
} else {
printf("mremap() succeeded; first char is 0x%02hhx\n", *p3);
}
}
user@horn:~/big_mremap$ gcc -static -o test test.c
user@horn:~/big_mremap$ setarch -R ./test
first char is 0x41
mremap() failed; first char is 0x00
```
With the patch:
```
user@horn:~/big_mremap$ setarch -R ./test
first char is 0x41
mremap() succeeded; first char is 0x41
```
Link: https://lkml.kernel.org/r/20241111-fix-mremap-32bit-wrap-v1-1-61d6be73b722@google.com
Fixes: af8ca1c14906 ("mm/mremap: optimize the start addresses in move_page_tables()")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Acked-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There are two flags used to synchronize allocation and scanning with
swapoff: SWP_WRITEOK and SWP_SCANNING.
SWP_WRITEOK: Swapoff will first unset this flag, at this point any further
swap allocation or scanning on this device should just abort so no more
new entries will be referencing this device. Swapoff will then unuse all
existing swap entries.
SWP_SCANNING: This flag is set when device is being scanned. Swapoff will
wait for all scanner to stop before the final release of the swap device
structures to avoid UAF. Note this flag is the highest used bit of
si->flags so it could be added up arithmetically, if there are multiple
scanner.
commit 5f843a9a3a1e ("mm: swap: separate SSD allocation from
scan_swap_map_slots()") ignored SWP_SCANNING and SWP_WRITEOK flags while
separating cluster allocation path from the old allocation path. Add the
flags back to fix swapoff race. The race is hard to trigger as si->lock
prevents most parallel operations, but si->lock could be dropped for
reclaim or discard. This issue is found during code review.
This commit fixes this problem. For SWP_SCANNING, Just like before, set
the flag before scan and remove it afterwards.
For SWP_WRITEOK, there are several places where si->lock could be dropped,
it will be error-prone and make the code hard to follow if we try to cover
these places one by one. So just do one check before the real allocation,
which is also very similar like before. With new cluster allocator it may
waste a bit of time iterating the clusters but won't take long, and
swapoff is not performance sensitive.
Link: https://lkml.kernel.org/r/20241112083414.78174-1-ryncsn@gmail.com
Fixes: 5f843a9a3a1e ("mm: swap: separate SSD allocation from scan_swap_map_slots()")
Reported-by: "Huang, Ying" <ying.huang@intel.com>
Closes: https://lore.kernel.org/linux-mm/87a5es3f1f.fsf@yhuang6-desk2.ccr.corp.intel.com/
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Cross-merge networking fixes after downstream PR (net-6.12-rc8).
Conflicts:
tools/testing/selftests/net/.gitignore
252e01e68241 ("selftests: net: add netlink-dumps to .gitignore")
be43a6b23829 ("selftests: ncdevmem: Move ncdevmem under drivers/net/hw")
https://lore.kernel.org/all/20241113122359.1b95180a@canb.auug.org.au/
drivers/net/phy/phylink.c
671154f174e0 ("net: phylink: ensure PHY momentary link-fails are handled")
7530ea26c810 ("net: phylink: remove "using_mac_select_pcs"")
Adjacent changes:
drivers/net/ethernet/stmicro/stmmac/dwmac-intel-plat.c
5b366eae7193 ("stmmac: dwmac-intel-plat: fix call balance of tx_clk handling routines")
e96321fad3ad ("net: ethernet: Switch back to struct platform_driver::remove()")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
'for-next/tlb', 'for-next/misc', 'for-next/mte', 'for-next/sysreg', 'for-next/stacktrace', 'for-next/hwcap3', 'for-next/kselftest', 'for-next/crc32', 'for-next/guest-cca', 'for-next/haft' and 'for-next/scs', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf:
perf: Switch back to struct platform_driver::remove()
perf: arm_pmuv3: Add support for Samsung Mongoose PMU
dt-bindings: arm: pmu: Add Samsung Mongoose core compatible
perf/dwc_pcie: Fix typos in event names
perf/dwc_pcie: Add support for Ampere SoCs
ARM: pmuv3: Add missing write_pmuacr()
perf/marvell: Marvell PEM performance monitor support
perf/arm_pmuv3: Add PMUv3.9 per counter EL0 access control
perf/dwc_pcie: Convert the events with mixed case to lowercase
perf/cxlpmu: Support missing events in 3.1 spec
perf: imx_perf: add support for i.MX91 platform
dt-bindings: perf: fsl-imx-ddr: Add i.MX91 compatible
drivers perf: remove unused field pmu_node
* for-next/gcs: (42 commits)
: arm64 Guarded Control Stack user-space support
kselftest/arm64: Fix missing printf() argument in gcs/gcs-stress.c
arm64/gcs: Fix outdated ptrace documentation
kselftest/arm64: Ensure stable names for GCS stress test results
kselftest/arm64: Validate that GCS push and write permissions work
kselftest/arm64: Enable GCS for the FP stress tests
kselftest/arm64: Add a GCS stress test
kselftest/arm64: Add GCS signal tests
kselftest/arm64: Add test coverage for GCS mode locking
kselftest/arm64: Add a GCS test program built with the system libc
kselftest/arm64: Add very basic GCS test program
kselftest/arm64: Always run signals tests with GCS enabled
kselftest/arm64: Allow signals tests to specify an expected si_code
kselftest/arm64: Add framework support for GCS to signal handling tests
kselftest/arm64: Add GCS as a detected feature in the signal tests
kselftest/arm64: Verify the GCS hwcap
arm64: Add Kconfig for Guarded Control Stack (GCS)
arm64/ptrace: Expose GCS via ptrace and core files
arm64/signal: Expose GCS state in signal frames
arm64/signal: Set up and restore the GCS context for signal handlers
arm64/mm: Implement map_shadow_stack()
...
