summaryrefslogtreecommitdiff
path: root/sound/firewire/motu/Makefile
AgeCommit message (Collapse)Author
2021-10-15ALSA: firewire-motu: add message parser for meter information in command DSP ↵Takashi Sakamoto
model Some of MOTU models allows software to configure their DSP parameters by command included in asynchronous transaction. The models multiplex messages for hardware meters into isochronous packet as well as PCM frames. For convenience, I call them as 'command DSP' model. This patch adds message parser for them to gather hardware meter information. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Link: https://lore.kernel.org/r/20211015080826.34847-3-o-takashi@sakamocchi.jp Signed-off-by: Takashi Iwai <tiwai@suse.de>
2021-10-15ALSA: firewire-motu: add message parser to gather meter information in ↵Takashi Sakamoto
register DSP model Some of MOTU models allows software to configure their DSP parameters by accessing to their registers. The models multiplex messages for status of DSP into isochronous packet as well as PCM frames. The message includes information of hardware metering, MIDI message, current parameters of DSP. For my convenience, I call them as 'register DSP' model. This patch adds message parser for them to gather hardware meter information. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Link: https://lore.kernel.org/r/20211015080826.34847-2-o-takashi@sakamocchi.jp Signed-off-by: Takashi Iwai <tiwai@suse.de>
2021-06-17ALSA: firewire-motu: add support for MOTU 828Takashi Sakamoto
MOTU 828 is a first model in MOTU FireWire series, produced in 2001. This model consists of three chips: * Texas Instruments TSB41AB1 (Physical layer for IEEE 1394 bus) * Philips Semiconductors 1394L21BE (Link layer for IEEE 1394 bus and packet processing layer) * QuickLogic QuickRAM QL4016 (Data block processing layer and digital signal processing) This commit adds a support for this model, with its unique protocol as version 1. The features of this protocol are: * no MIDI support. * Rx packets have no data chunks for control and status messages. * Tx packets have 2 data chunks for control and status messages in the end of each data block. The chunks consist of data block counter (4 byte) and message (2 byte). * All of settings are represented in bit flag in one quadlet address (0x'ffff'f000'0b00). * When optical interface is configured as S/PDIF, signals of the interface is multiplexed for packets, instead of signals of coaxial interface. * The internal multiplexer is not configured by software. I note that the device has a quirk to mute output voluntarily during receiving batch of packets in the beginning of packet streaming. The operation to unmute should be done by software enough after the device shifts the state, however it's not deterministic. Furthermore, just after switching rate of sampling clock, the device keeps the state longer. This patch manages to sleep 100 msec before unmute operation, but it may fail to release the mute in the case that the rate is changed. As a workaround, users can restart packet streaming at the same rate, or write to specific register from userspace. $ python3 crpp < /sys/bus/firewire/devices/fw1/config_rom ROM header and bus information block ----------------------------------------------------------------- 400 04105c54 bus_info_length 4, crc_length 16, crc 23636 404 31333934 bus_name "1394" 408 20001000 irmc 0, cmc 0, isc 1, bmc 0, cyc_clk_acc 0, max_rec 1 (4) 40c 0001f200 company_id 0001f2 | 410 00005015 device_id 0000005015 | EUI-64 0001f20000005015 root directory ----------------------------------------------------------------- 414 0004c65c directory_length 4, crc 50780 418 030001f2 vendor 41c 0c0083c0 node capabilities per IEEE 1394 420 8d000006 --> eui-64 leaf at 438 424 d1000001 --> unit directory at 428 unit directory at 428 ----------------------------------------------------------------- 428 00035052 directory_length 3, crc 20562 42c 120001f2 specifier id 430 13000001 version 434 17101800 model eui-64 leaf at 438 ----------------------------------------------------------------- 438 0002eeb6 leaf_length 2, crc 61110 43c 0001f200 company_id 0001f2 | 440 00005015 device_id 0000005015 | EUI-64 0001f20000005015 Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Link: https://lore.kernel.org/r/20210616082847.124688-2-o-takashi@sakamocchi.jp Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-04-11ALSA: firewire-motu: add tracepoints for SPH in IEC 61883-1 fashionTakashi Sakamoto
