summaryrefslogtreecommitdiff
path: root/net/bluetooth/l2cap_sock.c
AgeCommit message (Collapse)Author
2023-10-01net: implement lockless SO_PRIORITYEric Dumazet
This is a followup of 8bf43be799d4 ("net: annotate data-races around sk->sk_priority"). sk->sk_priority can be read and written without holding the socket lock. Signed-off-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Wenjia Zhang <wenjia@linux.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-08-11Bluetooth: Init sk_peer_* on bt_sock_allocLuiz Augusto von Dentz
This makes sure peer information is always available via sock when using bt_sock_alloc. Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
2023-08-11Bluetooth: Consolidate code around sk_alloc into a helper functionLuiz Augusto von Dentz
This consolidates code around sk_alloc into bt_sock_alloc which does take care of common initialization. Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
2023-06-29Bluetooth: L2CAP: Fix use-after-free in l2cap_sock_ready_cbSungwoo Kim
l2cap_sock_release(sk) frees sk. However, sk's children are still alive and point to the already free'd sk's address. To fix this, l2cap_sock_release(sk) also cleans sk's children. ================================================================== BUG: KASAN: use-after-free in l2cap_sock_ready_cb+0xb7/0x100 net/bluetooth/l2cap_sock.c:1650 Read of size 8 at addr ffff888104617aa8 by task kworker/u3:0/276 CPU: 0 PID: 276 Comm: kworker/u3:0 Not tainted 6.2.0-00001-gef397bd4d5fb-dirty #59 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Workqueue: hci2 hci_rx_work Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x72/0x95 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:306 [inline] print_report+0x175/0x478 mm/kasan/report.c:417 kasan_report+0xb1/0x130 mm/kasan/report.c:517 l2cap_sock_ready_cb+0xb7/0x100 net/bluetooth/l2cap_sock.c:1650 l2cap_chan_ready+0x10e/0x1e0 net/bluetooth/l2cap_core.c:1386 l2cap_config_req+0x753/0x9f0 net/bluetooth/l2cap_core.c:4480 l2cap_bredr_sig_cmd net/bluetooth/l2cap_core.c:5739 [inline] l2cap_sig_channel net/bluetooth/l2cap_core.c:6509 [inline] l2cap_recv_frame+0xe2e/0x43c0 net/bluetooth/l2cap_core.c:7788 l2cap_recv_acldata+0x6ed/0x7e0 net/bluetooth/l2cap_core.c:8506 hci_acldata_packet net/bluetooth/hci_core.c:3813 [inline] hci_rx_work+0x66e/0xbc0 net/bluetooth/hci_core.c:4048 process_one_work+0x4ea/0x8e0 kernel/workqueue.c:2289 worker_thread+0x364/0x8e0 kernel/workqueue.c:2436 kthread+0x1b9/0x200 kernel/kthread.c:376 ret_from_fork+0x2c/0x50 arch/x86/entry/entry_64.S:308 </TASK> Allocated by task 288: kasan_save_stack+0x22/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 ____kasan_kmalloc mm/kasan/common.c:374 [inline] __kasan_kmalloc+0x82/0x90 mm/kasan/common.c:383 kasan_kmalloc include/linux/kasan.h:211 [inline] __do_kmalloc_node mm/slab_common.c:968 [inline] __kmalloc+0x5a/0x140 mm/slab_common.c:981 kmalloc include/linux/slab.h:584 [inline] sk_prot_alloc+0x113/0x1f0 net/core/sock.c:2040 sk_alloc+0x36/0x3c0 net/core/sock.c:2093 l2cap_sock_alloc.constprop.0+0x39/0x1c0 net/bluetooth/l2cap_sock.c:1852 l2cap_sock_create+0x10d/0x220 net/bluetooth/l2cap_sock.c:1898 bt_sock_create+0x183/0x290 net/bluetooth/af_bluetooth.c:132 __sock_create+0x226/0x380 net/socket.c:1518 sock_create net/socket.c:1569 [inline] __sys_socket_create net/socket.c:1606 [inline] __sys_socket_create net/socket.c:1591 [inline] __sys_socket+0x112/0x200 net/socket.c:1639 __do_sys_socket net/socket.c:1652 [inline] __se_sys_socket net/socket.c:1650 [inline] __x64_sys_socket+0x40/0x50 net/socket.c:1650 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3f/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x72/0xdc Freed by task 288: kasan_save_stack+0x22/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 kasan_save_free_info+0x2e/0x50 mm/kasan/generic.c:523 ____kasan_slab_free mm/kasan/common.c:236 [inline] ____kasan_slab_free mm/kasan/common.c:200 [inline] __kasan_slab_free+0x10a/0x190 mm/kasan/common.c:244 kasan_slab_free include/linux/kasan.h:177 [inline] slab_free_hook mm/slub.c:1781 [inline] slab_free_freelist_hook mm/slub.c:1807 [inline] slab_free mm/slub.c:3787 [inline] __kmem_cache_free+0x88/0x1f0 mm/slub.c:3800 sk_prot_free net/core/sock.c:2076 [inline] __sk_destruct+0x347/0x430 net/core/sock.c:2168 sk_destruct+0x9c/0xb0 net/core/sock.c:2183 __sk_free+0x82/0x220 net/core/sock.c:2194 sk_free+0x7c/0xa0 net/core/sock.c:2205 sock_put include/net/sock.h:1991 [inline] l2cap_sock_kill+0x256/0x2b0 net/bluetooth/l2cap_sock.c:1257 l2cap_sock_release+0x1a7/0x220 net/bluetooth/l2cap_sock.c:1428 __sock_release+0x80/0x150 net/socket.c:650 sock_close+0x19/0x30 net/socket.c:1368 __fput+0x17a/0x5c0 fs/file_table.c:320 task_work_run+0x132/0x1c0 kernel/task_work.c:179 resume_user_mode_work include/linux/resume_user_mode.h:49 [inline] exit_to_user_mode_loop kernel/entry/common.c:171 [inline] exit_to_user_mode_prepare+0x113/0x120 kernel/entry/common.c:203 __syscall_exit_to_user_mode_work kernel/entry/common.c:285 [inline] syscall_exit_to_user_mode+0x21/0x50 kernel/entry/common.c:296 do_syscall_64+0x4c/0x90 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x72/0xdc The buggy address belongs to the object at ffff888104617800 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 680 bytes inside of 1024-byte region [ffff888104617800, ffff888104617c00) The buggy address