* for-next/probes:
: Various arm64 uprobes/kprobes cleanups
arm64: insn: Simulate nop instruction for better uprobe performance
arm64: probes: Remove probe_opcode_t
arm64: probes: Cleanup kprobes endianness conversions
arm64: probes: Move kprobes-specific fields
arm64: probes: Fix uprobes for big-endian kernels
arm64: probes: Fix simulate_ldr*_literal()
arm64: probes: Remove broken LDR (literal) uprobe support
* for-next/asm-offsets:
: arm64 asm-offsets.c cleanup (remove unused offsets)
arm64: asm-offsets: remove PREEMPT_DISABLE_OFFSET
arm64: asm-offsets: remove DMA_{TO,FROM}_DEVICE
arm64: asm-offsets: remove VM_EXEC and PAGE_SZ
arm64: asm-offsets: remove MM_CONTEXT_ID
arm64: asm-offsets: remove COMPAT_{RT_,SIGFRAME_REGS_OFFSET
arm64: asm-offsets: remove VMA_VM_*
arm64: asm-offsets: remove TSK_ACTIVE_MM
* for-next/tlb:
: TLB flushing optimisations
arm64: optimize flush tlb kernel range
arm64: tlbflush: add __flush_tlb_range_limit_excess()
* for-next/misc:
: Miscellaneous patches
arm64: tls: Fix context-switching of tpidrro_el0 when kpti is enabled
arm64/ptrace: Clarify documentation of VL configuration via ptrace
acpi/arm64: remove unnecessary cast
arm64/mm: Change protval as 'pteval_t' in map_range()
arm64: uprobes: Optimize cache flushes for xol slot
acpi/arm64: Adjust error handling procedure in gtdt_parse_timer_block()
arm64: fix .data.rel.ro size assertion when CONFIG_LTO_CLANG
arm64/ptdump: Test both PTE_TABLE_BIT and PTE_VALID for block mappings
arm64/mm: Sanity check PTE address before runtime P4D/PUD folding
arm64/mm: Drop setting PTE_TYPE_PAGE in pte_mkcont()
ACPI: GTDT: Tighten the check for the array of platform timer structures
arm64/fpsimd: Fix a typo
arm64: Expose ID_AA64ISAR1_EL1.XS to sanitised feature consumers
arm64: Return early when break handler is found on linked-list
arm64/mm: Re-organize arch_make_huge_pte()
arm64/mm: Drop _PROT_SECT_DEFAULT
arm64: Add command-line override for ID_AA64MMFR0_EL1.ECV
arm64: head: Drop SWAPPER_TABLE_SHIFT
arm64: cpufeature: add POE to cpucap_is_possible()
arm64/mm: Change pgattr_change_is_safe() arguments as pteval_t
* for-next/mte:
: Various MTE improvements
selftests: arm64: add hugetlb mte tests
hugetlb: arm64: add mte support
* for-next/sysreg:
: arm64 sysreg updates
arm64/sysreg: Update ID_AA64MMFR1_EL1 to DDI0601 2024-09
* for-next/stacktrace:
: arm64 stacktrace improvements
arm64: preserve pt_regs::stackframe during exec*()
arm64: stacktrace: unwind exception boundaries
arm64: stacktrace: split unwind_consume_stack()
arm64: stacktrace: report recovered PCs
arm64: stacktrace: report source of unwind data
arm64: stacktrace: move dump_backtrace() to kunwind_stack_walk()
arm64: use a common struct frame_record
arm64: pt_regs: swap 'unused' and 'pmr' fields
arm64: pt_regs: rename "pmr_save" -> "pmr"
arm64: pt_regs: remove stale big-endian layout
arm64: pt_regs: assert pt_regs is a multiple of 16 bytes
* for-next/hwcap3:
: Add AT_HWCAP3 support for arm64 (also wire up AT_HWCAP4)
arm64: Support AT_HWCAP3
binfmt_elf: Wire up AT_HWCAP3 at AT_HWCAP4
* for-next/kselftest: (30 commits)
: arm64 kselftest fixes/cleanups
kselftest/arm64: Try harder to generate different keys during PAC tests
kselftest/arm64: Don't leak pipe fds in pac.exec_sign_all()
kselftest/arm64: Corrupt P0 in the irritator when testing SSVE
kselftest/arm64: Add FPMR coverage to fp-ptrace
kselftest/arm64: Expand the set of ZA writes fp-ptrace does
kselftets/arm64: Use flag bits for features in fp-ptrace assembler code
kselftest/arm64: Enable build of PAC tests with LLVM=1
kselftest/arm64: Check that SVCR is 0 in signal handlers
kselftest/arm64: Fix printf() compiler warnings in the arm64 syscall-abi.c tests
kselftest/arm64: Fix printf() warning in the arm64 MTE prctl() test
kselftest/arm64: Fix printf() compiler warnings in the arm64 fp tests
kselftest/arm64: Fix build with stricter assemblers
kselftest/arm64: Test signal handler state modification in fp-stress
kselftest/arm64: Provide a SIGUSR1 handler in the kernel mode FP stress test
kselftest/arm64: Implement irritators for ZA and ZT
kselftest/arm64: Remove unused ADRs from irritator handlers
kselftest/arm64: Correct misleading comments on fp-stress irritators
kselftest/arm64: Poll less often while waiting for fp-stress children
kselftest/arm64: Increase frequency of signal delivery in fp-stress
kselftest/arm64: Fix encoding for SVE B16B16 test
...
* for-next/crc32:
: Optimise CRC32 using PMULL instructions
arm64/crc32: Implement 4-way interleave using PMULL
arm64/crc32: Reorganize bit/byte ordering macros
arm64/lib: Handle CRC-32 alternative in C code
* for-next/guest-cca:
: Support for running Linux as a guest in Arm CCA
arm64: Document Arm Confidential Compute
virt: arm-cca-guest: TSM_REPORT support for realms
arm64: Enable memory encrypt for Realms
arm64: mm: Avoid TLBI when marking pages as valid
arm64: Enforce bounce buffers for realm DMA
efi: arm64: Map Device with Prot Shared
arm64: rsi: Map unprotected MMIO as decrypted
arm64: rsi: Add support for checking whether an MMIO is protected
arm64: realm: Query IPA size from the RMM
arm64: Detect if in a realm and set RIPAS RAM
arm64: rsi: Add RSI definitions
* for-next/haft:
: Support for arm64 FEAT_HAFT
arm64: pgtable: Warn unexpected pmdp_test_and_clear_young()
arm64: Enable ARCH_HAS_NONLEAF_PMD_YOUNG
arm64: Add support for FEAT_HAFT
arm64: setup: name 'tcr2' register
arm64/sysreg: Update ID_AA64MMFR1_EL1 register
* for-next/scs:
: Dynamic shadow call stack fixes
arm64/scs: Drop unused prototype __pi_scs_patch_vmlinux()
arm64/scs: Deal with 64-bit relative offsets in FDE frames
arm64/scs: Fix handling of DWARF augmentation data in CIE/FDE frames
|
|
Cross-merge bpf fixes after downstream PR.
In particular to bring the fix in
commit aa30eb3260b2 ("bpf: Force checkpoint when jmp history is too long").
The follow up verifier work depends on it.
And the fix in
commit 6801cf7890f2 ("selftests/bpf: Use -4095 as the bad address for bits iterator").
It's fixing instability of BPF CI on s390 arch.
No conflicts.
Adjacent changes in:
Auto-merging arch/Kconfig
Auto-merging kernel/bpf/helpers.c
Auto-merging kernel/bpf/memalloc.c
Auto-merging kernel/bpf/verifier.c
Auto-merging mm/slab_common.c
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc fixes from Andrew Morton:
"10 hotfixes, 7 of which are cc:stable. 7 are MM, 3 are not. All
singletons"
* tag 'mm-hotfixes-stable-2024-11-12-16-39' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
mm: swapfile: fix cluster reclaim work crash on rotational devices
selftests: hugetlb_dio: fixup check for initial conditions to skip in the start
mm/thp: fix deferred split queue not partially_mapped: fix
mm/gup: avoid an unnecessary allocation call for FOLL_LONGTERM cases
nommu: pass NULL argument to vma_iter_prealloc()
ocfs2: fix UBSAN warning in ocfs2_verify_volume()
nilfs2: fix null-ptr-deref in block_dirty_buffer tracepoint
nilfs2: fix null-ptr-deref in block_touch_buffer tracepoint
mm: page_alloc: move mlocked flag clearance into free_pages_prepare()
mm: count zeromap read and set for swapout and swapin
|
|
On some filesystems, it is currently possible to create a transient
data inconsistency between pagecache and on-disk state. For example,
on a 1k block size ext4 filesystem:
$ xfs_io -fc "pwrite 0 2k" -c "mmap 0 4k" -c "mwrite 2k 2k" \
-c "truncate 8k" -c "fiemap -v" -c "pread -v 2k 16" <file>
...
