From dc7a08166f3a5f23e79e839a8a88849bd3397c32 Mon Sep 17 00:00:00 2001 From: "J. Bruce Fields" Date: Tue, 27 Oct 2009 14:41:35 -0400 Subject: nfs: new subdir Documentation/filesystems/nfs We're adding enough nfs documentation that it may as well have its own subdirectory. Acked-by: Randy Dunlap Signed-off-by: J. Bruce Fields --- Documentation/filesystems/00-INDEX | 10 +- Documentation/filesystems/Exporting | 147 -------------- Documentation/filesystems/nfs-rdma.txt | 271 ------------------------- Documentation/filesystems/nfs.txt | 98 --------- Documentation/filesystems/nfs/00-INDEX | 12 ++ Documentation/filesystems/nfs/Exporting | 147 ++++++++++++++ Documentation/filesystems/nfs/nfs-rdma.txt | 271 +++++++++++++++++++++++++ Documentation/filesystems/nfs/nfs.txt | 98 +++++++++ Documentation/filesystems/nfs/nfs41-server.txt | 222 ++++++++++++++++++++ Documentation/filesystems/nfs/nfsroot.txt | 270 ++++++++++++++++++++++++ Documentation/filesystems/nfs41-server.txt | 222 -------------------- Documentation/filesystems/nfsroot.txt | 270 ------------------------ Documentation/filesystems/porting | 2 +- Documentation/kernel-parameters.txt | 6 +- fs/cifs/export.c | 2 +- fs/exportfs/expfs.c | 2 +- fs/isofs/export.c | 2 +- fs/nfs/Kconfig | 2 +- include/linux/exportfs.h | 2 +- net/ipv4/Kconfig | 6 +- net/ipv4/ipconfig.c | 2 +- 21 files changed, 1035 insertions(+), 1029 deletions(-) delete mode 100644 Documentation/filesystems/Exporting delete mode 100644 Documentation/filesystems/nfs-rdma.txt delete mode 100644 Documentation/filesystems/nfs.txt create mode 100644 Documentation/filesystems/nfs/00-INDEX create mode 100644 Documentation/filesystems/nfs/Exporting create mode 100644 Documentation/filesystems/nfs/nfs-rdma.txt create mode 100644 Documentation/filesystems/nfs/nfs.txt create mode 100644 Documentation/filesystems/nfs/nfs41-server.txt create mode 100644 Documentation/filesystems/nfs/nfsroot.txt delete mode 100644 Documentation/filesystems/nfs41-server.txt delete mode 100644 Documentation/filesystems/nfsroot.txt diff --git a/Documentation/filesystems/00-INDEX b/Documentation/filesystems/00-INDEX index f15621ee5599..482151c883a5 100644 --- a/Documentation/filesystems/00-INDEX +++ b/Documentation/filesystems/00-INDEX @@ -1,7 +1,5 @@ 00-INDEX - this file (info on some of the filesystems supported by linux). -Exporting - - explanation of how to make filesystems exportable. Locking - info on locking rules as they pertain to Linux VFS. 9p.txt @@ -66,12 +64,8 @@ mandatory-locking.txt - info on the Linux implementation of Sys V mandatory file locking. ncpfs.txt - info on Novell Netware(tm) filesystem using NCP protocol. -nfs41-server.txt - - info on the Linux server implementation of NFSv4 minor version 1. -nfs-rdma.txt - - how to install and setup the Linux NFS/RDMA client and server software. -nfsroot.txt - - short guide on setting up a diskless box with NFS root filesystem. +nfs/ + - nfs-related documentation. nilfs2.txt - info and mount options for the NILFS2 filesystem. ntfs.txt diff --git a/Documentation/filesystems/Exporting b/Documentation/filesystems/Exporting deleted file mode 100644 index 87019d2b5981..000000000000 --- a/Documentation/filesystems/Exporting +++ /dev/null @@ -1,147 +0,0 @@ - -Making Filesystems Exportable -============================= - -Overview --------- - -All filesystem operations require a dentry (or two) as a starting -point. Local applications have a reference-counted hold on suitable -dentries via open file descriptors or cwd/root. However remote -applications that access a filesystem via a remote filesystem protocol -such as NFS may not be able to hold such a reference, and so need a -different way to refer to a particular dentry. As the alternative -form of reference needs to be stable across renames, truncates, and -server-reboot (among other things, though these tend to be the most -problematic), there is no simple answer like 'filename'. - -The mechanism discussed here allows each filesystem implementation to -specify how to generate an opaque (outside of the filesystem) byte -string for any dentry, and how to find an appropriate dentry for any -given opaque byte string. -This byte string will be called a "filehandle fragment" as it -corresponds to part of an NFS filehandle. - -A filesystem which supports the mapping between filehandle fragments -and dentries will be termed "exportable". - - - -Dcache Issues -------------- - -The dcache normally contains a proper prefix of any given filesystem -tree. This means that if any filesystem object is in the dcache, then -all of the ancestors of that filesystem object are also in the dcache. -As normal access is by filename this prefix is created naturally and -maintained easily (by each object maintaining a reference count on -its parent). - -However when objects are included into the dcache by interpreting a -filehandle fragment, there is no automatic creation of a path prefix -for the object. This leads to two related but distinct features of -the dcache that are not needed for normal filesystem access. - -1/ The dcache must sometimes contain objects that are not part of the - proper prefix. i.e that are not connected to the root. -2/ The dcache must be prepared for a newly found (via ->lookup) directory - to already have a (non-connected) dentry, and must be able to move - that dentry into place (based on the parent and name in the - ->lookup). This is particularly needed for directories as - it is a dcache invariant that directories only have one dentry. - -To implement these features, the dcache has: - -a/ A dentry flag DCACHE_DISCONNECTED which is set on - any dentry that might not be part of the proper prefix. - This is set when anonymous dentries are created, and cleared when a - dentry is noticed to be a child of a dentry which is in the proper - prefix. - -b/ A per-superblock list "s_anon" of dentries which are the roots of - subtrees that are not in the proper prefix. These dentries, as - well as the proper prefix, need to be released at unmount time. As - these dentries will not be hashed, they are linked together on the - d_hash list_head. - -c/ Helper routines to allocate anonymous dentries, and to help attach - loose directory dentries at lookup time. They are: - d_alloc_anon(inode) will return a dentry for the given inode. - If the inode already has a dentry, one of those is returned. - If it doesn't, a new anonymous (IS_ROOT and - DCACHE_DISCONNECTED) dentry is allocated and attached. - In the case of a directory, care is taken that only one dentry - can ever be attached. - d_splice_alias(inode, dentry) will make sure that there is a - dentry with the same name and parent as the given dentry, and - which refers to the given inode. - If the inode is a directory and already has a dentry, then that - dentry is d_moved over the given dentry. - If the passed dentry gets attached, care is taken that this is - mutually exclusive to a d_alloc_anon operation. - If the passed dentry is used, NULL is returned, else the used - dentry is returned. This corresponds to the calling pattern of - ->lookup. - - -Filesystem Issues ------------------ - -For a filesystem to be exportable it must: - - 1/ provide the filehandle fragment routines described below. - 2/ make sure that d_splice_alias is used rather than d_add - when ->lookup finds an inode for a given parent and name. - Typically the ->lookup routine will end with a: - - return d_splice_alias(inode, dentry); - } - - - - A file system implementation declares that instances of the filesystem -are exportable by setting the s_export_op field in the struct -super_block. This field must point to a "struct export_operations" -struct which has the following members: - - encode_fh (optional) - Takes a dentry and creates a filehandle fragment which can later be used - to find or create a dentry for the same object. The default - implementation creates a filehandle fragment that encodes a 32bit inode - and generation number for the inode encoded, and if necessary the - same information for the parent. - - fh_to_dentry (mandatory) - Given a filehandle fragment, this should find the implied object and - create a dentry for it (possibly with d_alloc_anon). - - fh_to_parent (optional but strongly recommended) - Given a filehandle fragment, this should find the parent of the - implied object and create a dentry for it (possibly with d_alloc_anon). - May fail if the filehandle fragment is too small. - - get_parent (optional but strongly recommended) - When given a dentry for a directory, this should return a dentry for - the parent. Quite possibly the parent dentry will have been allocated - by d_alloc_anon. The default get_parent function just returns an error - so any filehandle lookup that requires finding a parent will fail. - ->lookup("..") is *not* used as a default as it can leave ".." entries - in the dcache which are too messy to work with. - - get_name (optional) - When given a parent dentry and a child dentry, this should find a name - in the directory identified by the parent dentry, which leads to the - object identified by the child dentry. If no get_name function is - supplied, a default implementation is provided which uses vfs_readdir - to find potential names, and matches inode numbers to find the correct - match. - - -A filehandle fragment consists of an array of 1 or more 4byte words, -together with a one byte "type". -The decode_fh routine should not depend on the stated size that is -passed to it. This size may be larger than the original filehandle -generated by encode_fh, in which case it will have been padded with -nuls. Rather, the encode_fh routine should choose a "type" which -indicates the decode_fh how much of the filehandle is valid, and how -it should be interpreted. diff --git a/Documentation/filesystems/nfs-rdma.txt b/Documentation/filesystems/nfs-rdma.txt deleted file mode 100644 index e386f7e4bcee..000000000000 --- a/Documentation/filesystems/nfs-rdma.txt +++ /dev/null @@ -1,271 +0,0 @@ -################################################################################ -# # -# NFS/RDMA README # -# # -################################################################################ - - Author: NetApp and Open Grid Computing - Date: May 29, 2008 - -Table of Contents -~~~~~~~~~~~~~~~~~ - - Overview - - Getting Help - - Installation - - Check RDMA and NFS Setup - - NFS/RDMA Setup - -Overview -~~~~~~~~ - - This document describes how to install and setup the Linux NFS/RDMA client - and server software. - - The NFS/RDMA client was first included in Linux 2.6.24. The NFS/RDMA server - was first included in the following release, Linux 2.6.25. - - In our testing, we have obtained excellent performance results (full 10Gbit - wire bandwidth at minimal client CPU) under many workloads. The code passes - the full Connectathon test suite and operates over both Infiniband and iWARP - RDMA adapters. - -Getting Help -~~~~~~~~~~~~ - - If you get stuck, you can ask questions on the - - nfs-rdma-devel@lists.sourceforge.net - - mailing list. - -Installation -~~~~~~~~~~~~ - - These instructions are a step by step guide to building a machine for - use with NFS/RDMA. - - - Install an RDMA device - - Any device supported by the drivers in drivers/infiniband/hw is acceptable. - - Testing has been performed using several Mellanox-based IB cards, the - Ammasso AMS1100 iWARP adapter, and the Chelsio cxgb3 iWARP adapter. - - - Install a Linux distribution and tools - - The first kernel release to contain both the NFS/RDMA client and server was - Linux 2.6.25 Therefore, a distribution compatible with this and subsequent - Linux kernel release should be installed. - - The procedures described in this document have been tested with - distributions from Red Hat's Fedora Project (http://fedora.redhat.com/). - - - Install nfs-utils-1.1.2 or greater on the client - - An NFS/RDMA mount point can be obtained by using the mount.nfs command in - nfs-utils-1.1.2 or greater (nfs-utils-1.1.1 was the first nfs-utils - version with support for NFS/RDMA mounts, but for various reasons we - recommend using nfs-utils-1.1.2 or greater). To see which version of - mount.nfs you are using, type: - - $ /sbin/mount.nfs -V - - If the version is less than 1.1.2 or the command does not exist, - you should install the latest version of nfs-utils. - - Download the latest package from: - - http://www.kernel.org/pub/linux/utils/nfs - - Uncompress the package and follow the installation instructions. - - If you will not need the idmapper and gssd executables (you do not need - these to create an NFS/RDMA enabled mount command), the installation - process can be simplified by disabling these features when running - configure: - - $ ./configure --disable-gss --disable-nfsv4 - - To build nfs-utils you will need the tcp_wrappers package installed. For - more information on this see the package's README and INSTALL files. - - After building the nfs-utils package, there will be a mount.nfs binary in - the utils/mount directory. This binary can be used to initiate NFS v2, v3, - or v4 mounts. To initiate a v4 mount, the binary must be called - mount.nfs4. The standard technique is to create a symlink called - mount.nfs4 to mount.nfs. - - This mount.nfs binary should be installed at /sbin/mount.nfs as follows: - - $ sudo cp utils/mount/mount.nfs /sbin/mount.nfs - - In this location, mount.nfs will be invoked automatically for NFS mounts - by the system mount command. - - NOTE: mount.nfs and therefore nfs-utils-1.1.2 or greater is only needed - on the NFS client machine. You do not need this specific version of - nfs-utils on the server. Furthermore, only the mount.nfs command from - nfs-utils-1.1.2 is needed on the client. - - - Install a Linux kernel with NFS/RDMA - - The NFS/RDMA client and server are both included in the mainline Linux - kernel version 2.6.25 and later. This and other versions of the 2.6 Linux - kernel can be found at: - - ftp://ftp.kernel.org/pub/linux/kernel/v2.6/ - - Download the sources and place them in an appropriate location. - - - Configure the RDMA stack - - Make sure your kernel configuration has RDMA support enabled. Under - Device Drivers -> InfiniBand support, update the kernel configuration - to enable InfiniBand support [NOTE: the option name is misleading. Enabling - InfiniBand support is required for all RDMA devices (IB, iWARP, etc.)]. - - Enable the appropriate IB HCA support (mlx4, mthca, ehca, ipath, etc.) or - iWARP adapter support (amso, cxgb3, etc.). - - If you are using InfiniBand, be sure to enable IP-over-InfiniBand support. - - - Configure the NFS client and server - - Your kernel configuration must also have NFS file system support and/or - NFS server support enabled. These and other NFS related configuration - options can be found under File Systems -> Network File Systems. - - - Build, install, reboot - - The NFS/RDMA code will be enabled automatically if NFS and RDMA - are turned on. The NFS/RDMA client and server are configured via the hidden - SUNRPC_XPRT_RDMA config option that depends on SUNRPC and INFINIBAND. The - value of SUNRPC_XPRT_RDMA will be: - - - N if either SUNRPC or INFINIBAND are N, in this case the NFS/RDMA client - and server will not be built - - M if both SUNRPC and INFINIBAND are on (M or Y) and at least one is M, - in this case the NFS/RDMA client and server will be built as modules - - Y if both SUNRPC and INFINIBAND are Y, in this case the NFS/RDMA client - and server will be built into the kernel - - Therefore, if you have followed the steps above and turned no NFS and RDMA, - the NFS/RDMA client and server will be built. - - Build a new kernel, install it, boot it. - -Check RDMA and NFS Setup -~~~~~~~~~~~~~~~~~~~~~~~~ - - Before configuring the NFS/RDMA software, it is a good idea to test - your new kernel to ensure that the kernel is working correctly. - In particular, it is a good idea to verify that the RDMA stack - is functioning as expected and standard NFS over TCP/IP and/or UDP/IP - is working properly. - - - Check RDMA Setup - - If you built the RDMA components as modules, load them at - this time. For example, if you are using a Mellanox Tavor/Sinai/Arbel - card: - - $ modprobe ib_mthca - $ modprobe ib_ipoib - - If you are using InfiniBand, make sure there is a Subnet Manager (SM) - running on the network. If your IB switch has an embedded SM, you can - use it. Otherwise, you will need to run an SM, such as OpenSM, on one - of your end nodes. - - If an SM is running on your network, you should see the following: - - $ cat /sys/class/infiniband/driverX/ports/1/state - 4: ACTIVE - - where driverX is mthca0, ipath5, ehca3, etc. - - To further test the InfiniBand software stack, use IPoIB (this - assumes you have two IB hosts named host1 and host2): - - host1$ ifconfig ib0 a.b.c.x - host2$ ifconfig ib0 a.b.c.y - host1$ ping a.b.c.y - host2$ ping a.b.c.x - - For other device types, follow the appropriate procedures. - - - Check NFS Setup - - For the NFS components enabled above (client and/or server), - test their functionality over standard Ethernet using TCP/IP or UDP/IP. - -NFS/RDMA Setup -~~~~~~~~~~~~~~ - - We recommend that you use two machines, one to act as the client and - one to act as the server. - - One time configuration: - - - On the server system, configure the /etc/exports file and - start the NFS/RDMA server. - - Exports entries with the following formats have been tested: - - /vol0 192.168.0.47(fsid=0,rw,async,insecure,no_root_squash) - /vol0 192.168.0.0/255.255.255.0(fsid=0,rw,async,insecure,no_root_squash) - - The IP address(es) is(are) the client's IPoIB address for an InfiniBand - HCA or the cleint's iWARP address(es) for an RNIC. - - NOTE: The "insecure" option must be used because the NFS/RDMA client does - not use a reserved port. - - Each time a machine boots: - - - Load and configure the RDMA drivers - - For InfiniBand using a Mellanox adapter: - - $ modprobe ib_mthca - $ modprobe ib_ipoib - $ ifconfig ib0 a.b.c.d - - NOTE: use unique addresses for the client and server - - - Start the NFS server - - If the NFS/RDMA server was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in - kernel config), load the RDMA transport module: - - $ modprobe svcrdma - - Regardless of how the server was built (module or built-in), start the - server: - - $ /etc/init.d/nfs start - - or - - $ service nfs start - - Instruct the server to listen on the RDMA transport: - - $ echo rdma 20049 > /proc/fs/nfsd/portlist - - - On the client system - - If the NFS/RDMA client was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in - kernel config), load the RDMA client module: - - $ modprobe xprtrdma.ko - - Regardless of how the client was built (module or built-in), use this - command to mount the NFS/RDMA server: - - $ mount -o rdma,port=20049 :/ /mnt - - To verify that the mount is using RDMA, run "cat /proc/mounts" and check - the "proto" field for the given mount. - - Congratulations! You're using NFS/RDMA! diff --git a/Documentation/filesystems/nfs.txt b/Documentation/filesystems/nfs.txt deleted file mode 100644 index f50f26ce6cd0..000000000000 --- a/Documentation/filesystems/nfs.txt +++ /dev/null @@ -1,98 +0,0 @@ - -The NFS client -============== - -The NFS version 2 protocol was first documented in RFC1094 (March 1989). -Since then two more major releases of NFS have been published, with NFSv3 -being documented in RFC1813 (June 1995), and NFSv4 in RFC3530 (April -2003). - -The Linux NFS client currently supports all the above published versions, -and work is in progress on adding support for minor version 1 of the NFSv4 -protocol. - -The purpose of this document is to provide information on some of the -upcall interfaces that are used in order to provide the NFS client with -some of the information that it requires in order to fully comply with -the NFS spec. - -The DNS resolver -================ - -NFSv4 allows for one server to refer the NFS client to data that has been -migrated onto another server by means of the special "fs_locations" -attribute. See - http://tools.ietf.org/html/rfc3530#section-6 -and - http://tools.ietf.org/html/draft-ietf-nfsv4-referrals-00 - -The fs_locations information can take the form of either an ip address and -a path, or a DNS hostname and a path. The latter requires the NFS client to -do a DNS lookup in order to mount the new volume, and hence the need for an -upcall to allow userland to provide this service. - -Assuming that the user has the 'rpc_pipefs' filesystem mounted in the usual -/var/lib/nfs/rpc_pipefs, the upcall consists of the following steps: - - (1) The process checks the dns_resolve cache to see if it contains a - valid entry. If so, it returns that entry and exits. - - (2) If no valid entry exists, the helper script '/sbin/nfs_cache_getent' - (may be changed using the 'nfs.cache_getent' kernel boot parameter) - is run, with two arguments: - - the cache name, "dns_resolve" - - the hostname to resolve - - (3) After looking up the corresponding ip address, the helper script - writes the result into the rpc_pipefs pseudo-file - '/var/lib/nfs/rpc_pipefs/cache/dns_resolve/channel' - in the following (text) format: - - " \n" - - Where is in the usual IPv4 (123.456.78.90) or IPv6 - (ffee:ddcc:bbaa:9988:7766:5544:3322:1100, ffee::1100, ...) format. - is identical to the second argument of the helper - script, and is the 'time to live' of this cache entry (in - units of seconds). - - Note: If is invalid, say the string "0", then a negative - entry is created, which will cause the kernel to treat the hostname - as having no valid DNS translation. - - - - -A basic sample /sbin/nfs_cache_getent -===================================== - -#!/bin/bash -# -ttl=600 -# -cut=/usr/bin/cut -getent=/usr/bin/getent -rpc_pipefs=/var/lib/nfs/rpc_pipefs -# -die() -{ - echo "Usage: $0 cache_name entry_name" - exit 1 -} - -[ $# -lt 2 ] && die -cachename="$1" -cache_path=${rpc_pipefs}/cache/${cachename}/channel - -case "${cachename}" in - dns_resolve) - name="$2" - result="$(${getent} hosts ${name} | ${cut} -f1 -d\ )" - [ -z "${result}" ] && result="0" - ;; - *) - die - ;; -esac -echo "${result} ${name} ${ttl}" >${cache_path} - diff --git a/Documentation/filesystems/nfs/00-INDEX b/Documentation/filesystems/nfs/00-INDEX new file mode 100644 index 000000000000..6ff3d212027b --- /dev/null +++ b/Documentation/filesystems/nfs/00-INDEX @@ -0,0 +1,12 @@ +00-INDEX + - this file (nfs-related documentation). +Exporting + - explanation of how to make filesystems exportable. +nfs.txt + - nfs client, and DNS resolution for fs_locations. +nfs41-server.txt + - info on the Linux server implementation of NFSv4 minor version 1. +nfs-rdma.txt + - how to install and setup the Linux NFS/RDMA client and server software +nfsroot.txt + - short guide on setting up a diskless box with NFS root filesystem. diff --git a/Documentation/filesystems/nfs/Exporting b/Documentation/filesystems/nfs/Exporting new file mode 100644 index 000000000000..87019d2b5981 --- /dev/null +++ b/Documentation/filesystems/nfs/Exporting @@ -0,0 +1,147 @@ + +Making Filesystems Exportable +============================= + +Overview +-------- + +All filesystem operations require a dentry (or two) as a starting +point. Local applications have a reference-counted hold on suitable +dentries via open file descriptors or cwd/root. However remote +applications that access a filesystem via a remote filesystem protocol +such as NFS may not be able to hold such a reference, and so need a +different way to refer to a particular dentry. As the alternative +form of reference needs to be stable across renames, truncates, and +server-reboot (among other things, though these tend to be the most +problematic), there is no simple answer like 'filename'. + +The mechanism discussed here allows each filesystem implementation to +specify how to generate an opaque (outside of the filesystem) byte +string for any dentry, and how to find an appropriate dentry for any +given opaque byte string. +This byte string will be called a "filehandle fragment" as it +corresponds to part of an NFS filehandle. + +A filesystem which supports the mapping between filehandle fragments +and dentries will be termed "exportable". + + + +Dcache Issues +------------- + +The dcache normally contains a proper prefix of any given filesystem +tree. This means that if any filesystem object is in the dcache, then +all of the ancestors of that filesystem object are also in the dcache. +As normal access is by filename this prefix is created naturally and +maintained easily (by each object maintaining a reference count on +its parent). + +However when objects are included into the dcache by interpreting a +filehandle fragment, there is no automatic creation of a path prefix +for the object. This leads to two related but distinct features of +the dcache that are not needed for normal filesystem access. + +1/ The dcache must sometimes contain objects that are not part of the + proper prefix. i.e that are not connected to the root. +2/ The dcache must be prepared for a newly found (via ->lookup) directory + to already have a (non-connected) dentry, and must be able to move + that dentry into place (based on the parent and name in the + ->lookup). This is particularly needed for directories as + it is a dcache invariant that directories only have one dentry. + +To implement these features, the dcache has: + +a/ A dentry flag DCACHE_DISCONNECTED which is set on + any dentry that might not be part of the proper prefix. + This is set when anonymous dentries are created, and cleared when a + dentry is noticed to be a child of a dentry which is in the proper + prefix. + +b/ A per-superblock list "s_anon" of dentries which are the roots of + subtrees that are not in the proper prefix. These dentries, as + well as the proper prefix, need to be released at unmount time. As + these dentries will not be hashed, they are linked together on the + d_hash list_head. + +c/ Helper routines to allocate anonymous dentries, and to help attach + loose directory dentries at lookup time. They are: + d_alloc_anon(inode) will return a dentry for the given inode. + If the inode already has a dentry, one of those is returned. + If it doesn't, a new anonymous (IS_ROOT and + DCACHE_DISCONNECTED) dentry is allocated and attached. + In the case of a directory, care is taken that only one dentry + can ever be attached. + d_splice_alias(inode, dentry) will make sure that there is a + dentry with the same name and parent as the given dentry, and + which refers to the given inode. + If the inode is a directory and already has a dentry, then that + dentry is d_moved over the given dentry. + If the passed dentry gets attached, care is taken that this is + mutually exclusive to a d_alloc_anon operation. + If the passed dentry is used, NULL is returned, else the used + dentry is returned. This corresponds to the calling pattern of + ->lookup. + + +Filesystem Issues +----------------- + +For a filesystem to be exportable it must: + + 1/ provide the filehandle fragment routines described below. + 2/ make sure that d_splice_alias is used rather than d_add + when ->lookup finds an inode for a given parent and name. + Typically the ->lookup routine will end with a: + + return d_splice_alias(inode, dentry); + } + + + + A file system implementation declares that instances of the filesystem +are exportable by setting the s_export_op field in the struct +super_block. This field must point to a "struct export_operations" +struct which has the following members: + + encode_fh (optional) + Takes a dentry and creates a filehandle fragment which can later be used + to find or create a dentry for the same object. The default + implementation creates a filehandle fragment that encodes a 32bit inode + and generation number for the inode encoded, and if necessary the + same information