Unique protocol is used for MOTU FireWire series. In this protocol, data block format is not compliant to AM824 in IEC 61883-1/6. Each of the data block consists of 24 bit data chunks, except for a first quadlet. The quadlet is used for source packet header (SPH) described in IEC 61883-1. The sequence of SPH seems to represent presentation timestamp corresponding to included data. Developers have experienced that invalid sequence brings disorder of units in the series. Unfortunately, current implementation of ALSA IEC 61883-1/6 engine and firewire-motu driver brings periodical noises to the units at sampling transmission frequency based on 44.1 kHz. The engine generates the SPH with even interval and this mechanism seems not to be suitable to the units. Further work is required for this issue and infrastructure is preferable to assist the work. This commit adds tracepoints for the purpose. In the tracepoints, events are probed to gather the SPHs from each data blocks. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-28ALSA: firewire-motu: add support for MOTU 828mk3 (FireWire/Hybrid) as a ↵Takashi Sakamoto
model with protocol version 3 MOTU 828mk3 (FireWire/Hybrid) is one of third generation in MOTU FireWire series, produced in 2008/2014. This model consists of three chips for functionality on IEEE 1394 bus: * TI TSB41AB2 (Physical layer for IEEE 1394 bus) * Xilinx Spartan-3E FPGA Family (Link layer for IEEE 1394 bus, packet processing and data block processing layer) * TI TMS320C6722 (Digital signal processing) This commit adds a support for this model, with its unique protocol as version 3. This protocol has some additional features to protocol version 2. * Support several optical interfaces. * Support a data chunk for return of reverb effect. * Have a quirk of tx packets. * Support heartbeat asynchronous transaction. In this protocol, series of transferred packets has some quirks. Below fields in CIP headers of the packets are out of IEC 61883-1: - SID (source node id): always 0x0d - DBS (data block size): always 0x04 - DBC (data block counter): always 0x00 - EOH (End of header): always 0x00 Below is an actual sample of transferred packets. quads CIP1 CIP2 520 0x0D040400 0x22FFFFFF 8 0x0D040400 0x22FFFFFF 520 0x0D040400 0x22FFFFFF 520 0x0D040400 0x22FFFFFF 8 0x0D040400 0x22FFFFFF Status of clock is configured by write transactions to 0x'ffff'f000'0b14, as well as version 2, while meanings of fields are different from the former protocols. Modes of optical interfaces are configured by write transactions to 0x'ffff'f000'0c94. Drivers can register its address to receive heatbeat transactions from the unit. 0x'ffff'f000'0b0c is for the higher part and 0x'ffff'f000'0b10 is for the lower part. Nevertheless, this feature is not useless for this driver and this commit omits it. Each data block consists of two parts in a point of the number of included data chunks. In both of 'fixed' and 'differed' parts, the number of included data blocks are a multiple of 4, thus depending on models there's some empty data chunks. For example, 828mk3 includes one pair of empty data chunks in its fixed part. When optical interface is configured to S/PDIF, 828mk3 includes one pair of empty data chunks in its differed part. To reduce consumption of CPU cycles with additional conditions/loops, this commit just exposes these empty chunks to user space as PCM channels. Additionally, 828mk3 has a non-negligible overhead to change its sampling transfer frequency. When softwares send asynchronous transaction to perform it, LED on the unit starts to blink. In a worst case, it continues blink during several seconds; e.g. 10 seconds. When stopping blinking, the unit seems to be prepared for the requested sampling transfer frequency. To wait for the preparation, this commit forces the driver to call task scheduler and applications sleeps for 4 seconds. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-28ALSA: firewire-motu: add support for MOTU 828mk2 as a model with protocol ↵Takashi Sakamoto