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..3]: 17410..17413 4 0x1
1: [4..15]: hole 12
00000800: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
$ umount <mnt>; mount <dev> <mnt>
$ xfs_io -c "pread -v 2k 16" <file>
00000800: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
This allocates and writes two 1k blocks, map writes to the post-eof
portion of the (4k) eof folio, extends the file, and then shows that
the post-eof data is not cleared before the file size is extended.
The result is pagecache with a clean and uptodate folio over a hole
that returns non-zero data. Once reclaimed, pagecache begins to
return valid data.
Some filesystems avoid this problem by flushing the EOF folio before
inode size extension. This triggers writeback time partial post-eof
zeroing. XFS explicitly zeroes newly exposed file ranges via
iomap_zero_range(), but this includes a hack to flush dirty but
hole-backed folios, which means writeback actually does the zeroing
in this particular case as well. bcachefs explicitly flushes the eof
folio on truncate extension to the same effect, but doesn't handle
the analogous write extension case (i.e., replace "truncate 8k" with
"pwrite 4k 4k" in the above example command to reproduce the same
problem on bcachefs). btrfs doesn't seem to support subpage block
sizes.
The two main options to avoid this behavior are to either flush or
do the appropriate zeroing during size extending operations. Zeroing
is only required when the size change exposes ranges of the file
that haven't been directly written, such as a write or truncate that
starts beyond the current eof. The pagecache_isize_extended() helper
is already used for this particular scenario. It currently cleans
any pte's for the eof folio to ensure preexisting mappings fault and
allow the filesystem to take action based on the updated inode size.
This is required to ensure the folio is fully backed by allocated
blocks, for example, but this also happens to be the same scenario
zeroing is required.
Update pagecache_isize_extended() to zero the post-eof range of the
eof folio if it is dirty at the time of the size change, since
writeback now won't have the chance. If non-dirty, the folio has
either not been written or the post-eof portion was zeroed by
writeback.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Link: https://patch.msgid.link/20240919160741.208162-3-bfoster@redhat.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
syzbot and Daan report a NULL pointer crash in the new full swap cluster
reclaim work:
> Oops: general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN PTI
> KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
> CPU: 1 UID: 0 PID: 51 Comm: kworker/1:1 Not tainted 6.12.0-rc6-syzkaller #0
> Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
> Workqueue: events swap_reclaim_work
> RIP: 0010:__list_del_entry_valid_or_report+0x20/0x1c0 lib/list_debug.c:49
> Code: 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 48 89 fe 48 83 c7 08 48 83 ec 18 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 19 01 00 00 48 89 f2 48 8b 4e 08 48 b8 00 00 00
> RSP: 0018:ffffc90000bb7c30 EFLAGS: 00010202
> RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffff88807b9ae078
> RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000000000000008
> RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000000
> R10: 0000000000000001 R11: 000000000000004f R12: dffffc0000000000
> R13: ffffffffffffffb8 R14: ffff88807b9ae000 R15: ffffc90003af1000
> FS: 0000000000000000(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000
> CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
> CR2: 00007fffaca68fb8 CR3: 00000000791c8000 CR4: 00000000003526f0
> DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
> DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
> Call Trace:
> <TASK>
> __list_del_entry_valid include/linux/list.h:124 [inline]
> __list_del_entry include/linux/list.h:215 [inline]
> list_move_tail include/linux/list.h:310 [inline]
> swap_reclaim_full_clusters+0x109/0x460 mm/swapfile.c:748
> swap_reclaim_work+0x2e/0x40 mm/swapfile.c:779
The syzbot console output indicates a virtual environment where swapfile
is on a rotational device. In this case, clusters aren't actually used,
and si->full_clusters is not initialized. Daan's report is from qemu, so
likely rotational too.
Make sure to only schedule the cluster reclaim work when clusters are
actually in use.
Link: https://lkml.kernel.org/r/20241107142335.GB1172372@cmpxchg.org
Link: https://lore.kernel.org/lkml/672ac50b.050a0220.2edce.1517.GAE@google.com/
Link: https://github.com/systemd/systemd/issues/35044
Fixes: 5168a68eb78f ("mm, swap: avoid over reclaim of full clusters")
Reported-by: syzbot+078be8bfa863cb9e0c6b@syzkaller.appspotmail.com
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Daan De Meyer <daan.j.demeyer@gmail.com>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Though even more elusive than before, list_del corruption has still been
seen on THP's deferred split queue.
The idea in commit e66f3185fa04 was right, but its implementation wrong.
The context omitted an important comment just before the critical test:
"split_folio() removes folio from list on success." In ignoring that
comment, when a THP split succeeded, the code went on to release the
preceding safe folio, preserving instead an irrelevant (formerly head)
folio: which gives no safety because it's not on the list. Fix the logic.
Link: https://lkml.kernel.org/r/3c995a30-31ce-0998-1b9f-3a2cb9354c91@google.com
Fixes: e66f3185fa04 ("mm/thp: fix deferred split queue not partially_mapped")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Usama Arif <usamaarif642@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
commit 53ba78de064b ("mm/gup: introduce
check_and_migrate_movable_folios()") created a new constraint on the
pin_user_pages*() API family: a potentially large internal allocation must
now occur, for FOLL_LONGTERM cases.
A user-visible consequence has now appeared: user space can no longer pin
more than 2GB of memory anymore on x86_64. That's because, on a 4KB
PAGE_SIZE system, when user space tries to (indirectly, via a device
driver that calls pin_user_pages()) pin 2GB, this requires an allocation
of a folio pointers array of MAX_PAGE_ORDER size, which is the limit for
kmalloc().
In addition to the directly visible effect described above, there is also
the problem of adding an unnecessary allocation. The **pages array
argument has already been allocated, and there is no need for a redundant
**folios array allocation in this case.
Fix this by avoiding the new allocation entirely. This is done by
referring to either the original page[i] within **pages, or to the
associated folio. Thanks to David Hildenbrand for suggesting this
approach and for providing the initial implementation (which I've tested
and adjusted slightly) as well.
[jhubbard@nvidia.com: whitespace tweak, per David]
Link: https://lkml.kernel.org/r/131cf9c8-ebc0-4cbb-b722-22fa8527bf3c@nvidia.com
[jhubbard@nvidia.com: bypass pofs_get_folio(), per Oscar]
Link: https://lkml.kernel.org/r/c1587c7f-9155-45be-bd62-1e36c0dd6923@nvidia.com
Link: https://lkml.kernel.org/r/20241105032944.141488-2-jhubbard@nvidia.com
Fixes: 53ba78de064b ("mm/gup: introduce check_and_migrate_movable_folios()")
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Vivek Kasireddy <vivek.kasireddy@intel.com>
Cc: Dave Airlie <airlied@redhat.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Dongwon Kim <dongwon.kim@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Junxiao Chang <junxiao.chang@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Common SMMUv3 patches for the following patches adding nesting, shared
branch with the iommu tree.