belongs to the physical page: page:00000000dbca6a80 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888104614000 pfn:0x104614 head:00000000dbca6a80 order:2 compound_mapcount:0 subpages_mapcount:0 compound_pincount:0 flags: 0x200000000010200(slab|head|node=0|zone=2) raw: 0200000000010200 ffff888100041dc0 ffffea0004212c10 ffffea0004234b10 raw: ffff888104614000 0000000000080002 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888104617980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff888104617a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff888104617a80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff888104617b00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff888104617b80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== Ack: This bug is found by FuzzBT with a modified Syzkaller. Other contributors are Ruoyu Wu and Hui Peng. Signed-off-by: Sungwoo Kim <iam@sung-woo.kim> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-02-09Bluetooth: L2CAP: Fix potential user-after-freeLuiz Augusto von Dentz
This fixes all instances of which requires to allocate a buffer calling alloc_skb which may release the chan lock and reacquire later which makes it possible that the chan is disconnected in the meantime. Fixes: a6a5568c03c4 ("Bluetooth: Lock the L2CAP channel when sending") Reported-by: Alexander Coffin <alex.coffin@matician.com> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
2022-01-07Bluetooth: L2CAP: uninitialized variables in l2cap_sock_setsockopt()Dan Carpenter
The "opt" variable is a u32, but on some paths only the top bytes were initialized and the others contained random stack data. Fixes: a7b75c5a8c41 ("net: pass a sockptr_t into ->setsockopt") Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2021-12-31Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextDavid S. Miller
Alexei Starovoitov says: ==================== pull-request: bpf-next 2021-12-30 The following pull-request contains BPF updates for your *net-next* tree. We've added 72 non-merge commits during the last 20 day(s) which contain a total of 223 files changed, 3510 insertions(+), 1591 deletions(-). The main changes are: 1) Automatic setrlimit in libbpf when bpf is memcg's in the kernel, from Andrii. 2) Beautify and de-verbose verifier logs, from Christy. 3) Composable verifier types, from Hao. 4) bpf_strncmp helper, from Hou. 5) bpf.h header dependency cleanup, from Jakub. 6) get_func_[arg|ret|arg_cnt] helpers, from Jiri. 7) Sleepable local storage, from KP. 8) Extend kfunc with PTR_TO_CTX, PTR_TO_MEM argument support, from Kumar. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
2021-12-29net: Don't include filter.h from net/sock.hJakub Kicinski
sock.h is pretty heavily used (5k objects rebuilt on x86 after it's touched). We can drop the include of filter.h from it and add a forward declaration of struct sk_filter instead. This decreases the number of rebuilt objects when bpf.h is touched from ~5k to ~1k. There's a lot of missing includes this was masking. Primarily in networking tho, this time. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Marc Kleine-Budde <mkl@pengutronix.de> Acked-by: Florian Fainelli <f.fainelli@gmail.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Acked-by: Stefano Garzarella <sgarzare@redhat.com> Link: https://lore.kernel.org/bpf/20211229004913.513372-1-kuba@kernel.org
2021-12-21Bluetooth: L2CAP: Fix using wrong modeLuiz Augusto von Dentz
If user has a set to use SOCK_STREAM the socket would default to L2CAP_MODE_ERTM which later needs to be adjusted if the destination address is LE which doesn't support such mode. Fixes: 15f02b9105625 ("Bluetooth: L2CAP: Add initial code for Enhanced Credit Based Mode") Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2021-10-12Bluetooth: L2CAP: Fix not initializing sk_peer_pidLuiz Augusto von Dentz
In order to group sockets being connected using L2CAP_MODE_EXT_FLOWCTL the pid is used but sk_peer_pid was not being initialized as it is currently only done for af_unix. Fixes: b48596d1dc25 ("Bluetooth: L2CAP: Add get_peer_pid callback") Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2021-09-01Bluetooth: fix use-after-free error in lock_sock_nested()Wang ShaoBo
use-after-free error in lock_sock_nested is reported: [ 179.140137][ T3731] ===================================================== [ 179.142675][ T3731] BUG: KMSAN: use-after-free in lock_sock_nested+0x280/0x2c0 [ 179.145494][ T3731] CPU: 4 PID: 3731 Comm: kworker/4:2 Not tainted 5.12.0-rc6+ #54 [ 179.148432][ T3731] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 [ 179.151806][ T3731] Workqueue: events l2cap_chan_timeout [ 179.152730][ T3731] Call Trace: [ 179.153301][ T3731] dump_stack+0x24c/0x2e0 [ 179.154063][ T3731] kmsan_report+0xfb/0x1e0 [ 179.154855][ T3731] __msan_warning+0x5c/0xa0 [ 179.155579][ T3731] lock_sock_nested+0x280/0x2c0 [ 179.156436][ T3731] ? kmsan_get_metadata+0x116/0x180 [ 179.157257][ T3731] l2cap_sock_teardown_cb+0xb8/0x890 [ 179.158154][ T3731] ? __msan_metadata_ptr_for_load_8+0x10/0x20 [ 179.159141][ T3731] ? kmsan_get_metadata+0x116/0x180 [ 179.159994][ T3731] ? kmsan_get_shadow_origin_ptr+0x84/0xb0 [ 179.160959][ T3731] ? l2cap_sock_recv_cb+0x420/0x420 [ 179.161834][ T3731] l2cap_chan_del+0x3e1/0x1d50 [ 179.162608][ T3731] ? kmsan_get_metadata+0x116/0x180 [ 179.163435][ T3731] ? kmsan_get_shadow_origin_ptr+0x84/0xb0 [ 179.164406][ T3731] l2cap_chan_close+0xeea/0x1050 [ 179.165189][ T3731] ? kmsan_internal_unpoison_shadow+0x42/0x70 [ 179.166180][ T3731] l2cap_chan_timeout+0x1da/0x590 [ 179.167066][ T3731] ? __msan_metadata_ptr_for_load_8+0x10/0x20 [ 179.168023][ T3731] ? l2cap_chan_create+0x560/0x560 [ 179.168818][ T3731] process_one_work+0x121d/0x1ff0 [ 179.169598][ T3731] worker_thread+0x121b/0x2370 [ 179.170346][ T3731] kthread+0x4ef/0x610 [ 179.171010][ T3731] ? process_one_work+0x1ff0/0x1ff0 [ 179.171828][ T3731] ? kthread_blkcg+0x110/0x110 [ 179.172587][ T3731] ret_from_fork+0x1f/0x30 [ 179.173348][ T3731] [ 179.173752][ T3731] Uninit was created at: [ 179.174409][ T3731] kmsan_internal_poison_shadow+0x5c/0xf0 [ 179.175373][ T3731] kmsan_slab_free+0x76/0xc0 [ 179.176060][ T3731] kfree+0x3a5/0x1180 [ 179.176664][ T3731] __sk_destruct+0x8af/0xb80 [ 179.177375][ T3731] __sk_free+0x812/0x8c0 [ 179.178032][ T3731] sk_free+0x97/0x130 [ 179.178686][ T3731] l2cap_sock_release+0x3d5/0x4d0 [ 179.179457][ T3731] sock_close+0x150/0x450 [ 179.180117][ T3731] __fput+0x6bd/0xf00 [ 179.180787][ T3731] ____fput+0x37/0x40 [ 179.181481][ T3731] task_work_run+0x140/0x280 [ 179.182219][ T3731] do_exit+0xe51/0x3e60 [ 179.182930][ T3731] do_group_exit+0x20e/0x450 [ 179.183656][ T3731] get_signal+0x2dfb/0x38f0 [ 179.184344][ T3731] arch_do_signal_or_restart+0xaa/0xe10 [ 179.185266][ T3731] exit_to_user_mode_prepare+0x2d2/0x560 [ 179.186136][ T3731] syscall_exit_to_user_mode+0x35/0x60 [ 179.186984][ T3731] do_syscall_64+0xc5/0x140 [ 179.187681][ T3731] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 179.188604][ T3731] ===================================================== In our case, there are two Thread A and B: Context: Thread A: Context: Thread B: l2cap_chan_timeout() __se_sys_shutdown() l2cap_chan_close() l2cap_sock_shutdown() l2cap_chan_del() l2cap_chan_close() l2cap_sock_teardown_cb() l2cap_sock_teardown_cb() Once l2cap_sock_teardown_cb() excuted, this sock will be marked as SOCK_ZAPPED, and can be treated as killable in l2cap_sock_kill() if sock_orphan() has excuted, at this time we close sock through sock_close() which end to call l2cap_sock_kill() like Thread C: Context: Thread C: sock_close() l2cap_sock_release() sock_orphan() l2cap_sock_kill() #free sock if refcnt is 1 If C completed, Once A or B reaches l2cap_sock_teardown_cb() again, use-after-free happened. We should set chan->data to NULL if sock is destructed, for telling teardown operation is not allowed in l2cap_sock_teardown_cb(), and also we should avoid killing an already killed socket in l2cap_sock_close_cb(). Signed-off-by: Wang ShaoBo <bobo.shaobowang@huawei.com> Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2021-03-23Bluetooth: check for zapped sk before connectingArchie Pusaka
There is a possibility of receiving a zapped sock on l2cap_sock_connect(). This could lead to interesting crashes, one such case is tearing down an already tore l2cap_sock as is happened with this call trace: __dump_stack lib/dump_stack.c:15 [inline] dump_stack+0xc4/0x118 lib/dump_stack.c:56 register_lock_class kernel/locking/lockdep.c:792 [inline] register_lock_class+0x239/0x6f6 kernel/locking/lockdep.c:742 __lock_acquire+0x209/0x1e27 kernel/locking/lockdep.c:3105 lock_acquire+0x29c/0x2fb kernel/locking/lockdep.c:3599 __raw_spin_lock_bh include/linux/spinlock_api_smp.h:137 [inline] _raw_spin_lock_bh+0x38/0x47 kernel/locking/spinlock.c:175 spin_lock_bh include/linux/spinlock.h:307 [inline] lock_sock_nested+0x44/0xfa net/core/sock.c:2518 l2cap_sock_teardown_cb+0x88/0x2fb net/bluetooth/l2cap_sock.c:1345 l2cap_chan_del+0xa3/0x383 net/bluetooth/l2cap_core.c:598 l2cap_chan_close+0x537/0x5dd net/bluetooth/l2cap_core.c:756 l2cap_chan_timeout+0x104/0x17e net/bluetooth/l2cap_core.c:429 process_one_work+0x7e3/0xcb0 kernel/workqueue.c:2064 worker_thread+0x5a5/0x773 kernel/workqueue.c:2196 kthread+0x291/0x2a6 kernel/kthread.c:211 ret_from_fork+0x4e/0x80 arch/x86/entry/entry_64.S:604 Signed-off-by: Archie Pusaka <apusaka@chromium.org> Reported-by: syzbot+abfc0f5e668d4099af73@syzkaller.appspotmail.com Reviewed-by: Alain Michaud <alainm@chromium.org> Reviewed-by: Abhishek Pandit-Subedi <abhishekpandit@chromium.org> Reviewed-by: Guenter Roeck <groeck@chromium.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-09-25Bluetooth: L2CAP: Fix calling sk_filter on non-socket based channelLuiz Augusto von Dentz
Only sockets will have the chan->data set to an actual sk, channels like A2MP would have its own data which would likely cause a crash when calling sk_filter, in order to fix this a new callback has been introduced so channels can implement their own filtering if necessary. Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-09-13Bluetooth: Only mark socket zapped after unlockingAbhishek Pandit-Subedi