for the parent. + + fh_to_dentry (mandatory) + Given a filehandle fragment, this should find the implied object and + create a dentry for it (possibly with d_alloc_anon). + + fh_to_parent (optional but strongly recommended) + Given a filehandle fragment, this should find the parent of the + implied object and create a dentry for it (possibly with d_alloc_anon). + May fail if the filehandle fragment is too small. + + get_parent (optional but strongly recommended) + When given a dentry for a directory, this should return a dentry for + the parent. Quite possibly the parent dentry will have been allocated + by d_alloc_anon. The default get_parent function just returns an error + so any filehandle lookup that requires finding a parent will fail. + ->lookup("..") is *not* used as a default as it can leave ".." entries + in the dcache which are too messy to work with. + + get_name (optional) + When given a parent dentry and a child dentry, this should find a name + in the directory identified by the parent dentry, which leads to the + object identified by the child dentry. If no get_name function is + supplied, a default implementation is provided which uses vfs_readdir + to find potential names, and matches inode numbers to find the correct + match. + + +A filehandle fragment consists of an array of 1 or more 4byte words, +together with a one byte "type". +The decode_fh routine should not depend on the stated size that is +passed to it. This size may be larger than the original filehandle +generated by encode_fh, in which case it will have been padded with +nuls. Rather, the encode_fh routine should choose a "type" which +indicates the decode_fh how much of the filehandle is valid, and how +it should be interpreted. diff --git a/Documentation/filesystems/nfs/nfs-rdma.txt b/Documentation/filesystems/nfs/nfs-rdma.txt new file mode 100644 index 000000000000..e386f7e4bcee --- /dev/null +++ b/Documentation/filesystems/nfs/nfs-rdma.txt @@ -0,0 +1,271 @@ +################################################################################ +# # +# NFS/RDMA README # +# # +################################################################################ + + Author: NetApp and Open Grid Computing + Date: May 29, 2008 + +Table of Contents +~~~~~~~~~~~~~~~~~ + - Overview + - Getting Help + - Installation + - Check RDMA and NFS Setup + - NFS/RDMA Setup + +Overview +~~~~~~~~ + + This document describes how to install and setup the Linux NFS/RDMA client + and server software. + + The NFS/RDMA client was first included in Linux 2.6.24. The NFS/RDMA server + was first included in the following release, Linux 2.6.25. + + In our testing, we have obtained excellent performance results (full 10Gbit + wire bandwidth at minimal client CPU) under many workloads. The code passes + the full Connectathon test suite and operates over both Infiniband and iWARP + RDMA adapters. + +Getting Help +~~~~~~~~~~~~ + + If you get stuck, you can ask questions on the + + nfs-rdma-devel@lists.sourceforge.net + + mailing list. + +Installation +~~~~~~~~~~~~ + + These instructions are a step by step guide to building a machine for + use with NFS/RDMA. + + - Install an RDMA device + + Any device supported by the drivers in drivers/infiniband/hw is acceptable. + + Testing has been performed using several Mellanox-based IB cards, the + Ammasso AMS1100 iWARP adapter, and the Chelsio cxgb3 iWARP adapter. + + - Install a Linux distribution and tools + + The first kernel release to contain both the NFS/RDMA client and server was + Linux 2.6.25 Therefore, a distribution compatible with this and subsequent + Linux kernel release should be installed. + + The procedures described in this document have been tested with + distributions from Red Hat's Fedora Project (http://fedora.redhat.com/). + + - Install nfs-utils-1.1.2 or greater on the client + + An NFS/RDMA mount point can be obtained by using the mount.nfs command in + nfs-utils-1.1.2 or greater (nfs-utils-1.1.1 was the first nfs-utils + version with support for NFS/RDMA mounts, but for various reasons we + recommend using nfs-utils-1.1.2 or greater). To see which version of + mount.nfs you are using, type: + + $ /sbin/mount.nfs -V + + If the version is less than 1.1.2 or the command does not exist, + you should install the latest version of nfs-utils. + + Download the latest package from: + + http://www.kernel.org/pub/linux/utils/nfs + + Uncompress the package and follow the installation instructions. + + If you will not need the idmapper and gssd executables (you do not need + these to create an NFS/RDMA enabled mount command), the installation + process can be simplified by disabling these features when running + configure: + + $ ./configure --disable-gss --disable-nfsv4 + + To build nfs-utils you will need the tcp_wrappers package installed. For + more information on this see the package's README and INSTALL files. + + After building the nfs-utils package, there will be a mount.nfs binary in + the utils/mount directory. This binary can be used to initiate NFS v2, v3, + or v4 mounts. To initiate a v4 mount, the binary must be called + mount.nfs4. The standard technique is to create a symlink called + mount.nfs4 to mount.nfs. + + This mount.nfs binary should be installed at /sbin/mount.nfs as follows: + + $ sudo cp utils/mount/mount.nfs /sbin/mount.nfs + + In this location, mount.nfs will be invoked automatically for NFS mounts + by the system mount command. + + NOTE: mount.nfs and therefore nfs-utils-1.1.2 or greater is only needed + on the NFS client machine. You do not need this specific version of + nfs-utils on the server. Furthermore, only the mount.nfs command from + nfs-utils-1.1.2 is needed on the client. + + - Install a Linux kernel with NFS/RDMA + + The NFS/RDMA client and server are both included in the mainline Linux + kernel version 2.6.25 and later. This and other versions of the 2.6 Linux + kernel can be found at: + + ftp://ftp.kernel.org/pub/linux/kernel/v2.6/ + + Download the sources and place them in an appropriate location. + + - Configure the RDMA stack + + Make sure your kernel configuration has RDMA support enabled. Under + Device Drivers -> InfiniBand support, update the kernel configuration + to enable InfiniBand support [NOTE: the option name is misleading. Enabling + InfiniBand support is required for all RDMA devices (IB, iWARP, etc.)]. + + Enable the appropriate IB HCA support (mlx4, mthca, ehca, ipath, etc.) or + iWARP adapter support (amso, cxgb3, etc.). + + If you are using InfiniBand, be sure to enable IP-over-InfiniBand support. + + - Configure the NFS client and server + + Your kernel configuration must also have NFS file system support and/or + NFS server support enabled. These and other NFS related configuration + options can be found under File Systems -> Network File Systems. + + - Build, install, reboot + + The NFS/RDMA code will be enabled automatically if NFS and RDMA + are turned on. The NFS/RDMA client and server are configured via the hidden + SUNRPC_XPRT_RDMA config option that depends on SUNRPC and INFINIBAND. The + value of SUNRPC_XPRT_RDMA will be: + + - N if either SUNRPC or INFINIBAND are N, in this case the NFS/RDMA client + and server will not be built + - M if both SUNRPC and INFINIBAND are on (M or Y) and at least one is M, + in this case the NFS/RDMA client and server will be built as modules + - Y if both SUNRPC and INFINIBAND are Y, in this case the NFS/RDMA client + and server will be built into the kernel + + Therefore, if you have followed the steps above and turned no NFS and RDMA, + the NFS/RDMA client and server will be built. + + Build a new kernel, install it, boot it. + +Check RDMA and NFS Setup +~~~~~~~~~~~~~~~~~~~~~~~~ + + Before configuring the NFS/RDMA software, it is a good idea to test + your new kernel to ensure that the kernel is working correctly. + In particular, it is a good idea to verify that the RDMA stack + is functioning as expected and standard NFS over TCP/IP and/or UDP/IP + is working properly. + + - Check RDMA Setup + + If you built the RDMA components as modules, load them at + this time. For example, if you are using a Mellanox Tavor/Sinai/Arbel + card: + + $ modprobe ib_mthca + $ modprobe ib_ipoib + + If you are using InfiniBand, make sure there is a Subnet Manager (SM) + running on the network. If your IB switch has an embedded SM, you can + use it. Otherwise, you will need to run an SM, such as OpenSM, on one + of your end nodes. + + If an SM is running on your network, you should see the following: + + $ cat /sys/class/infiniband/driverX/ports/1/state + 4: ACTIVE + + where driverX is mthca0, ipath5, ehca3, etc. + + To further test the InfiniBand software stack, use IPoIB (this + assumes you have two IB hosts named host1 and host2): + + host1$ ifconfig ib0 a.b.c.x + host2$ ifconfig ib0 a.b.c.y + host1$ ping a.b.c.y + host2$ ping a.b.c.x + + For other device types, follow the appropriate procedures. + + - Check NFS Setup + + For the NFS components enabled above (client and/or server), + test their functionality over standard Ethernet using TCP/IP or UDP/IP. + +NFS/RDMA Setup +~~~~~~~~~~~~~~ + + We recommend that you use two machines, one to act as the client and + one to act as the server. + + One time configuration: + + - On the server system, configure