* 'iommufd/arm-smmuv3-nested' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/iommu/linux:
iommu/arm-smmu-v3: Expose the arm_smmu_attach interface
iommu/arm-smmu-v3: Implement IOMMU_HWPT_ALLOC_NEST_PARENT
iommu/arm-smmu-v3: Support IOMMU_GET_HW_INFO via struct arm_smmu_hw_info
iommu/arm-smmu-v3: Report IOMMU_CAP_ENFORCE_CACHE_COHERENCY for CANWBS
ACPI/IORT: Support CANWBS memory access flag
ACPICA: IORT: Update for revision E.f
vfio: Remove VFIO_TYPE1_NESTING_IOMMU
...
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
|
|
Since 7d6be67cfdd4 ("mm: mmap_lock: replace get_memcg_path_buf() with
on-stack buffer") we use trace_mmap_lock_reg()/unreg() only to maintain an
atomic reg_refcount which is checked to avoid performing
get_mm_memcg_path() in case none of the tracepoints using it is enabled.
This can be achieved directly by putting all the work needed for the
tracepoint behind the trace_mmap_lock_##type##_enabled(), as suggested by
Documentation/trace/tracepoints.rst and with the following advantages:
- uses the tracepoint's static key instead of evaluating a branch
- the check tracepoint specific, not shared by all of them
- we can get rid of trace_mmap_lock_reg()/unreg() completely
Thus use the trace_..._enabled() check and remove unnecessary code.
Link: https://lkml.kernel.org/r/20241105113456.95066-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Axel Rasmussen <axelrasmussen@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
pud_init(), pmd_init() and kernel_pte_init() are duplicated defined in
file kasan.c and sparse-vmemmap.c as weak functions. Move them to generic
header file pgtable.h, architecture can redefine them.
Link: https://lkml.kernel.org/r/20241104070712.52902-1-maobibo@loongson.cn
Signed-off-by: Bibo Mao <maobibo@loongson.cn>
Reviewed-by: Huacai Chen <chenhuacai@loongson.cn>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The introduction of iova_depot_pop() in 911aa1245da8 ("iommu/iova: Make
the rcache depot scale better") confused kmemleak by moving a struct
iova_magazine object from a singly linked list to rcache->depot and
resetting the 'next' pointer referencing it. Unlike doubly linked lists,
the content of the object being referred is never changed on removal from
a singly linked list and the kmemleak checksum heuristics do not detect
such scenario. This leads to false positives like:
unreferenced object 0xffff8881a5301000 (size 1024):
comm "softirq", pid 0, jiffies 4306297099 (age 462.991s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 e7 7d 05 00 00 00 00 00 .........}......
0f b4 05 00 00 00 00 00 b4 96 05 00 00 00 00 00 ................
backtrace:
[<ffffffff819f5f08>] __kmem_cache_alloc_node+0x1e8/0x320
[<ffffffff818a239a>] kmalloc_trace+0x2a/0x60
[<ffffffff8231d31e>] free_iova_fast+0x28e/0x4e0
[<ffffffff82310860>] fq_ring_free_locked+0x1b0/0x310
[<ffffffff8231225d>] fq_flush_timeout+0x19d/0x2e0
[<ffffffff813e95ba>] call_timer_fn+0x19a/0x5c0
[<ffffffff813ea16b>] __run_timers+0x78b/0xb80
[<ffffffff813ea5bd>] run_timer_softirq+0x5d/0xd0
[<ffffffff82f1d915>] __do_softirq+0x205/0x8b5
Introduce kmemleak_transient_leak() which resets the object checksum
requiring another scan pass before it is reported (if still unreferenced).
Call this new API in iova_depot_pop().
Link: https://lkml.kernel.org/r/20241104111944.2207155-1-catalin.marinas@arm.com
Link: https://lore.kernel.org/r/ZY1osaGLyT-sdKE8@shredder/
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Ido Schimmel <idosch@idosch.org>
Tested-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now isolation no longer takes the list_lru global node lock, only use the
per-cgroup lock instead. And this lock is inside the list_lru_one being
walked, no longer needed to pass the lock explicitly.
Link: https://lkml.kernel.org/r/20241104175257.60853-7-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, every list_lru has a per-node lock that protects adding,
deletion, isolation, and reparenting of all list_lru_one instances
belonging to this list_lru on this node. This lock contention is heavy
when multiple cgroups modify the same list_lru.
This lock can be split into per-cgroup scope to reduce contention.
To achieve this, we need a stable list_lru_one for every cgroup. This
commit adds a lock to each list_lru_one and introduced a helper function
lock_list_lru_of_memcg, making it possible to pin the list_lru of a memcg.
Then reworked the reparenting process.
Reparenting will switch the list_lru_one instances one by one. By locking
each instance and marking it dead using the nr_items counter, reparenting
ensures that all items in the corresponding cgroup (on-list or not,
because items have a stable cgroup, see below) will see the list_lru_one
switch synchronously.
Objcg reparent is also moved after list_lru reparent so items will have a
stable mem cgroup until all list_lru_one instances are drained.
The only caller that doesn't work the *_obj interfaces are direct calls to
list_lru_{add,del}. But it's only used by zswap and that's also based on
objcg, so it's fine.
This also changes the bahaviour of the isolation function when LRU_RETRY
or LRU_REMOVED_RETRY is returned, because now releasing the lock could
unblock reparenting and free the list_lru_one, isolation function will
have to return withoug re-lock the lru.
prepare() {
mkdir /tmp/test-fs
modprobe brd rd_nr=1 rd_size=33554432
mkfs.xfs -f /dev/ram0
mount -t xfs /dev/ram0 /tmp/test-fs
for i in $(seq 1 512); do
mkdir "/tmp/test-fs/$i"
for j in $(seq 1 10240); do
echo TEST-CONTENT > "/tmp/test-fs/$i/$j"
done &
done; wait
}
do_test() {
read_worker() {
sleep 1
tar -cv "$1" &>/dev/null
}
read_in_all() {
cd "/tmp/test-fs" && ls
for i in $(seq 1 512); do
(exec sh -c 'echo "$PPID"') > "/sys/fs/cgroup/benchmark/$i/cgroup.procs"
read_worker "$i" &
done; wait
}
for i in $(seq 1 512); do
mkdir -p "/sys/fs/cgroup/benchmark/$i"
done
echo +memory > /sys/fs/cgroup/benchmark/cgroup.subtree_control
echo 512M > /sys/fs/cgroup/benchmark/memory.max
echo 3 > /proc/sys/vm/drop_caches
time read_in_all
}
Above script simulates compression of small files in multiple cgroups
with memory pressure. Run prepare() then do_test for 6 times:
Before:
real 0m7.762s user 0m11.340s sys 3m11.224s
real 0m8.123s user 0m11.548s sys 3m2.549s
real 0m7.736s user 0m11.515s sys 3m11.171s
real 0m8.539s user 0m11.508s sys 3m7.618s
real 0m7.928s user 0m11.349s sys 3m13.063s
real 0m8.105s user 0m11.128s sys 3m14.313s
After this commit (about ~15% faster):
real 0m6.953s user 0m11.327s sys 2m42.912s
real 0m7.453s user 0m11.343s sys 2m51.942s
real 0m6.916s user 0m11.269s sys 2m43.957s
real 0m6.894s user 0m11.528s sys 2m45.346s
real 0m6.911s user 0m11.095s sys 2m43.168s
real 0m6.773s user 0m11.518s sys 2m40.774s
Link: https://lkml.kernel.org/r/20241104175257.60853-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, there is a lot of code for detecting reparent racing using
kmemcg_id as the synchronization flag. And an intermediate table is
required to record and compare the kmemcg_id.