version 2 MOTU 828mk2 is one of second generation in MOTU FireWire series, produced in 2003. This model consists of four chips: * TI TSB41AB2 (Physical layer for IEEE 1394 bus) * PDI 1394L40BE (Link layer for IEEE 1394 bus and packet processing layer) * ALTERA ACEX 1K EP1K30 Series FPGA (Data block processing layer) * TI TMS320VC5402 (Digital signal processing) This commit adds a support for this model, with its unique protocol as version 2. The features of this protocol are: * Support data chunks for status and control messages for both directions. * Support a pair of MIDI input/output. * Support a data chunk for mic/instrument independent of analog line in. * Support a data chunk for playback return. * Support independent data chunks for S/PDIF of both optical/coaxial interfaces. * Support independent data chunks for each of main out and phone out. Status of clock is configured by write transactions to 0x'ffff'f000'0b14. Modes of optical interfaces are configured by write transactions to 0x'ffff'f000'0c04. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-28ALSA: firewire-motu: add hwdep interfaceTakashi Sakamoto
This commit adds hwdep interface so as the other sound drivers for units on IEEE 1394 bus have. This interface is designed for mixer/control applications. By using this interface, an application can get information about firewire node, can lock/unlock kernel streaming and can get notification at starting/stopping kernel streaming. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-28ALSA: firewire-motu: add MIDI functionalityTakashi Sakamoto
In MOTU FireWire series, MIDI messages are multiplexed to isochronous packets as well as PCM frames, while the way is different from the one in IEC 61883-6. MIDI messages are put into a certain position in message chunks. One data block can includes one byte of the MIDI messages. When data block includes a MIDI byte, the block has a flag in a certain position of the message chunk. These positions are unique depending on protocols. Once a data block includes a MIDI byte, some following data blocks includes no MIDI bytes. Next MIDI byte appears on a data block corresponding to next cycle of physical MIDI bus. This seems to avoid buffer overflow caused by bandwidth differences between IEEE 1394 bus and physical MIDI bus. This commit adds MIDI functionality to transfer/receive MIDI messages. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-28ALSA: firewire-motu: add PCM functionalityTakashi Sakamoto
This commit adds PCM functionality to transmit/receive PCM samples. When one of PCM substreams are running or external clock source is selected, current sampling rate is used. Else, the sampling rate is changed according to requests from a userspace application. Available number of samples in a frame of PCM substream is determined at open(2) to corresponding PCM character device. Later, packet streaming starts by ioctl(2) with SNDRV_PCM_IOCTL_PREPARE. In theory, between them, applications can change state of the unit by any write transaction to change the number. In this case, this driver may fail packet streaming due to wrong data format. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-28ALSA: firewire-motu: add proc node to show current statuc of clock and ↵Takashi Sakamoto
packet formats This commit adds a proc node for debugging purpose. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-28ALSA: firewire-motu: add stream management functionalityTakashi Sakamoto
This commit adds a functionality to manage packet streaming for MOTU FireWire series. The streaming is not controlled by CMP, thus against IEC 61883-1. Write transaction to certain addresses start/stop packet streaming. Transactions to 0x'ffff'f000'0b00 results in isochronous channel number for both directions and starting/stopping transmission of packets. The isochronous channel number is represented in 6 bit field, thus units can identify the channels up to 64, as IEEE 1394 bus specification described. Transactions to 0x'ffff'f000'0b10 results in packet format for both directions and transmission speed. When each of data block includes fixed part of data chunks only, corresponding flags stand. When bus reset occurs, the units continue to transmit packets with non-contiguous data block counter. This causes discontinuity detection in packet streaming engine and ALSA PCM applications receives EPIPE from any I/O operation. In this case, typical applications manage to recover corresponding PCM substream. This behaviour is kicked much earlier than callback of bus reset handler by Linux FireWire subsystem, therefore status of packet streaming is not changed in the handler. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-28ALSA: firewire-motu: handle transactions specific for MOTU FireWire modelsTakashi Sakamoto