the /etc/exports file and + start the NFS/RDMA server. + + Exports entries with the following formats have been tested: + + /vol0 192.168.0.47(fsid=0,rw,async,insecure,no_root_squash) + /vol0 192.168.0.0/255.255.255.0(fsid=0,rw,async,insecure,no_root_squash) + + The IP address(es) is(are) the client's IPoIB address for an InfiniBand + HCA or the cleint's iWARP address(es) for an RNIC. + + NOTE: The "insecure" option must be used because the NFS/RDMA client does + not use a reserved port. + + Each time a machine boots: + + - Load and configure the RDMA drivers + + For InfiniBand using a Mellanox adapter: + + $ modprobe ib_mthca + $ modprobe ib_ipoib + $ ifconfig ib0 a.b.c.d + + NOTE: use unique addresses for the client and server + + - Start the NFS server + + If the NFS/RDMA server was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in + kernel config), load the RDMA transport module: + + $ modprobe svcrdma + + Regardless of how the server was built (module or built-in), start the + server: + + $ /etc/init.d/nfs start + + or + + $ service nfs start + + Instruct the server to listen on the RDMA transport: + + $ echo rdma 20049 > /proc/fs/nfsd/portlist + + - On the client system + + If the NFS/RDMA client was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in + kernel config), load the RDMA client module: + + $ modprobe xprtrdma.ko + + Regardless of how the client was built (module or built-in), use this + command to mount the NFS/RDMA server: + + $ mount -o rdma,port=20049 :/ /mnt + + To verify that the mount is using RDMA, run "cat /proc/mounts" and check + the "proto" field for the given mount. + + Congratulations! You're using NFS/RDMA! diff --git a/Documentation/filesystems/nfs/nfs.txt b/Documentation/filesystems/nfs/nfs.txt new file mode 100644 index 000000000000..f50f26ce6cd0 --- /dev/null +++ b/Documentation/filesystems/nfs/nfs.txt @@ -0,0 +1,98 @@ + +The NFS client +============== + +The NFS version 2 protocol was first documented in RFC1094 (March 1989). +Since then two more major releases of NFS have been published, with NFSv3 +being documented in RFC1813 (June 1995), and NFSv4 in RFC3530 (April +2003). + +The Linux NFS client currently supports all the above published versions, +and work is in progress on adding support for minor version 1 of the NFSv4 +protocol. + +The purpose of this document is to provide information on some of the +upcall interfaces that are used in order to provide the NFS client with +some of the information that it requires in order to fully comply with +the NFS spec. + +The DNS resolver +================ + +NFSv4 allows for one server to refer the NFS client to data that has been +migrated onto another server by means of the special "fs_locations" +attribute. See + http://tools.ietf.org/html/rfc3530#section-6 +and + http://tools.ietf.org/html/draft-ietf-nfsv4-referrals-00 + +The fs_locations information can take the form of either an ip address and +a path, or a DNS hostname and a path. The latter requires the NFS client to +do a DNS lookup in order to mount the new volume, and hence the need for an +upcall to allow userland to provide this service. + +Assuming that the user has the 'rpc_pipefs' filesystem mounted in the usual +/var/lib/nfs/rpc_pipefs, the upcall consists of the following steps: + + (1) The process checks the dns_resolve cache to see if it contains a + valid entry. If so, it returns that entry and exits. + + (2) If no valid entry exists, the helper script '/sbin/nfs_cache_getent' + (may be changed using the 'nfs.cache_getent' kernel boot parameter) + is run, with two arguments: + - the cache name, "dns_resolve" + - the hostname to resolve + + (3) After looking up the corresponding ip address, the helper script + writes the result into the rpc_pipefs pseudo-file + '/var/lib/nfs/rpc_pipefs/cache/dns_resolve/channel' + in the following (text) format: + + " \n" + + Where is in the usual IPv4 (123.456.78.90) or IPv6 + (ffee:ddcc:bbaa:9988:7766:5544:3322:1100, ffee::1100, ...) format. + is identical to the second argument of the helper + script, and is the 'time to live' of this cache entry (in + units of seconds). + + Note: If is invalid, say the string "0", then a negative + entry is created, which will cause the kernel to treat the hostname + as having no valid DNS translation. + + + + +A basic sample /sbin/nfs_cache_getent +===================================== + +#!/bin/bash +# +ttl=600 +# +cut=/usr/bin/cut +getent=/usr/bin/getent +rpc_pipefs=/var/lib/nfs/rpc_pipefs +# +die() +{ + echo "Usage: $0 cache_name entry_name" + exit 1 +} + +[ $# -lt 2 ] && die +cachename="$1" +cache_path=${rpc_pipefs}/cache/${cachename}/channel + +case "${cachename}" in + dns_resolve) + name="$2" + result="$(${getent} hosts ${name} | ${cut} -f1 -d\ )" + [ -z "${result}" ] && result="0" + ;; + *) + die + ;; +esac +echo "${result} ${name} ${ttl}" >${cache_path} + diff --git a/Documentation/filesystems/nfs/nfs41-server.txt b/Documentation/filesystems/nfs/nfs41-server.txt new file mode 100644 index 000000000000..1bd0d0c05171 --- /dev/null +++ b/Documentation/filesystems/nfs/nfs41-server.txt @@ -0,0 +1,222 @@ +NFSv4.1 Server Implementation + +Server support for minorversion 1 can be controlled using the +/proc/fs/nfsd/versions control file. The string output returned +by reading this file will contain either "+4.1" or "-4.1" +correspondingly. + +Currently, server support for minorversion 1 is disabled by default. +It can be enabled at run time by writing the string "+4.1" to +the /proc/fs/nfsd/versions control file. Note that to write this +control file, the nfsd service must be taken down. Use your user-mode +nfs-utils to set this up; see rpc.nfsd(8) + +(Warning: older servers will interpret "+4.1" and "-4.1" as "+4" and +"-4", respectively. Therefore, code meant to work on both new and old +kernels must turn 4.1 on or off *before* turning support for version 4 +on or off; rpc.nfsd does this correctly.) + +The NFSv4 minorversion 1 (NFSv4.1) implementation in nfsd is based +on the latest NFSv4.1 Internet Draft: +http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-29 + +From the many new features in NFSv4.1 the current implementation +focuses on the mandatory-to-implement NFSv4.1 Sessions, providing +"exactly once" semantics and better control and throttling of the +resources allocated for each client. + +Other NFSv4.1 features, Parallel NFS operations in particular, +are still under development out of tree. +See http://wiki.linux-nfs.org/wiki/index.php/PNFS_prototype_design +for more information. + +The current implementation is intended for developers only: while it +does support ordinary file operations on clients we have tested against +(including the linux client), it is incomplete in ways which may limit +features unexpectedly, cause known bugs in rare cases, or cause +interoperability problems with future clients. Known issues: + + - gss support is questionable: currently mounts with kerberos + from a linux client are possible, but we aren't really + conformant with the spec (for example, we don't use kerberos + on the backchannel correctly). + - no trunking support: no clients currently take advantage of + trunking, but this is a mandatory feature, and its use is + recommended to clients in a number of places. (E.g. to ensure + timely renewal in case an existing connection's retry timeouts + have gotten too long; see section 8.3 of the draft.) + Therefore, lack of this feature may cause future clients to + fail. + - Incomplete backchannel support: incomplete backchannel gss + support and no support for BACKCHANNEL_CTL mean that + callbacks (hence delegations and layouts) may not be + available and clients confused by the incomplete + implementation may fail. + - Server reboot recovery is unsupported; if the server reboots, + clients may fail. + - We do not support SSV, which provides security for shared + client-server state (thus preventing unauthorized tampering + with locks and opens, for example). It is mandatory for + servers to support this, though no clients use it yet. + - Mandatory operations which we do not support, such as + DESTROY_CLIENTID, FREE_STATEID, SECINFO_NO_NAME, and + TEST_STATEID, are not currently used by clients, but will be + (and the spec recommends their uses in common cases), and + clients should not be expected to know how to recover from the + case where they are not supported. This will eventually cause + interoperability failures. + +In addition, some limitations are inherited from the current NFSv4 +implementation: + + - Incomplete delegation enforcement: if a file is renamed or + unlinked, a client holding a delegation may continue to + indefinitely allow opens of the file under the old name. + +The table below, taken from the NFSv4.1 document, lists +the operations that are mandatory to implement (REQ), optional +(OPT), and NFSv4.0 operations that are required not to implement (MNI) +in minor version 1. The first column indicates the operations that +are not supported yet by the linux server implementation. + +The OPTIONAL features identified and their abbreviations are as follows: + pNFS Parallel NFS + FDELG File Delegations + DDELG Directory Delegations + +The following abbreviations indicate the linux server implementation status. + I Implemented NFSv4.1 