We can simplify this by just checking the cgroup css status, skip if
cgroup is being offlined. On the reparenting side, ensure no more
allocation is on going and no further allocation will occur by using the
XArray lock as barrier.
Combined with a O(n^2) top-down walk for the allocation, we get rid of the
intermediate table allocation completely. Despite being O(n^2), it should
be actually faster because it's not practical to have a very deep cgroup
level, and in most cases the parent cgroup should have been allocated
already.
This also avoided changing kmemcg_id before reparenting, making cgroups
have a stable index for list_lru_memcg. After this change it's possible
that a dying cgroup will see a NULL value in XArray corresponding to the
kmemcg_id, because the kmemcg_id will point to an empty slot. In such
case, just fallback to use its parent.
As a result the code is simpler, following test also showed a very slight
performance gain (12 test runs):
prepare() {
mkdir /tmp/test-fs
modprobe brd rd_nr=1 rd_size=16777216
mkfs.xfs -f /dev/ram0
mount -t xfs /dev/ram0 /tmp/test-fs
for i in $(seq 10000); do
seq 8000 > "/tmp/test-fs/$i"
done
mkdir -p /sys/fs/cgroup/system.slice/bench/test/1
echo +memory > /sys/fs/cgroup/system.slice/bench/cgroup.subtree_control
echo +memory > /sys/fs/cgroup/system.slice/bench/test/cgroup.subtree_control
echo +memory > /sys/fs/cgroup/system.slice/bench/test/1/cgroup.subtree_control
echo 768M > /sys/fs/cgroup/system.slice/bench/memory.max
}
do_test() {
read_worker() {
mkdir -p "/sys/fs/cgroup/system.slice/bench/test/1/$1"
echo $BASHPID > "/sys/fs/cgroup/system.slice/bench/test/1/$1/cgroup.procs"
read -r __TMP < "/tmp/test-fs/$1";
}
read_in_all() {
for i in $(seq 10000); do
read_worker "$i" &
done; wait
}
echo 3 > /proc/sys/vm/drop_caches
time read_in_all
for i in $(seq 1 10000); do
rmdir "/sys/fs/cgroup/system.slice/bench/test/1/$i" &>/dev/null
done
}
Before:
real 0m3.498s user 0m11.037s sys 0m35.872s
real 1m33.860s user 0m11.593s sys 3m1.169s
real 1m31.883s user 0m11.265s sys 2m59.198s
real 1m32.394s user 0m11.294s sys 3m1.616s
real 1m31.017s user 0m11.379s sys 3m1.349s
real 1m31.931s user 0m11.295s sys 2m59.863s
real 1m32.758s user 0m11.254s sys 2m59.538s
real 1m35.198s user 0m11.145s sys 3m1.123s
real 1m30.531s user 0m11.393s sys 2m58.089s
real 1m31.142s user 0m11.333s sys 3m0.549s
After:
real 0m3.489s user 0m10.943s sys 0m36.036s
real 1m10.893s user 0m11.495s sys 2m38.545s
real 1m29.129s user 0m11.382s sys 3m1.601s
real 1m29.944s user 0m11.494s sys 3m1.575s
real 1m31.208s user 0m11.451s sys 2m59.693s
real 1m25.944s user 0m11.327s sys 2m56.394s
real 1m28.599s user 0m11.312s sys 3m0.162s
real 1m26.746s user 0m11.538s sys 2m55.462s
real 1m30.668s user 0m11.475s sys 3m2.075s
real 1m29.258s user 0m11.292s sys 3m0.780s
Which is slightly faster in real time.
Link: https://lkml.kernel.org/r/20241104175257.60853-5-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
No feature change, just change of code structure and fix comment.
The list lrus are not empty until memcg_reparent_list_lru_node() calls are
all done, so the comments in memcg_offline_kmem were slightly inaccurate.
Link: https://lkml.kernel.org/r/20241104175257.60853-4-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Muchun Song <muchun.song@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It's no longer used by any module, just remove it.
Link: https://lkml.kernel.org/r/20241104175257.60853-3-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Muchun Song <muchun.song@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm/list_lru: Split list_lru lock into per-cgroup scope".
When LOCKDEP is not enabled, lock_class_key is an empty struct that is
never used. But the list_lru initialization function still takes a
placeholder pointer as parameter, and the compiler cannot optimize it
because the function is not static and exported.
Remove this parameter and move it inside the list_lru struct. Only use it
when LOCKDEP is enabled. Kernel builds with LOCKDEP will be slightly
larger, while !LOCKDEP builds without it will be slightly smaller (the
common case).
Link: https://lkml.kernel.org/r/20241104175257.60853-1-ryncsn@gmail.com
Link: https://lkml.kernel.org/r/20241104175257.60853-2-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The Kunit tests for kmalloc_track_caller and kmalloc_node_track_caller
were missing in kasan_test_c.c, which check that these functions poison
the memory properly.
Add a Kunit test:
-> kmalloc_tracker_caller_oob_right(): This includes out-of-bounds
access test for kmalloc_track_caller and kmalloc_node_track_caller.
Link: https://lkml.kernel.org/r/20241014190128.442059-1-niharchaithanya@gmail.com
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216509
Signed-off-by: Nihar Chaithanya <niharchaithanya@gmail.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When deleting a vma entry from a maple tree, it has to pass NULL to
vma_iter_prealloc() in order to calculate internal state of the tree, but
it passed a wrong argument. As a result, nommu kernels crashed upon
accessing a vma iterator, such as acct_collect() reading the size of vma
entries after do_munmap().
This commit fixes this issue by passing a right argument to the
preallocation call.