Since l2cap_sock_teardown_cb doesn't acquire the channel lock before setting the socket as zapped, it could potentially race with l2cap_sock_release which frees the socket. Thus, wait until the cleanup is complete before marking the socket as zapped. This race was reproduced on a JBL GO speaker after the remote device rejected L2CAP connection due to resource unavailability. Here is a dmesg log with debug logs from a repro of this bug: [ 3465.424086] Bluetooth: hci_core.c:hci_acldata_packet() hci0 len 16 handle 0x0003 flags 0x0002 [ 3465.424090] Bluetooth: hci_conn.c:hci_conn_enter_active_mode() hcon 00000000cfedd07d mode 0 [ 3465.424094] Bluetooth: l2cap_core.c:l2cap_recv_acldata() conn 000000007eae8952 len 16 flags 0x2 [ 3465.424098] Bluetooth: l2cap_core.c:l2cap_recv_frame() len 12, cid 0x0001 [ 3465.424102] Bluetooth: l2cap_core.c:l2cap_raw_recv() conn 000000007eae8952 [ 3465.424175] Bluetooth: l2cap_core.c:l2cap_sig_channel() code 0x03 len 8 id 0x0c [ 3465.424180] Bluetooth: l2cap_core.c:l2cap_connect_create_rsp() dcid 0x0045 scid 0x0000 result 0x02 status 0x00 [ 3465.424189] Bluetooth: l2cap_core.c:l2cap_chan_put() chan 000000006acf9bff orig refcnt 4 [ 3465.424196] Bluetooth: l2cap_core.c:l2cap_chan_del() chan 000000006acf9bff, conn 000000007eae8952, err 111, state BT_CONNECT [ 3465.424203] Bluetooth: l2cap_sock.c:l2cap_sock_teardown_cb() chan 000000006acf9bff state BT_CONNECT [ 3465.424221] Bluetooth: l2cap_core.c:l2cap_chan_put() chan 000000006acf9bff orig refcnt 3 [ 3465.424226] Bluetooth: hci_core.h:hci_conn_drop() hcon 00000000cfedd07d orig refcnt 6 [ 3465.424234] BUG: spinlock bad magic on CPU#2, kworker/u17:0/159 [ 3465.425626] Bluetooth: hci_sock.c:hci_sock_sendmsg() sock 000000002bb0cb64 sk 00000000a7964053 [ 3465.430330] lock: 0xffffff804410aac0, .magic: 00000000, .owner: <none>/-1, .owner_cpu: 0 [ 3465.430332] Causing a watchdog bite! Signed-off-by: Abhishek Pandit-Subedi <abhishekpandit@chromium.org> Reported-by: Balakrishna Godavarthi <bgodavar@codeaurora.org> Reviewed-by: Manish Mandlik <mmandlik@chromium.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-07-31Merge branch 'for-upstream' of ↵David S. Miller
git://git.kernel.org/pub/scm/linux/kernel/git/bluetooth/bluetooth-next Johan Hedberg says: ==================== pull request: bluetooth-next 2020-07-31 Here's the main bluetooth-next pull request for 5.9: - Fix firmware filenames for Marvell chipsets - Several suspend-related fixes - Addedd mgmt commands for runtime configuration - Multiple fixes for Qualcomm-based controllers - Add new monitoring feature for mgmt - Fix handling of legacy cipher (E4) together with security level 4 - Add support for Realtek 8822CE controller - Fix issues with Chinese controllers using fake VID/PID values - Multiple other smaller fixes & improvements ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-24net: pass a sockptr_t into ->setsockoptChristoph Hellwig
Rework the remaining setsockopt code to pass a sockptr_t instead of a plain user pointer. This removes the last remaining set_fs(KERNEL_DS) outside of architecture specific code. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Stefan Schmidt <stefan@datenfreihafen.org> [ieee802154] Acked-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-10Bluetooth: core: Use fallthrough pseudo-keywordGustavo A. R. Silva
Replace the existing /* fall through */ comments and its variants with the new pseudo-keyword macro fallthrough[1]. Also, remove unnecessary fall-through markings when it is the case. [1] https://www.kernel.org/doc/html/latest/process/deprecated.html?highlight=fallthrough#implicit-switch-case-fall-through Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-05-13Bluetooth: L2CAP: add support for waiting disconnection respArchie Pusaka
Whenever we disconnect a L2CAP connection, we would immediately report a disconnection event (EPOLLHUP) to the upper layer, without waiting for the response of the other device. This patch offers an option to wait until we receive a disconnection response before reporting disconnection event, by using the "how" parameter in l2cap_sock_shutdown(). Therefore, upper layer can opt to wait for disconnection response by shutdown(sock, SHUT_WR). This can be used to enforce proper disconnection order in HID, where the disconnection of the interrupt channel must be complete before attempting to disconnect the control channel. Signed-off-by: Archie Pusaka <apusaka@chromium.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-04-02Bluetooth: Add BT_MODE socket optionLuiz Augusto von Dentz
This adds BT_MODE socket option which can be used to set L2CAP modes, including modes only supported over LE which were not supported using the L2CAP_OPTIONS. Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-04-02Bluetooth: L2CAP: Fix handling LE modes by L2CAP_OPTIONSLuiz Augusto von Dentz
L2CAP_OPTIONS shall only be used with BR/EDR modes. Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-03-24Bluetooth: L2CAP: Add get_peer_pid callbackLuiz Augusto von Dentz
This adds a callback to read the socket pid. Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-03-12Bluetooth: L2CAP: Fix a condition in l2cap_sock_recvmsg()Dan Carpenter
Smatch complains about the indenting: net/bluetooth/l2cap_sock.c:1027 l2cap_sock_recvmsg() warn: inconsistent indenting It looks like this is supposed to be an "else if" condition. Fixes: 15f02b910562 ("Bluetooth: L2CAP: Add initial code for Enhanced Credit Based Mode") Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-03-08Bluetooth: L2CAP: Add module option to enable ECRED modeLuiz Augusto von Dentz
This should make it safe to have the code upstream without affecting stable systems since there are a few details not sort out with ECRED mode e.g: how to initiate multiple connections at once. Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-03-08Bluetooth: L2CAP: Add initial code for Enhanced Credit Based ModeLuiz Augusto von Dentz