operations. + NS Not Supported. + NS* unimplemented optional feature. + P pNFS features implemented out of tree. + PNS pNFS features that are not supported yet (out of tree). + +Operations + + +----------------------+------------+--------------+----------------+ + | Operation | REQ, REC, | Feature | Definition | + | | OPT, or | (REQ, REC, | | + | | MNI | or OPT) | | + +----------------------+------------+--------------+----------------+ + | ACCESS | REQ | | Section 18.1 | +NS | BACKCHANNEL_CTL | REQ | | Section 18.33 | +NS | BIND_CONN_TO_SESSION | REQ | | Section 18.34 | + | CLOSE | REQ | | Section 18.2 | + | COMMIT | REQ | | Section 18.3 | + | CREATE | REQ | | Section 18.4 | +I | CREATE_SESSION | REQ | | Section 18.36 | +NS*| DELEGPURGE | OPT | FDELG (REQ) | Section 18.5 | + | DELEGRETURN | OPT | FDELG, | Section 18.6 | + | | | DDELG, pNFS | | + | | | (REQ) | | +NS | DESTROY_CLIENTID | REQ | | Section 18.50 | +I | DESTROY_SESSION | REQ | | Section 18.37 | +I | EXCHANGE_ID | REQ | | Section 18.35 | +NS | FREE_STATEID | REQ | | Section 18.38 | + | GETATTR | REQ | | Section 18.7 | +P | GETDEVICEINFO | OPT | pNFS (REQ) | Section 18.40 | +P | GETDEVICELIST | OPT | pNFS (OPT) | Section 18.41 | + | GETFH | REQ | | Section 18.8 | +NS*| GET_DIR_DELEGATION | OPT | DDELG (REQ) | Section 18.39 | +P | LAYOUTCOMMIT | OPT | pNFS (REQ) | Section 18.42 | +P | LAYOUTGET | OPT | pNFS (REQ) | Section 18.43 | +P | LAYOUTRETURN | OPT | pNFS (REQ) | Section 18.44 | + | LINK | OPT | | Section 18.9 | + | LOCK | REQ | | Section 18.10 | + | LOCKT | REQ | | Section 18.11 | + | LOCKU | REQ | | Section 18.12 | + | LOOKUP | REQ | | Section 18.13 | + | LOOKUPP | REQ | | Section 18.14 | + | NVERIFY | REQ | | Section 18.15 | + | OPEN | REQ | | Section 18.16 | +NS*| OPENATTR | OPT | | Section 18.17 | + | OPEN_CONFIRM | MNI | | N/A | + | OPEN_DOWNGRADE | REQ | | Section 18.18 | + | PUTFH | REQ | | Section 18.19 | + | PUTPUBFH | REQ | | Section 18.20 | + | PUTROOTFH | REQ | | Section 18.21 | + | READ | REQ | | Section 18.22 | + | READDIR | REQ | | Section 18.23 | + | READLINK | OPT | | Section 18.24 | +NS | RECLAIM_COMPLETE | REQ | | Section 18.51 | + | RELEASE_LOCKOWNER | MNI | | N/A | + | REMOVE | REQ | | Section 18.25 | + | RENAME | REQ | | Section 18.26 | + | RENEW | MNI | | N/A | + | RESTOREFH | REQ | | Section 18.27 | + | SAVEFH | REQ | | Section 18.28 | + | SECINFO | REQ | | Section 18.29 | +NS | SECINFO_NO_NAME | REC | pNFS files | Section 18.45, | + | | | layout (REQ) | Section 13.12 | +I | SEQUENCE | REQ | | Section 18.46 | + | SETATTR | REQ | | Section 18.30 | + | SETCLIENTID | MNI | | N/A | + | SETCLIENTID_CONFIRM | MNI | | N/A | +NS | SET_SSV | REQ | | Section 18.47 | +NS | TEST_STATEID | REQ | | Section 18.48 | + | VERIFY | REQ | | Section 18.31 | +NS*| WANT_DELEGATION | OPT | FDELG (OPT) | Section 18.49 | + | WRITE | REQ | | Section 18.32 | + +Callback Operations + + +-------------------------+-----------+-------------+---------------+ + | Operation | REQ, REC, | Feature | Definition | + | | OPT, or | (REQ, REC, | | + | | MNI | or OPT) | | + +-------------------------+-----------+-------------+---------------+ + | CB_GETATTR | OPT | FDELG (REQ) | Section 20.1 | +P | CB_LAYOUTRECALL | OPT | pNFS (REQ) | Section 20.3 | +NS*| CB_NOTIFY | OPT | DDELG (REQ) | Section 20.4 | +P | CB_NOTIFY_DEVICEID | OPT | pNFS (OPT) | Section 20.12 | +NS*| CB_NOTIFY_LOCK | OPT | | Section 20.11 | +NS*| CB_PUSH_DELEG | OPT | FDELG (OPT) | Section 20.5 | + | CB_RECALL | OPT | FDELG, | Section 20.2 | + | | | DDELG, pNFS | | + | | | (REQ) | | +NS*| CB_RECALL_ANY | OPT | FDELG, | Section 20.6 | + | | | DDELG, pNFS | | + | | | (REQ) | | +NS | CB_RECALL_SLOT | REQ | | Section 20.8 | +NS*| CB_RECALLABLE_OBJ_AVAIL | OPT | DDELG, pNFS | Section 20.7 | + | | | (REQ) | | +I | CB_SEQUENCE | OPT | FDELG, | Section 20.9 | + | | | DDELG, pNFS | | + | | | (REQ) | | +NS*| CB_WANTS_CANCELLED | OPT | FDELG, | Section 20.10 | + | | | DDELG, pNFS | | + | | | (REQ) | | + +-------------------------+-----------+-------------+---------------+ + +Implementation notes: + +DELEGPURGE: +* mandatory only for servers that support CLAIM_DELEGATE_PREV and/or + CLAIM_DELEG_PREV_FH (which allows clients to keep delegations that + persist across client reboots). Thus we need not implement this for + now. + +EXCHANGE_ID: +* only SP4_NONE state protection supported +* implementation ids are ignored + +CREATE_SESSION: +* backchannel attributes are ignored +* backchannel security parameters are ignored + +SEQUENCE: +* no support for dynamic slot table renegotiation (optional) + +nfsv4.1 COMPOUND rules: +The following cases aren't supported yet: +* Enforcing of NFS4ERR_NOT_ONLY_OP for: BIND_CONN_TO_SESSION, CREATE_SESSION, + DESTROY_CLIENTID, DESTROY_SESSION, EXCHANGE_ID. +* DESTROY_SESSION MUST be the final operation in the COMPOUND request. + +Nonstandard compound limitations: +* No support for a sessions fore channel RPC compound that requires both a + ca_maxrequestsize request and a ca_maxresponsesize reply, so we may + fail to live up to the promise we made in CREATE_SESSION fore channel + negotiation. +* No more than one IO operation (read, write, readdir) allowed per + compound. diff --git a/Documentation/filesystems/nfs/nfsroot.txt b/Documentation/filesystems/nfs/nfsroot.txt new file mode 100644 index 000000000000..3ba0b945aaf8 --- /dev/null +++ b/Documentation/filesystems/nfs/nfsroot.txt @@ -0,0 +1,270 @@ +Mounting the root filesystem via NFS (nfsroot) +=============================================== + +Written 1996 by Gero Kuhlmann +Updated 1997 by Martin Mares +Updated 2006 by Nico Schottelius +Updated 2006 by Horms + + + +In order to use a diskless system, such as an X-terminal or printer server +for example, it is necessary for the root filesystem to be present on a +non-disk device. This may be an initramfs (see Documentation/filesystems/ +ramfs-rootfs-initramfs.txt), a ramdisk (see Documentation/initrd.txt) or a +filesystem mounted via NFS. The following text describes on how to use NFS +for the root filesystem. For the rest of this text 'client' means the +diskless system, and 'server' means the NFS server. + + + + +1.) Enabling nfsroot capabilities + ----------------------------- + +In order to use nfsroot, NFS client support needs to be selected as +built-in during configuration. Once this has been selected, the nfsroot +option will become available, which should also be selected. + +In the networking options, kernel level autoconfiguration can be selected, +along with the types of autoconfiguration to support. Selecting all of +DHCP, BOOTP and RARP is safe. + + + + +2.) Kernel command line + ------------------- + +When the kernel has been loaded by a boot loader (see below) it needs to be +told what root fs device to use. And in the case of nfsroot, where to find +both the server and the name of the directory on the server to mount as root. +This can be established using the following kernel command line parameters: + + +root=/dev/nfs + + This is necessary to enable the pseudo-NFS-device. Note that it's not a + real device but just a synonym to tell the kernel to use NFS instead of + a real device. + + +nfsroot=[:][,] + + If the `nfsroot' parameter is NOT given on the command line, + the default "/tftpboot/%s" will be used. + + Specifies the IP address of the NFS server. + The default address is determined by the `ip' parameter + (see below). This parameter allows the use of different + servers for IP autoconfiguration and NFS. + + Name of the directory on the server to mount as root. + If there is a "%s" token in the string, it will be + replaced by the ASCII-representation of the client's + IP address. + + Standard NFS options. All options are separated by commas. + The following defaults are used: + port = as given by server portmap daemon + rsize = 4096 + wsize = 4096 + timeo = 7 + retrans = 3 + acregmin = 3 + acregmax = 60 + acdirmin = 30 + acdirmax = 60 + flags = hard, nointr, noposix, cto, ac + + +ip=:::::: + + This parameter tells the kernel how to configure IP addresses of devices + and also how to set up the IP routing table. It was originally called + `nfsaddrs', but now the boot-time IP configuration works independently of + NFS, so it was renamed to `ip' and the old name remained as an alias for + compatibility reasons. + + If this parameter is missing from the kernel command line, all fields are + assumed to be empty, and the defaults mentioned below apply. In general + this means that the kernel tries to configure everything using + autoconfiguration. + + The parameter can appear alone as the value to the `ip' + parameter (without all the ':' characters before). If the value is + "ip=off" or "ip=none", no autoconfiguration will take place, otherwise + autoconfiguration will take place. The most common way to use this + is "ip=dhcp". + + IP address of the client. + + Default: Determined using autoconfiguration. + + IP address of the NFS server. If RARP is used to determine + the client address and this parameter is NOT empty only + replies from the specified server are accepted. + + Only required for NFS root. That is autoconfiguration + will not be triggered if it is missing and NFS root is not + in operation. + + Default: Determined using autoconfiguration. + The address of the