Link: https://lkml.kernel.org/r/20241108222834.3625217-1-thehajime@gmail.com
Fixes: b5df09226450 ("mm: set up vma iterator for vma_iter_prealloc() calls")
Signed-off-by: Hajime Tazaki <thehajime@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Syzbot reported a bad page state problem caused by a page being freed
using free_page() still having a mlocked flag at free_pages_prepare()
stage:
BUG: Bad page state in process syz.5.504 pfn:61f45
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x61f45
flags: 0xfff00000080204(referenced|workingset|mlocked|node=0|zone=1|lastcpupid=0x7ff)
raw: 00fff00000080204 0000000000000000 dead000000000122 0000000000000000
raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
page_owner tracks the page as allocated
page last allocated via order 0, migratetype Unmovable, gfp_mask 0x400dc0(GFP_KERNEL_ACCOUNT|__GFP_ZERO), pid 8443, tgid 8442 (syz.5.504), ts 201884660643, free_ts 201499827394
set_page_owner include/linux/page_owner.h:32 [inline]
post_alloc_hook+0x1f3/0x230 mm/page_alloc.c:1537
prep_new_page mm/page_alloc.c:1545 [inline]
get_page_from_freelist+0x303f/0x3190 mm/page_alloc.c:3457
__alloc_pages_noprof+0x292/0x710 mm/page_alloc.c:4733
alloc_pages_mpol_noprof+0x3e8/0x680 mm/mempolicy.c:2265
kvm_coalesced_mmio_init+0x1f/0xf0 virt/kvm/coalesced_mmio.c:99
kvm_create_vm virt/kvm/kvm_main.c:1235 [inline]
kvm_dev_ioctl_create_vm virt/kvm/kvm_main.c:5488 [inline]
kvm_dev_ioctl+0x12dc/0x2240 virt/kvm/kvm_main.c:5530
__do_compat_sys_ioctl fs/ioctl.c:1007 [inline]
__se_compat_sys_ioctl+0x510/0xc90 fs/ioctl.c:950
do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
__do_fast_syscall_32+0xb4/0x110 arch/x86/entry/common.c:386
do_fast_syscall_32+0x34/0x80 arch/x86/entry/common.c:411
entry_SYSENTER_compat_after_hwframe+0x84/0x8e
page last free pid 8399 tgid 8399 stack trace:
reset_page_owner include/linux/page_owner.h:25 [inline]
free_pages_prepare mm/page_alloc.c:1108 [inline]
free_unref_folios+0xf12/0x18d0 mm/page_alloc.c:2686
folios_put_refs+0x76c/0x860 mm/swap.c:1007
free_pages_and_swap_cache+0x5c8/0x690 mm/swap_state.c:335
__tlb_batch_free_encoded_pages mm/mmu_gather.c:136 [inline]
tlb_batch_pages_flush mm/mmu_gather.c:149 [inline]
tlb_flush_mmu_free mm/mmu_gather.c:366 [inline]
tlb_flush_mmu+0x3a3/0x680 mm/mmu_gather.c:373
tlb_finish_mmu+0xd4/0x200 mm/mmu_gather.c:465
exit_mmap+0x496/0xc40 mm/mmap.c:1926
__mmput+0x115/0x390 kernel/fork.c:1348
exit_mm+0x220/0x310 kernel/exit.c:571
do_exit+0x9b2/0x28e0 kernel/exit.c:926
do_group_exit+0x207/0x2c0 kernel/exit.c:1088
__do_sys_exit_group kernel/exit.c:1099 [inline]
__se_sys_exit_group kernel/exit.c:1097 [inline]
__x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1097
x64_sys_call+0x2634/0x2640 arch/x86/include/generated/asm/syscalls_64.h:232
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Modules linked in:
CPU: 0 UID: 0 PID: 8442 Comm: syz.5.504 Not tainted 6.12.0-rc6-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
bad_page+0x176/0x1d0 mm/page_alloc.c:501
free_page_is_bad mm/page_alloc.c:918 [inline]
free_pages_prepare mm/page_alloc.c:1100 [inline]
free_unref_page+0xed0/0xf20 mm/page_alloc.c:2638
kvm_destroy_vm virt/kvm/kvm_main.c:1327 [inline]
kvm_put_kvm+0xc75/0x1350 virt/kvm/kvm_main.c:1386
kvm_vcpu_release+0x54/0x60 virt/kvm/kvm_main.c:4143
__fput+0x23f/0x880 fs/file_table.c:431
task_work_run+0x24f/0x310 kernel/task_work.c:239
exit_task_work include/linux/task_work.h:43 [inline]
do_exit+0xa2f/0x28e0 kernel/exit.c:939
do_group_exit+0x207/0x2c0 kernel/exit.c:1088
__do_sys_exit_group kernel/exit.c:1099 [inline]
__se_sys_exit_group kernel/exit.c:1097 [inline]
__ia32_sys_exit_group+0x3f/0x40 kernel/exit.c:1097
ia32_sys_call+0x2624/0x2630 arch/x86/include/generated/asm/syscalls_32.h:253
do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
__do_fast_syscall_32+0xb4/0x110 arch/x86/entry/common.c:386
do_fast_syscall_32+0x34/0x80 arch/x86/entry/common.c:411
entry_SYSENTER_compat_after_hwframe+0x84/0x8e
RIP: 0023:0xf745d579
Code: Unable to access opcode bytes at 0xf745d54f.
RSP: 002b:00000000f75afd6c EFLAGS: 00000206 ORIG_RAX: 00000000000000fc
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 00000000ffffff9c RDI: 00000000f744cff4
RBP: 00000000f717ae61 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000206 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
</TASK>
The problem was originally introduced by commit b109b87050df ("mm/munlock:
replace clear_page_mlock() by final clearance"): it was focused on
handling pagecache and anonymous memory and wasn't suitable for lower
level get_page()/free_page() API's used for example by KVM, as with this
reproducer.
Fix it by moving the mlocked flag clearance down to free_page_prepare().
The bug itself if fairly old and harmless (aside from generating these
warnings), aside from a small memory leak - "bad" pages are stopped from
being allocated again.
Link: https://lkml.kernel.org/r/20241106195354.270757-1-roman.gushchin@linux.dev
Fixes: b109b87050df ("mm/munlock: replace clear_page_mlock() by final clearance")
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Reported-by: syzbot+e985d3026c4fd041578e@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/6729f475.050a0220.701a.0019.GAE@google.com
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
During running KASAN Kunit tests with CONFIG_KASAN enabled, the following
"warning" is reported by kunit framework:
# kasan_atomics: Test should be marked slow (runtime: 2.604703115s)
It took 2.6 seconds on my PC (Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz),
apparently, due to multiple atomic checks in kasan_atomics_helper().
Let's mark it with KUNIT_CASE_SLOW which reports now as:
# kasan_atomics.speed: slow
Link: https://lkml.kernel.org/r/20241101184011.3369247-3-snovitoll@gmail.com
Signed-off-by: Sabyrzhan Tasbolatov <snovitoll@gmail.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "kasan: few improvements on kunit tests".
This patch series addresses the issue [1] with KASAN symbols used in the
Kunit test, but exported as EXPORT_SYMBOL_GPL.
Also a small tweak of marking kasan_atomics() as KUNIT_CASE_SLOW to avoid
kunit report that the test should be marked as slow.
This patch (of 2):
Replace EXPORT_SYMBOL_GPL with EXPORT_SYMBOL_IF_KUNIT to mark the symbols
as visible only if CONFIG_KUNIT is enabled.
KASAN Kunit test should import the namespace EXPORTED_FOR_KUNIT_TESTING to
use these marked symbols.
Link: https://lkml.kernel.org/r/20241101184011.3369247-1-snovitoll@gmail.com
Link: https://lkml.kernel.org/r/20241101184011.3369247-2-snovitoll@gmail.com
Signed-off-by: Sabyrzhan Tasbolatov <snovitoll@gmail.com>
Reported-by: Andrey Konovalov <andreyknvl@gmail.com>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218315
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Ever since commit 8d7071af8907 ("mm: always expand the stack with the mmap
write lock held") we have been expanding the stack with the mmap write
lock held.
This is true in all code paths:
get_arg_page()
-> expand_downwards()
setup_arg_pages()
-> expand_stack_locked()
-> expand_downwards() / expand_upwards()
lock_mm_and_find_vma()
-> expand_stack_locked()
-> expand_downwards() / expand_upwards()
create_elf_tables()
-> find_extend_vma_locked()
-> expand_stack_locked()
expand_stack()
-> vma_expand_down()
-> expand_downwards()
expand_stack()
-> vma_expand_up()
-> expand_upwards()
Each of which acquire the mmap write lock before doing so. Despite this,
we maintain code that acquires a page table lock in the expand_upwards()
and expand_downwards() code, stating that we hold a shared mmap lock and
thus this is necessary.