This adds the initial code for Enhanced Credit Based Mode which introduces a new socket mode called L2CAP_MODE_EXT_FLOWCTL, which for the most part work the same as L2CAP_MODE_LE_FLOWCTL but uses different PDUs to setup the connections and also works over BR/EDR. Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-02-18Bluetooth: Fix crash when using new BT_PHY optionLuiz Augusto von Dentz
This fixes the invalid check for connected socket which causes the following trace due to sco_pi(sk)->conn being NULL: RIP: 0010:sco_sock_getsockopt+0x2ff/0x800 net/bluetooth/sco.c:966 L2CAP has also been fixed since it has the same problem. Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-02-14Bluetooth: Add BT_PHY socket optionLuiz Augusto von Dentz
This adds BT_PHY socket option (read-only) which can be used to read the PHYs in use by the underline connection. Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-02-05Bluetooth: prefetch channel before killing sockHillf Danton
Prefetch channel before killing sock in order to fix UAF like BUG: KASAN: use-after-free in l2cap_sock_release+0x24c/0x290 net/bluetooth/l2cap_sock.c:1212 Read of size 8 at addr ffff8880944904a0 by task syz-fuzzer/9751 Reported-by: syzbot+c3c5bdea7863886115dc@syzkaller.appspotmail.com Fixes: 6c08fc896b60 ("Bluetooth: Fix refcount use-after-free issue") Cc: Manish Mandlik <mmandlik@google.com> Signed-off-by: Hillf Danton <hdanton@sina.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2020-01-29Bluetooth: Fix refcount use-after-free issueManish Mandlik
There is no lock preventing both l2cap_sock_release() and chan->ops->close() from running at the same time. If we consider Thread A running l2cap_chan_timeout() and Thread B running l2cap_sock_release(), expected behavior is: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() where, sock_orphan() clears "sk->sk_socket" and l2cap_sock_teardown_cb() marks socket as SOCK_ZAPPED. In l2cap_sock_kill(), there is an "if-statement" that checks if both sock_orphan() and sock_teardown() has been run i.e. sk->sk_socket is NULL and socket is marked as SOCK_ZAPPED. Socket is killed if the condition is satisfied. In the race condition, following occurs: A::l2cap_chan_timeout()->l2cap_chan_close()->l2cap_sock_teardown_cb() B::l2cap_sock_release()->sock_orphan() B::l2cap_sock_release()->l2cap_sock_kill() A::l2cap_chan_timeout()->l2cap_sock_close_cb()->l2cap_sock_kill() In this scenario, "if-statement" is true in both B::l2cap_sock_kill() and A::l2cap_sock_kill() and we hit "refcount: underflow; use-after-free" bug. Similar condition occurs at other places where teardown/sock_kill is happening: l2cap_disconnect_rsp()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_rsp()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_conn_del()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_conn_del()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_disconnect_req()->l2cap_chan_del()->l2cap_sock_teardown_cb() l2cap_disconnect_req()->l2cap_sock_close_cb()->l2cap_sock_kill() l2cap_sock_cleanup_listen()->l2cap_chan_close()->l2cap_sock_teardown_cb() l2cap_sock_cleanup_listen()->l2cap_sock_kill() Protect teardown/sock_kill and orphan/sock_kill by adding hold_lock on l2cap channel to ensure that the socket is killed only after marked as zapped and orphan. Signed-off-by: Manish Mandlik <mmandlik@google.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2019-04-23Bluetooth: Add return check for L2CAP security level setFugang Duan
Add return check for security level set for socket interface since stack will check the return value. Signed-off-by: Fugang Duan <fugang.duan@nxp.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2019-04-19net: rework SIOCGSTAMP ioctl handlingArnd Bergmann
The SIOCGSTAMP/SIOCGSTAMPNS ioctl commands are implemented by many socket protocol handlers, and all of those end up calling the same sock_get_timestamp()/sock_get_timestampns() helper functions, which results in a lot of duplicate code. With the introduction of 64-bit time_t on 32-bit architectures, this gets worse, as we then need four different ioctl commands in each socket protocol implementation. To simplify that, let's add a new .gettstamp() operation in struct proto_ops, and move ioctl implementation into the common sock_ioctl()/compat_sock_ioctl_trans() functions that these all go through. We can reuse the sock_get_timestamp() implementation, but generalize it so it can deal with both native and compat mode, as well as timeval and timespec structures. Acked-by: Stefan Schmidt <stefan@datenfreihafen.org> Acked-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: Marc Kleine-Budde <mkl@pengutronix.de> Link: https://lore.kernel.org/lkml/CAK8P3a038aDQQotzua_QtKGhq8O9n+rdiz2=WDCp82ys8eUT+A@mail.gmail.com/ Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22Bluetooth: Fix locking in bt_accept_enqueue() for BH contextMatthias Kaehlcke