autoconfiguration server is used. + + IP address of a gateway if the server is on a different subnet. + + Default: Determined using autoconfiguration. + + Netmask for local network interface. If unspecified + the netmask is derived from the client IP address assuming + classful addressing. + + Default: Determined using autoconfiguration. + + Name of the client. May be supplied by autoconfiguration, + but its absence will not trigger autoconfiguration. + + Default: Client IP address is used in ASCII notation. + + Name of network device to use. + + Default: If the host only has one device, it is used. + Otherwise the device is determined using + autoconfiguration. This is done by sending + autoconfiguration requests out of all devices, + and using the device that received the first reply. + + Method to use for autoconfiguration. In the case of options + which specify multiple autoconfiguration protocols, + requests are sent using all protocols, and the first one + to reply is used. + + Only autoconfiguration protocols that have been compiled + into the kernel will be used, regardless of the value of + this option. + + off or none: don't use autoconfiguration + (do static IP assignment instead) + on or any: use any protocol available in the kernel + (default) + dhcp: use DHCP + bootp: use BOOTP + rarp: use RARP + both: use both BOOTP and RARP but not DHCP + (old option kept for backwards compatibility) + + Default: any + + + + +3.) Boot Loader + ---------- + +To get the kernel into memory different approaches can be used. +They depend on various facilities being available: + + +3.1) Booting from a floppy using syslinux + + When building kernels, an easy way to create a boot floppy that uses + syslinux is to use the zdisk or bzdisk make targets which use zimage + and bzimage images respectively. Both targets accept the + FDARGS parameter which can be used to set the kernel command line. + + e.g. + make bzdisk FDARGS="root=/dev/nfs" + + Note that the user running this command will need to have + access to the floppy drive device, /dev/fd0 + + For more information on syslinux, including how to create bootdisks + for prebuilt kernels, see http://syslinux.zytor.com/ + + N.B: Previously it was possible to write a kernel directly to + a floppy using dd, configure the boot device using rdev, and + boot using the resulting floppy. Linux no longer supports this + method of booting. + +3.2) Booting from a cdrom using isolinux + + When building kernels, an easy way to create a bootable cdrom that + uses isolinux is to use the isoimage target which uses a bzimage + image. Like zdisk and bzdisk, this target accepts the FDARGS + parameter which can be used to set the kernel command line. + + e.g. + make isoimage FDARGS="root=/dev/nfs" + + The resulting iso image will be arch//boot/image.iso + This can be written to a cdrom using a variety of tools including + cdrecord. + + e.g. + cdrecord dev=ATAPI:1,0,0 arch/i386/boot/image.iso + + For more information on isolinux, including how to create bootdisks + for prebuilt kernels, see http://syslinux.zytor.com/ + +3.2) Using LILO + When using LILO all the necessary command line parameters may be + specified using the 'append=' directive in the LILO configuration + file. + + However, to use the 'root=' directive you also need to create + a dummy root device, which may be removed after LILO is run. + + mknod /dev/boot255 c 0 255 + + For information on configuring LILO, please refer to its documentation. + +3.3) Using GRUB + When using GRUB, kernel parameter are simply appended after the kernel + specification: kernel + +3.4) Using loadlin + loadlin may be used to boot Linux from a DOS command prompt without + requiring a local hard disk to mount as root. This has not been + thoroughly tested by the authors of this document, but in general + it should be possible configure the kernel command line similarly + to the configuration of LILO. + + Please refer to the loadlin documentation for further information. + +3.5) Using a boot ROM + This is probably the most elegant way of booting a diskless client. + With a boot ROM the kernel is loaded using the TFTP protocol. The + authors of this document are not aware of any no commercial boot + ROMs that support booting Linux over the network. However, there + are two free implementations of a boot ROM, netboot-nfs and + etherboot, both of which are available on sunsite.unc.edu, and both + of which contain everything you need to boot a diskless Linux client. + +3.6) Using pxelinux + Pxelinux may be used to boot linux using the PXE boot loader + which is present on many modern network cards. + + When using pxelinux, the kernel image is specified using + "kernel ". The nfsroot parameters + are passed to the kernel by adding them to the "append" line. + It is common to use serial console in conjunction with pxeliunx, + see Documentation/serial-console.txt for more information. + + For more information on isolinux, including how to create bootdisks + for prebuilt kernels, see http://syslinux.zytor.com/ + + + + +4.) Credits + ------- + + The nfsroot code in the kernel and the RARP support have been written + by Gero Kuhlmann . + + The rest of the IP layer autoconfiguration code has been written + by Martin Mares . + + In order to write the initial version of nfsroot I would like to thank + Jens-Uwe Mager for his help. diff --git a/Documentation/filesystems/nfs41-server.txt b/Documentation/filesystems/nfs41-server.txt deleted file mode 100644 index 1bd0d0c05171..000000000000 --- a/Documentation/filesystems/nfs41-server.txt +++ /dev/null @@ -1,222 +0,0 @@ -NFSv4.1 Server Implementation - -Server support for minorversion 1 can be controlled using the -/proc/fs/nfsd/versions control file. The string output returned -by reading this file will contain either "+4.1" or "-4.1" -correspondingly. - -Currently, server support for minorversion 1 is disabled by default. -It can be enabled at run time by writing the string "+4.1" to -the /proc/fs/nfsd/versions control file. Note that to write this -control file, the nfsd service must be taken down. Use your user-mode -nfs-utils to set this up; see rpc.nfsd(8) - -(Warning: older servers will interpret "+4.1" and "-4.1" as "+4" and -"-4", respectively. Therefore, code meant to work on both new and old -kernels must turn 4.1 on or off *before* turning support for version 4 -on or off; rpc.nfsd does this correctly.) - -The NFSv4 minorversion 1 (NFSv4.1) implementation in nfsd is based -on the latest NFSv4.1 Internet Draft: -http://tools.ietf.org/html/draft-ietf-nfsv4-minorversion1-29 - -From the many new features in NFSv4.1 the current implementation -focuses on the mandatory-to-implement NFSv4.1 Sessions, providing -"exactly once" semantics and better control and throttling of the -resources allocated for each client. - -Other NFSv4.1 features, Parallel NFS operations in particular, -are still under development out of tree. -See http://wiki.linux-nfs.org/wiki/index.php/PNFS_prototype_design -for more information. - -The current implementation is intended for developers only: while it -does support ordinary file operations on clients we have tested against -(including the linux client), it is incomplete in ways which may limit -features unexpectedly, cause known bugs in rare cases, or cause -interoperability problems with future clients. Known issues: - - - gss support is questionable: currently mounts with kerberos - from a linux client are possible, but we aren't really - conformant with the spec (for example, we don't use kerberos - on the backchannel correctly). - - no trunking support: no clients currently take advantage of - trunking, but this is a mandatory feature, and its use is - recommended to clients in a number of places. (E.g. to ensure - timely renewal in case an existing connection's retry timeouts - have gotten too long; see section 8.3 of the draft.) - Therefore, lack of this feature may cause future clients to - fail. - - Incomplete backchannel support: incomplete backchannel gss - support and no support for BACKCHANNEL_CTL mean that - callbacks (hence delegations and layouts) may not be - available and clients confused by the incomplete - implementation may fail. - - Server reboot recovery is unsupported; if the server reboots, - clients may fail. - - We do not support SSV, which provides security for shared - client-server state (thus preventing unauthorized tampering - with locks and opens, for example). It is mandatory for - servers to support this, though no clients use it yet. - - Mandatory operations which we do not support, such as - DESTROY_CLIENTID, FREE_STATEID, SECINFO_NO_NAME, and - TEST_STATEID, are not currently used by clients, but will be - (and the spec recommends their uses in common cases), and - clients should not be expected to know how to recover from the - case where they are not supported. This will eventually cause - interoperability failures. - -In addition, some limitations are inherited from the current NFSv4 -implementation: - - - Incomplete delegation enforcement: if a file is renamed or - unlinked, a client holding a delegation may continue to - indefinitely allow opens of the file under the old name. - -The table below, taken from the NFSv4.1 document, lists -the operations that are mandatory to