It is not, we do not have to worry about concurrent VMA expansions so we
can simply drop this, and update comments accordingly.
We do not even need be concerned with racing page faults, as
vma_start_write() is invoked in both cases.
Link: https://lkml.kernel.org/r/20241101184627.131391-1-lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Jann Horn <jannh@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Replace strcpy() with strscpy() in mm/huge_memory.c
strcpy() has been deprecated because it is generally unsafe, so help to
eliminate it from the kernel source.
Link: https://github.com/KSPP/linux/issues/88
Link: https://lkml.kernel.org/r/20241101165719.1074234-7-mcanal@igalia.com
Signed-off-by: Maíra Canal <mcanal@igalia.com>
Reviewed-by: Lance Yang <ioworker0@gmail.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <baohua@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add the ``thp_shmem=`` kernel command line to allow specifying the default
policy of each supported shmem hugepage size. The kernel parameter
accepts the following format:
thp_shmem=<size>[KMG],<size>[KMG]:<policy>;<size>[KMG]-<size>[KMG]:<policy>
For example,
thp_shmem=16K-64K:always;128K,512K:inherit;256K:advise;1M-2M:never;4M-8M:within_size
Some GPUs may benefit from using huge pages. Since DRM GEM uses shmem to
allocate anonymous pageable memory, it's essential to control the huge
page allocation policy for the internal shmem mount. This control can be
achieved through the ``transparent_hugepage_shmem=`` parameter.
Beyond just setting the allocation policy, it's crucial to have granular
control over the size of huge pages that can be allocated. The GPU may
support only specific huge page sizes, and allocating pages larger/smaller
than those sizes would be ineffective.
Link: https://lkml.kernel.org/r/20241101165719.1074234-6-mcanal@igalia.com
Signed-off-by: Maíra Canal <mcanal@igalia.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <baohua@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In order to implement a kernel parameter similar to ``thp_anon=`` for
shmem, we'll need the function ``get_order_from_str()``.
Instead of duplicating the function, move the function to a shared
header, in which both mm/shmem.c and mm/huge_memory.c will be able to
use it.
Link: https://lkml.kernel.org/r/20241101165719.1074234-5-mcanal@igalia.com
Signed-off-by: Maíra Canal <mcanal@igalia.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <baohua@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: add more kernel parameters to control mTHP", v5.
This series introduces four patches related to the kernel parameters
controlling mTHP and a fifth patch replacing `strcpy()` for `strscpy()` in
the file `mm/huge_memory.c`.
The first patch is a straightforward documentation update, correcting the
format of the kernel parameter ``thp_anon=``.
The second, third, and fourth patches focus on controlling THP support for
shmem via the kernel command line. The second patch introduces a
parameter to control the global default huge page allocation policy for
the internal shmem mount. The third patch moves a piece of code to a
shared header to ease the implementation of the fourth patch. Finally,
the fourth patch implements a parameter similar to ``thp_anon=``, but for
shmem.
The goal of these changes is to simplify the configuration of systems that
rely on mTHP support for shmem. For instance, a platform with a GPU that
benefits from huge pages may want to enable huge pages for shmem. Having
these kernel parameters streamlines the configuration process and ensures
consistency across setups.
This patch (of 4):
Add a new kernel command line to control the hugepage allocation policy
for the internal shmem mount, ``transparent_hugepage_shmem``. The
parameter is similar to ``transparent_hugepage`` and has the following
format:
transparent_hugepage_shmem=<policy>
where ``<policy>`` is one of the seven valid policies available for
shmem.
Configuring the default huge page allocation policy for the internal
shmem mount can be beneficial for DRM GPU drivers. Just as CPU
architectures, GPUs can also take advantage of huge pages, but this is
possible only if DRM GEM objects are backed by huge pages.
Since GEM uses shmem to allocate anonymous pageable memory, having control
over the default huge page allocation policy allows for the exploration of
huge pages use on GPUs that rely on GEM objects backed by shmem.
Link: https://lkml.kernel.org/r/20241101165719.1074234-2-mcanal@igalia.com
Link: https://lkml.kernel.org/r/20241101165719.1074234-4-mcanal@igalia.com
Signed-off-by: Maíra Canal <mcanal@igalia.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <baohua@kernel.org>
Cc: dri-devel@lists.freedesktop.org
Cc: Hugh Dickins <hughd@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: kernel-dev@igalia.com
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There have been no reported infinite loops in the tree, but checking the
detection of an infinite loop during validation is simple enough. Add the
detection to the validate_mm() function so that error reports are clear
and don't just report stalls.
This does not protect against internal maple tree issues, but it does
detect too many vmas being returned from the tree.
The variance of +10 is to allow for the debugging output to be more useful
for nearly correct counts. In the event of more than 10 over the
map_count, the count will be set to -1 for easier identification of a
potential infinite loop.
Note that the mmap lock is held to ensure a consistent tree state during
the validation process.
[akpm@linux-foundation.org: add comment]
Link: https://lkml.kernel.org/r/20241031193608.1965366-1-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It seems there is about 24Bytes binary size increase for
__page_frag_cache_refill() after refactoring in arm64 system
with 64K PAGE_SIZE. By doing the gdb disassembling, It seems
we can have more than 100Bytes decrease for the binary size
by using __alloc_pages() to replace alloc_pages_node(), as
there seems to be some unnecessary checking for nid being
NUMA_NO_NODE, especially when page_frag is part of the mm
system.
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Linux-MM <linux-mm@kvack.org>
Signed-off-by: Yunsheng Lin <linyunsheng@huawei.com>
Reviewed-by: Alexander Duyck <alexanderduyck@fb.com>
Link: https://patch.msgid.link/20241028115343.3405838-8-linyunsheng@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Currently there is one 'struct page_frag' for every 'struct
sock' and 'struct task_struct', we are about to replace the
'struct page_frag' with 'struct page_frag_cache' for them.
Before begin the replacing, we need to ensure the size of
'struct page_frag_cache' is not bigger than the size of
'struct page_frag', as there may be tens of thousands of
'struct sock' and 'struct task_struct' instances in the
system.
By or'ing the page order & pfmemalloc with lower bits of
'va' instead of using 'u16' or 'u32' for page size and 'u8'
for pfmemalloc, we are able to avoid 3 or 5 bytes space waste.
And page address & pfmemalloc & order is unchanged for the
same page in the same 'page_frag_cache' instance, it makes
sense to fit them together.
After this patch, the size of 'struct page_frag_cache' should be
the same as the size of 'struct page_frag'.
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Linux-MM <linux-mm@kvack.org>
Signed-off-by: Yunsheng Lin <linyunsheng@huawei.com>
Reviewed-by: Alexander Duyck <alexanderduyck@fb.com>
Link: https://patch.msgid.link/20241028115343.3405838-7-linyunsheng@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
We are about to use page_frag_alloc_*() API to not just
allocate memory for skb->data, but also use them to do
the memory allocation for skb frag too. Currently the
implementation of page_frag in mm subsystem is running
the offset as a countdown rather than count-up value,
there may have several advantages to that as mentioned
in [1], but it may have some disadvantages, for example,
it may disable skb frag coalescing and more correct cache
prefetching
We have a trade-off to make in order to have a unified
implementation and API for page_frag, so use a initial zero
offset in this patch, and the following patch will try to
make some optimization to avoid the disadvantages as much
as possible.