With commit e16337622016 ("Bluetooth: Handle bt_accept_enqueue() socket atomically") lock_sock[_nested]() is used to acquire the socket lock before manipulating the socket. lock_sock[_nested]() may block, which is problematic since bt_accept_enqueue() can be called in bottom half context (e.g. from rfcomm_connect_ind()): [<ffffff80080d81ec>] __might_sleep+0x4c/0x80 [<ffffff800876c7b0>] lock_sock_nested+0x24/0x58 [<ffffff8000d7c27c>] bt_accept_enqueue+0x48/0xd4 [bluetooth] [<ffffff8000e67d8c>] rfcomm_connect_ind+0x190/0x218 [rfcomm] Add a parameter to bt_accept_enqueue() to indicate whether the function is called from BH context, and acquire the socket lock with bh_lock_sock_nested() if that's the case. Also adapt all callers of bt_accept_enqueue() to pass the new parameter: - l2cap_sock_new_connection_cb() - uses lock_sock() to lock the parent socket => process context - rfcomm_connect_ind() - acquires the parent socket lock with bh_lock_sock() => BH context - __sco_chan_add() - called from sco_chan_add(), which is called from sco_connect(). parent is NULL, hence bt_accept_enqueue() isn't called in this code path and we can ignore it - also called from sco_conn_ready(). uses bh_lock_sock() to acquire the parent lock => BH context Fixes: e16337622016 ("Bluetooth: Handle bt_accept_enqueue() socket atomically") Signed-off-by: Matthias Kaehlcke <mka@chromium.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Marcel Holtmann <marcel@holtmann.org> Cc: stable@vger.kernel.org
2018-06-28Revert changes to convert to ->poll_mask() and aio IOCB_CMD_POLLLinus Torvalds
The poll() changes were not well thought out, and completely unexplained. They also caused a huge performance regression, because "->poll()" was no longer a trivial file operation that just called down to the underlying file operations, but instead did at least two indirect calls. Indirect calls are sadly slow now with the Spectre mitigation, but the performance problem could at least be largely mitigated by changing the "->get_poll_head()" operation to just have a per-file-descriptor pointer to the poll head instead. That gets rid of one of the new indirections. But that doesn't fix the new complexity that is completely unwarranted for the regular case. The (undocumented) reason for the poll() changes was some alleged AIO poll race fixing, but we don't make the common case slower and more complex for some uncommon special case, so this all really needs way more explanations and most likely a fundamental redesign. [ This revert is a revert of about 30 different commits, not reverted individually because that would just be unnecessarily messy - Linus ] Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-26net/bluetooth: convert to ->poll_maskChristoph Hellwig
Signed-off-by: Christoph Hellwig <hch@lst.de>
2018-02-12net: make getname() functions return length rather than use int* parameterDenys Vlasenko
Changes since v1: Added changes in these files: drivers/infiniband/hw/usnic/usnic_transport.c drivers/staging/lustre/lnet/lnet/lib-socket.c drivers/target/iscsi/iscsi_target_login.c drivers/vhost/net.c fs/dlm/lowcomms.c fs/ocfs2/cluster/tcp.c security/tomoyo/network.c Before: All these functions either return a negative error indicator, or store length of sockaddr into "int *socklen" parameter and return zero on success. "int *socklen" parameter is awkward. For example, if caller does not care, it still needs to provide on-stack storage for the value it does not need. None of the many FOO_getname() functions of various protocols ever used old value of *socklen. They always just overwrite it. This change drops this parameter, and makes all these functions, on success, return length of sockaddr. It's always >= 0 and can be differentiated from an error. Tests in callers are changed from "if (err)" to "if (err < 0)", where needed. rpc_sockname() lost "int buflen" parameter, since its only use was to be passed to kernel_getsockname() as &buflen and subsequently not used in any way. Userspace API is not changed. text data bss dec hex filename 30108430 2633624 873672 33615726 200ef6e vmlinux.before.o 30108109 2633612 873672 33615393 200ee21 vmlinux.o Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> CC: David S. Miller <davem@davemloft.net> CC: linux-kernel@vger.kernel.org CC: netdev@vger.kernel.org CC: linux-bluetooth@vger.kernel.org CC: linux-decnet-user@lists.sourceforge.net CC: linux-wireless@vger.kernel.org CC: linux-rdma@vger.kernel.org CC: linux-sctp@vger.kernel.org CC: linux-nfs@vger.kernel.org CC: linux-x25@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-29Bluetooth: Add sockaddr length checks before accessing sa_family in bind and ↵Mateusz Jurczyk
connect handlers Verify that the caller-provided sockaddr structure is large enough to contain the sa_family field, before accessing it in bind() and connect() handlers of the Bluetooth sockets. Since neither syscall enforces a minimum size of the corresponding memory region, very short sockaddrs (zero or one byte long) result in operating on uninitialized memory while referencing sa_family. Signed-off-by: Mateusz Jurczyk <mjurczyk@google.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2017-03-09net: Work around lockdep limitation in sockets that use socketsDavid Howells