All models of MOTU FireWire series can be controlled by write transaction to addresses in a range from 0x'ffff'f0000'0b00 to 0x'ffff'f000'0cff. The models support asynchronous notification. This notification has 32 bit field data, and is transferred when status of clock changes. Meaning of the value is not enough clear yet. Drivers can register its address to receive the notification. Write transaction to 0x'ffff'f000'0b04 registers higher 16 bits of the address. Write transaction to 0x'ffff'f0000'0b08 registers the rest of bits. The address includes node ID, thus it should be registered every time of bus reset. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-28ALSA: firewire-motu: add MOTU specific protocol layerTakashi Sakamoto
MOTU FireWire series uses blocking transmission for AMDTP packet streaming. They transmit/receive 8,000 packets per second, to handle the same number of data blocks as current sampling transmission frequency. Thus, IEC 61883-1/6 packet streaming engine of ALSA firewire stack is available for them. However, the sequence of packet and data blocks includes some quirks. Below sample is a sequence of CIP headers of packets received by 828mk2, at 44.1kHz of sampling transmission frequency. quads CIP1 CIP2 488 0x020F04E8 0x8222FFFF 8 0x020F04F8 0x8222FFFF 488 0x020F0400 0x8222FFFF 488 0x020F0408 0x8222FFFF 8 0x020F04E8 0x8222FFFF 488 0x020F04F0 0x8222FFFF 488 0x020F04F8 0x8222FFFF The SID (source node ID), DBS (data block size), SPH (source packet header), FMT (format ID), FDF (format dependent field) and SYT (time stamp) fields are in IEC 61883-1. Especially, FMT is 0x02, FDF is 0x22 and SYT is 0xffff to define MOTU specific protocol. In an aspect of dbc field, the value represents accumulated number of data blocks included the packet. This is against IEC 61883-1, because according to the specification this value should be the number of data blocks already transferred. In ALSA IEC 61883-1/6 engine, this quirk is already supported by CIP_DBC_IS_END_EVENT flag, because Echo Audio Fireworks has. Each data block includes SPH as its first quadlet field, to represent its presentation time stamp. Actual value of SPH is compliant to IEC 61883-1; lower 25 bits of 32 bits width consists of 13 bits cycle count and 12 bits cycle offset. The rest of each data block consists of 24 bit chunks. All of PCM samples, MIDI messages, status and control messages are transferred by the chunks. This is similar to '24-bit * 4 Audio Pack' in IEC 61883-6. The position of each kind of data depends on generations of each model. The number of whole chunks in a data block is a multiple of 4, to consists of quadlet-aligned packets. This commit adds data block processing layer specific for the MOTU protocol. The remarkable point is the way to generate SPH header. Time stamps for each data blocks are generated by below calculation: * Using pre-computed table for the number of ticks per event * 44,1kHz: (557 + 123/441) * 48.0kHz: (512 + 0/441) * 88.2kHz: (278 + 282/441) * 96.0kHz: (256 + 0/441) * 176.4kHz: (139 + 141/441) * 192.0kHz: (128 + 0/441) * Accumulate the ticks and set the value to SPH for every events. * This way makes sense only for blocking transmission because this mode transfers fixed number or none of events. This calculation assumes that each data block has a PCM frame which is sampled according to event timing clock. Current packet streaming layer has the same assumption. Although this sequence works fine for MOTU FireWire series at sampling transmission frequency based on 48.0kHz, it is not enough at the frequency based on 44.1kHz. The units generate choppy noise every few seconds. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-03-28ALSA: firewire-motu: add skeleton for Mark of the unicorn (MOTU) FireWire seriesTakashi Sakamoto
This commit adds an new driver for MOTU FireWire series. In this commit, this driver just creates/removes card instance according to bus event. More functionalities will be added in following commits. Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Signed-off-by: Takashi Iwai <tiwai@suse.de>