1. https://lore.kernel.org/all/f4abe71b3439b39d17a6fb2d410180f367cadf5c.camel@gmail.com/
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Linux-MM <linux-mm@kvack.org>
Signed-off-by: Yunsheng Lin <linyunsheng@huawei.com>
Reviewed-by: Alexander Duyck <alexanderduyck@fb.com>
Link: https://patch.msgid.link/20241028115343.3405838-4-linyunsheng@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Inspired by [1], move the page fragment allocator from page_alloc
into its own c file and header file, as we are about to make more
change for it to replace another page_frag implementation in
sock.c
As this patchset is going to replace 'struct page_frag' with
'struct page_frag_cache' in sched.h, including page_frag_cache.h
in sched.h has a compiler error caused by interdependence between
mm_types.h and mm.h for asm-offsets.c, see [2]. So avoid the compiler
error by moving 'struct page_frag_cache' to mm_types_task.h as
suggested by Alexander, see [3].
1. https://lore.kernel.org/all/20230411160902.4134381-3-dhowells@redhat.com/
2. https://lore.kernel.org/all/15623dac-9358-4597-b3ee-3694a5956920@gmail.com/
3. https://lore.kernel.org/all/CAKgT0UdH1yD=LSCXFJ=YM_aiA4OomD-2wXykO42bizaWMt_HOA@mail.gmail.com/
CC: David Howells <dhowells@redhat.com>
CC: Linux-MM <linux-mm@kvack.org>
Signed-off-by: Yunsheng Lin <linyunsheng@huawei.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alexander Duyck <alexanderduyck@fb.com>
Link: https://patch.msgid.link/20241028115343.3405838-3-linyunsheng@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
As Documentation/filesystems/sysfs.rst suggested, show() should only use
sysfs_emit() or sysfs_emit_at() when formatting the value to be returned
to user space.
Link: https://lkml.kernel.org/r/20241029101853.37890-1-zhangguopeng@kylinos.cn
Signed-off-by: zhangguopeng <zhangguopeng@kylinos.cn>
Acked-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This tracepoint gives visibility on how often the flushing of memcg stats
occurs and contains info on whether it was forced, skipped, and the value
of stats updated. It can help with understanding how readers are affected
by having to perform the flush, and the effectiveness of the flush by
inspecting the number of stats updated. Paired with the recently added
tracepoints for tracing rstat updates, it can also help show correlation
where stats exceed thresholds frequently.
Link: https://lkml.kernel.org/r/20241029021106.25587-3-inwardvessel@gmail.com
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "memcg: tracepoint for flushing stats", v3.
This series adds new capability for understanding frequency and circumstances
behind flushing memcg stats.
This patch (of 2):
Change the name to something more consistent with others in the file and
use double unders to signify it is associated with the
mem_cgroup_flush_stats() API call. Additionally include a new flag that
call sites use to indicate a forced flush; skipping checks and flushing
unconditionally. There are no changes in functionality.
Link: https://lkml.kernel.org/r/20241029021106.25587-1-inwardvessel@gmail.com
Link: https://lkml.kernel.org/r/20241029021106.25587-2-inwardvessel@gmail.com
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The last user of put_pages_list() converted away from it in 6.10 commit
06c375053cef ("iommu/vt-d: add wrapper functions for page allocations"):
delete put_pages_list().
Link: https://lkml.kernel.org/r/d9985d6a-293e-176b-e63d-82fdfd28c139@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Implement a new lightweight guard page feature, that is regions of
userland virtual memory that, when accessed, cause a fatal signal to
arise.
Currently users must establish PROT_NONE ranges to achieve this.
However this is very costly memory-wise - we need a VMA for each and every
one of these regions AND they become unmergeable with surrounding VMAs.
In addition repeated mmap() calls require repeated kernel context switches
and contention of the mmap lock to install these ranges, potentially also
having to unmap memory if installed over existing ranges.
The lightweight guard approach eliminates the VMA cost altogether - rather
than establishing a PROT_NONE VMA, it operates at the level of page table
entries - establishing PTE markers such that accesses to them cause a
fault followed by a SIGSGEV signal being raised.
This is achieved through the PTE marker mechanism, which we have already
extended to provide PTE_MARKER_GUARD, which we installed via the generic
page walking logic which we have extended for this purpose.
These guard ranges are established with MADV_GUARD_INSTALL. If the range
in which they are installed contain any existing mappings, they will be
zapped, i.e. free the range and unmap memory (thus mimicking the
behaviour of MADV_DONTNEED in this respect).
Any existing guard entries will be left untouched. There is therefore no
nesting of guarded pages.
Guarded ranges are NOT cleared by MADV_DONTNEED nor MADV_FREE (in both
instances the memory range may be reused at which point a user would
expect guards to still be in place), but they are cleared via
MADV_GUARD_REMOVE, process teardown or unmapping of memory ranges.
The guard property can be removed from ranges via MADV_GUARD_REMOVE. The
ranges over which this is applied, should they contain non-guard entries,
will be untouched, with only guard entries being cleared.
We permit this operation on anonymous memory only, and only VMAs which are
non-special, non-huge and not mlock()'d (if we permitted this we'd have to
drop locked pages which would be rather counterintuitive).
Racing page faults can cause repeated attempts to install guard pages that
are interrupted, result in a zap, and this process can end up being
repeated. If this happens more than would be expected in normal
operation, we rescind locks and retry the whole thing, which avoids lock
contention in this scenario.
Link: https://lkml.kernel.org/r/6aafb5821bf209f277dfae0787abb2ef87a37542.1730123433.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Jann Horn <jannh@google.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Jann Horn <jannh@google.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Arnd Bergmann <arnd@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Helge Deller <deller@gmx.de>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jeff Xu <jeffxu@chromium.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add a new PTE marker that results in any access causing the accessing
process to segfault.
This is preferable to PTE_MARKER_POISONED, which results in the same
handling as hardware poisoned memory, and is thus undesirable for cases
where we simply wish to 'soft' poison a range.
This is in preparation for implementing the ability to specify guard pages
at the page table level, i.e. ranges that, when accessed, should cause
process termination.
Additionally, rename zap_drop_file_uffd_wp() to zap_drop_markers() - the
function checks the ZAP_FLAG_DROP_MARKER flag so naming it for this single
purpose was simply incorrect.
We then reuse the same logic to determine whether a zap should clear a
guard entry - this should only be performed on teardown and never on
MADV_DONTNEED or MADV_FREE.
We additionally add a WARN_ON_ONCE() in hugetlb logic should a guard
marker be encountered there, as we explicitly do not support this
operation and this should not occur.
Link: https://lkml.kernel.org/r/f47f3d5acca2dcf9bbf655b6d33f3dc713e4a4a0.1730123433.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Acked-by: Vlastimil Babka <vbabkba@suse.cz>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Jann Horn <jannh@google.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Cc: Arnd Bergmann <arnd@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Helge Deller <deller@gmx.de>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jeff Xu <jeffxu@chromium.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|