Lockdep issues a circular dependency warning when AFS issues an operation through AF_RXRPC from a context in which the VFS/VM holds the mmap_sem. The theory lockdep comes up with is as follows: (1) If the pagefault handler decides it needs to read pages from AFS, it calls AFS with mmap_sem held and AFS begins an AF_RXRPC call, but creating a call requires the socket lock: mmap_sem must be taken before sk_lock-AF_RXRPC (2) afs_open_socket() opens an AF_RXRPC socket and binds it. rxrpc_bind() binds the underlying UDP socket whilst holding its socket lock. inet_bind() takes its own socket lock: sk_lock-AF_RXRPC must be taken before sk_lock-AF_INET (3) Reading from a TCP socket into a userspace buffer might cause a fault and thus cause the kernel to take the mmap_sem, but the TCP socket is locked whilst doing this: sk_lock-AF_INET must be taken before mmap_sem However, lockdep's theory is wrong in this instance because it deals only with lock classes and not individual locks. The AF_INET lock in (2) isn't really equivalent to the AF_INET lock in (3) as the former deals with a socket entirely internal to the kernel that never sees userspace. This is a limitation in the design of lockdep. Fix the general case by: (1) Double up all the locking keys used in sockets so that one set are used if the socket is created by userspace and the other set is used if the socket is created by the kernel. (2) Store the kern parameter passed to sk_alloc() in a variable in the sock struct (sk_kern_sock). This informs sock_lock_init(), sock_init_data() and sk_clone_lock() as to the lock keys to be used. Note that the child created by sk_clone_lock() inherits the parent's kern setting. (3) Add a 'kern' parameter to ->accept() that is analogous to the one passed in to ->create() that distinguishes whether kernel_accept() or sys_accept4() was the caller and can be passed to sk_alloc(). Note that a lot of accept functions merely dequeue an already allocated socket. I haven't touched these as the new socket already exists before we get the parameter. Note also that there are a couple of places where I've made the accepted socket unconditionally kernel-based: irda_accept() rds_rcp_accept_one() tcp_accept_from_sock() because they follow a sock_create_kern() and accept off of that. Whilst creating this, I noticed that lustre and ocfs don't create sockets through sock_create_kern() and thus they aren't marked as for-kernel, though they appear to be internal. I wonder if these should do that so that they use the new set of lock keys. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-02sched/headers: Prepare to move signal wakeup & sigpending methods from ↵Ingo Molnar
<linux/sched.h> into <linux/sched/signal.h> Fix up affected files that include this signal functionality via sched.h. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-08-24Bluetooth: split sk_filter in l2cap_sock_recv_cbDaniel Borkmann
During an audit for sk_filter(), we found that rx_busy_skb handling in l2cap_sock_recv_cb() and l2cap_sock_recvmsg() looks not quite as intended. The assumption from commit e328140fdacb ("Bluetooth: Use event-driven approach for handling ERTM receive buffer") is that errors returned from sock_queue_rcv_skb() are due to receive buffer shortage. However, nothing should prevent doing a setsockopt() with SO_ATTACH_FILTER on the socket, that could drop some of the incoming skbs when handled in sock_queue_rcv_skb(). In that case sock_queue_rcv_skb() will return with -EPERM, propagated from sk_filter() and if in L2CAP_MODE_ERTM mode, wrong assumption was that we failed due to receive buffer being full. From that point onwards, due to the to-be-dropped skb being held in rx_busy_skb, we cannot make any forward progress as rx_busy_skb is never cleared from l2cap_sock_recvmsg(), due to the filter drop verdict over and over coming from sk_filter(). Meanwhile, in l2cap_sock_recv_cb() all new incoming skbs are being dropped due to rx_busy_skb being occupied. Instead, just use __sock_queue_rcv_skb() where an error really tells that there's a receive buffer issue. Split the sk_filter() and enable it for non-segmented modes at queuing time since at this point in time the skb has already been through the ERTM state machine and it has been acked, so dropping is not allowed. Instead, for ERTM and streaming mode, call sk_filter() in l2cap_data_rcv() so the packet can be dropped before the state machine sees it. Fixes: e328140fdacb ("Bluetooth: Use event-driven approach for handling ERTM receive buffer") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Acked-by: Willem de Bruijn <willemb@google.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2016-07-17Bluetooth: Fix l2cap_sock_setsockopt() with optname BT_RCVMTUAmadeusz Sławiński
When we retrieve imtu value from userspace we should use 16 bit pointer cast instead of 32 as it's defined that way in headers. Fixes setsockopt calls on big-endian platforms. Signed-off-by: Amadeusz Sławiński <amadeusz.slawinski@tieto.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org> Cc: stable@vger.kernel.org
2016-04-08Bluetooth: Allow setting BT_SECURITY_FIPS with setsockoptPatrik Flykt
Update the security level check to allow setting BT_SECURITY_FIPS for an L2CAP socket. Signed-off-by: Patrik Flykt <patrik.flykt@linux.intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2016-01-29Bluetooth: L2CAP: Fix setting chan src info before adding PSM/CIDJohan Hedberg
At least the l2cap_add_psm() routine depends on the source address type being properly set to know what auto-allocation ranges to use, so the assignment to l2cap_chan needs to happen before this. Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2016-01-29Bluetooth: L2CAP: Introduce proper defines for PSM rangesJohan Hedberg
Having proper defines makes the code a bit readable, it also avoids duplicating hard-coded values since these are also needed when auto-allocating PSM values (in a subsequent patch). Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2015-10-21Bluetooth: l2cap_disconnection_req priority over shutdownDean Jenkins
There is a L2CAP protocol race between the local peer and the remote peer demanding disconnection of the L2CAP link. When L2CAP ERTM is used, l2cap_sock_shutdown() can be called from userland to disconnect L2CAP. However, there can be a delay introduced by waiting for ACKs. During this waiting period, the remote peer may have sent a Disconnection Request. Therefore, recheck the shutdown status of the socket after waiting for ACKs because there is no need to do further processing if the connection has gone. Signed-off-by: Dean Jenkins <Dean_Jenkins@mentor.com> Signed-off-by: Harish Jenny K N <harish_kandiga@mentor.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2015-10-21Bluetooth: Reorganize mutex lock in l2cap_sock_shutdown()Dean Jenkins
This commit reorganizes the mutex lock and is now only protecting l2cap_chan_close(). This is now consistent with other places where l2cap_chan_close() is called. If a conn connection exists, call mutex_lock(&conn->chan_lock) before calling l2cap_chan_close() to ensure other L2CAP protocol operations do not interfere. Note that the conn structure has to be protected from being freed as it is possible for the connection to be disconnected whilst the locks are not held. This solution allows the mutex lock to be used even when the connection has just been disconnected. This commit also reduces the scope of chan locking. The only place where chan locking is needed is the call to l2cap_chan_close(chan, 0) which if necessary closes the channel. Therefore, move the l2cap_chan_lock(chan) and l2cap_chan_lock(chan) locking calls to around l2cap_chan_close(chan, 0). This allows __l2cap_wait_ack(sk, chan) to be called with no chan locks being held so L2CAP messaging over the ACL link can be done unimpaired. Signed-off-by: Dean Jenkins <Dean_Jenkins@mentor.com> Signed-off-by: Harish Jenny K N <harish_kandiga@mentor.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2015-10-21Bluetooth: Unwind l2cap_sock_shutdown()Dean Jenkins
l2cap_sock_shutdown() is designed to only action shutdown of the channel when shutdown is not already in progress. Therefore, reorganise the code flow by adding a goto to jump to the end of function handling when shutdown is already being actioned. This removes one level of code indentation and make the code more readable. Signed-off-by: Dean Jenkins <Dean_Jenkins@mentor.com> Signed-off-by: Harish Jenny K N <harish_kandiga@mentor.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2015-07-23Bluetooth: __l2cap_wait_ack() add defensive timeoutDean Jenkins
Add a timeout to prevent the do while loop running in an infinite loop. This ensures that the channel will be instructed to close within 10 seconds so prevents l2cap_sock_shutdown() getting stuck forever. Returns -ENOLINK when the timeout is reached. The channel will be subequently closed and not all data will be ACK'ed. Signed-off-by: Dean Jenkins <Dean_Jenkins@mentor.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2015-07-23Bluetooth: __l2cap_wait_ack() use msecs_to_jiffies()Dean Jenkins
Use msecs_to_jiffies() instead of using HZ so that it is easier to specify the time in milliseconds. Also add a #define L2CAP_WAIT_ACK_POLL_PERIOD to specify the 200ms polling period so that it is defined in a single place. Signed-off-by: Dean Jenkins <Dean_Jenkins@mentor.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2015-07-23Bluetooth: Add BT_DBG to l2cap_sock_shutdown()Dean Jenkins
Add helpful BT_DBG debug to l2cap_sock_shutdown() and __l2cap_wait_ack() so that the code flow can be analysed. Signed-off-by: Dean Jenkins <Dean_Jenkins@mentor.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2015-07-23Bluetooth: Make __l2cap_wait_ack more efficientDean Jenkins
Use chan->state instead of chan->conn because waiting for ACK's is only possible in the BT_CONNECTED state. Also avoids reference to the conn structure so makes locking easier. Only call __l2cap_wait_ack() when the needed condition of chan->unacked_frames > 0 && chan->state == BT_CONNECTED is true and convert the while loop to a do while loop. __l2cap_wait_ack() change the function prototype to pass in the chan variable as chan is already available in the calling function l2cap_sock_shutdown(). Avoids locking issues. Signed-off-by: Dean Jenkins <Dean_Jenkins@mentor.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2015-07-23Bluetooth: L2CAP ERTM shutdown protect sk and chanDean Jenkins
During execution of l2cap_sock_shutdown() which might sleep, the sk and chan structures can be in an unlocked condition which potentially allows the structures to be freed by other running threads. Therefore, there is a possibility of a malfunction or memory reuse after being freed. Keep the sk and chan structures alive during the execution of l2cap_sock_shutdown() by using their respective hold and put functions. This allows the structures to be freeable at the end of l2cap_sock_shutdown(). Signed-off-by: Kautuk Consul <Kautuk_Consul@mentor.com> Signed-off-by: Dean Jenkins <Dean_Jenkins@mentor.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>