implement (REQ), optional -(OPT), and NFSv4.0 operations that are required not to implement (MNI) -in minor version 1. The first column indicates the operations that -are not supported yet by the linux server implementation. - -The OPTIONAL features identified and their abbreviations are as follows: - pNFS Parallel NFS - FDELG File Delegations - DDELG Directory Delegations - -The following abbreviations indicate the linux server implementation status. - I Implemented NFSv4.1 operations. - NS Not Supported. - NS* unimplemented optional feature. - P pNFS features implemented out of tree. - PNS pNFS features that are not supported yet (out of tree). - -Operations - - +----------------------+------------+--------------+----------------+ - | Operation | REQ, REC, | Feature | Definition | - | | OPT, or | (REQ, REC, | | - | | MNI | or OPT) | | - +----------------------+------------+--------------+----------------+ - | ACCESS | REQ | | Section 18.1 | -NS | BACKCHANNEL_CTL | REQ | | Section 18.33 | -NS | BIND_CONN_TO_SESSION | REQ | | Section 18.34 | - | CLOSE | REQ | | Section 18.2 | - | COMMIT | REQ | | Section 18.3 | - | CREATE | REQ | | Section 18.4 | -I | CREATE_SESSION | REQ | | Section 18.36 | -NS*| DELEGPURGE | OPT | FDELG (REQ) | Section 18.5 | - | DELEGRETURN | OPT | FDELG, | Section 18.6 | - | | | DDELG, pNFS | | - | | | (REQ) | | -NS | DESTROY_CLIENTID | REQ | | Section 18.50 | -I | DESTROY_SESSION | REQ | | Section 18.37 | -I | EXCHANGE_ID | REQ | | Section 18.35 | -NS | FREE_STATEID | REQ | | Section 18.38 | - | GETATTR | REQ | | Section 18.7 | -P | GETDEVICEINFO | OPT | pNFS (REQ) | Section 18.40 | -P | GETDEVICELIST | OPT | pNFS (OPT) | Section 18.41 | - | GETFH | REQ | | Section 18.8 | -NS*| GET_DIR_DELEGATION | OPT | DDELG (REQ) | Section 18.39 | -P | LAYOUTCOMMIT | OPT | pNFS (REQ) | Section 18.42 | -P | LAYOUTGET | OPT | pNFS (REQ) | Section 18.43 | -P | LAYOUTRETURN | OPT | pNFS (REQ) | Section 18.44 | - | LINK | OPT | | Section 18.9 | - | LOCK | REQ | | Section 18.10 | - | LOCKT | REQ | | Section 18.11 | - | LOCKU | REQ | | Section 18.12 | - | LOOKUP | REQ | | Section 18.13 | - | LOOKUPP | REQ | | Section 18.14 | - | NVERIFY | REQ | | Section 18.15 | - | OPEN | REQ | | Section 18.16 | -NS*| OPENATTR | OPT | | Section 18.17 | - | OPEN_CONFIRM | MNI | | N/A | - | OPEN_DOWNGRADE | REQ | | Section 18.18 | - | PUTFH | REQ | | Section 18.19 | - | PUTPUBFH | REQ | | Section 18.20 | - | PUTROOTFH | REQ | | Section 18.21 | - | READ | REQ | | Section 18.22 | - | READDIR | REQ | | Section 18.23 | - | READLINK | OPT | | Section 18.24 | -NS | RECLAIM_COMPLETE | REQ | | Section 18.51 | - | RELEASE_LOCKOWNER | MNI | | N/A | - | REMOVE | REQ | | Section 18.25 | - | RENAME | REQ | | Section 18.26 | - | RENEW | MNI | | N/A | - | RESTOREFH | REQ | | Section 18.27 | - | SAVEFH | REQ | | Section 18.28 | - | SECINFO | REQ | | Section 18.29 | -NS | SECINFO_NO_NAME | REC | pNFS files | Section 18.45, | - | | | layout (REQ) | Section 13.12 | -I | SEQUENCE | REQ | | Section 18.46 | - | SETATTR | REQ | | Section 18.30 | - | SETCLIENTID | MNI | | N/A | - | SETCLIENTID_CONFIRM | MNI | | N/A | -NS | SET_SSV | REQ | | Section 18.47 | -NS | TEST_STATEID | REQ | | Section 18.48 | - | VERIFY | REQ | | Section 18.31 | -NS*| WANT_DELEGATION | OPT | FDELG (OPT) | Section 18.49 | - | WRITE | REQ | | Section 18.32 | - -Callback Operations - - +-------------------------+-----------+-------------+---------------+ - | Operation | REQ, REC, | Feature | Definition | - | | OPT, or | (REQ, REC, | | - | | MNI | or OPT) | | - +-------------------------+-----------+-------------+---------------+ - | CB_GETATTR | OPT | FDELG (REQ) | Section 20.1 | -P | CB_LAYOUTRECALL | OPT | pNFS (REQ) | Section 20.3 | -NS*| CB_NOTIFY | OPT | DDELG (REQ) | Section 20.4 | -P | CB_NOTIFY_DEVICEID | OPT | pNFS (OPT) | Section 20.12 | -NS*| CB_NOTIFY_LOCK | OPT | | Section 20.11 | -NS*| CB_PUSH_DELEG | OPT | FDELG (OPT) | Section 20.5 | - | CB_RECALL | OPT | FDELG, | Section 20.2 | - | | | DDELG, pNFS | | - | | | (REQ) | | -NS*| CB_RECALL_ANY | OPT | FDELG, | Section 20.6 | - | | | DDELG, pNFS | | - | | | (REQ) | | -NS | CB_RECALL_SLOT | REQ | | Section 20.8 | -NS*| CB_RECALLABLE_OBJ_AVAIL | OPT | DDELG, pNFS | Section 20.7 | - | | | (REQ) | | -I | CB_SEQUENCE | OPT | FDELG, | Section 20.9 | - | | | DDELG, pNFS | | - | | | (REQ) | | -NS*| CB_WANTS_CANCELLED | OPT | FDELG, | Section 20.10 | - | | | DDELG, pNFS | | - | | | (REQ) | | - +-------------------------+-----------+-------------+---------------+ - -Implementation notes: - -DELEGPURGE: -* mandatory only for servers that support CLAIM_DELEGATE_PREV and/or - CLAIM_DELEG_PREV_FH (which allows clients to keep delegations that - persist across client reboots). Thus we need not implement this for - now. - -EXCHANGE_ID: -* only SP4_NONE state protection supported -* implementation ids are ignored - -CREATE_SESSION: -* backchannel attributes are ignored -* backchannel security parameters are ignored - -SEQUENCE: -* no support for dynamic slot table renegotiation (optional) - -nfsv4.1 COMPOUND rules: -The following cases aren't supported yet: -* Enforcing of NFS4ERR_NOT_ONLY_OP for: BIND_CONN_TO_SESSION, CREATE_SESSION, - DESTROY_CLIENTID, DESTROY_SESSION, EXCHANGE_ID. -* DESTROY_SESSION MUST be the final operation in the COMPOUND request. - -Nonstandard compound limitations: -* No support for a sessions fore channel RPC compound that requires both a - ca_maxrequestsize request and a ca_maxresponsesize reply, so we may - fail to live up to the promise we made in CREATE_SESSION fore channel - negotiation. -* No more than one IO operation (read, write, readdir) allowed per - compound. diff --git a/Documentation/filesystems/nfsroot.txt b/Documentation/filesystems/nfsroot.txt deleted file mode 100644 index 3ba0b945aaf8..000000000000 --- a/Documentation/filesystems/nfsroot.txt +++ /dev/null @@ -1,270 +0,0 @@ -Mounting the root filesystem via NFS (nfsroot) -=============================================== - -Written 1996 by Gero Kuhlmann -Updated 1997 by Martin Mares -Updated 2006 by Nico Schottelius -Updated 2006 by Horms - - - -In order to use a diskless system, such as an X-terminal or printer server -for example, it is necessary for the root filesystem to be present on a -non-disk device. This may be an initramfs (see Documentation/filesystems/ -ramfs-rootfs-initramfs.txt), a ramdisk (see Documentation/initrd.txt) or a -filesystem mounted via NFS. The following text describes on how to use NFS -for the root filesystem. For the rest of this text 'client' means the -diskless system, and 'server' means the NFS server. - - - - -1.) Enabling nfsroot capabilities - ----------------------------- - -In order to use nfsroot, NFS client support needs to be selected as -built-in during configuration. Once this has been selected, the nfsroot -option will become available, which should also be selected. - -In the networking options, kernel level autoconfiguration can be selected, -along with the types of autoconfiguration to support. Selecting all of -DHCP, BOOTP and RARP is safe. - - - - -2.) Kernel command line - ------------------- - -When the kernel has been loaded by a boot loader (see below) it needs to be -told what root fs device to use. And in the case of nfsroot, where to find -both the server and the name of the directory on the server to mount as root. -This can be established using the following kernel command line parameters: - - -root=/dev/nfs - - This is necessary to enable the pseudo-NFS-device. Note that it's not a - real device but just a synonym to tell the kernel to use NFS instead of - a real device. - - -nfsroot=[:][,] - - If the `nfsroot' parameter is NOT given on the command line, - the default "/tftpboot/%s" will be used. - - Specifies the IP address of the NFS server. - The default address is determined by the `ip' parameter - (see below). This parameter allows the use of different - servers for IP autoconfiguration and NFS. - - Name of the directory on the server to mount as root. - If there is a "%s" token in the string, it will be - replaced by the ASCII-representation of the client's - IP address. - - Standard NFS options. All options are separated by commas. - The following defaults are used: - port = as given by server portmap daemon - rsize = 4096 - wsize = 4096 - timeo = 7 - retrans = 3 - acregmin = 3 - acregmax = 60 - acdirmin = 30 - acdirmax = 60 - flags = hard, nointr, noposix, cto, ac - - -ip=:::::: - - This parameter tells the kernel how to configure IP addresses of devices - and also how to set up the IP routing table. It was originally called - `nfsaddrs', but now the boot-time IP configuration works independently of - NFS, so it was renamed to `ip' and the old name remained as an alias for - compatibility reasons. - - If this parameter is missing from the kernel command line, all fields are - assumed to be empty, and the defaults mentioned below apply. In general - this means that the kernel tries to configure everything using - autoconfiguration. - - The parameter can appear alone as the value to the `ip' - parameter (without all the ':' characters before). If the value is - "ip=off" or "ip=none", no autoconfiguration will take place, otherwise - autoconfiguration will take place. The most common way to use this - is "ip=dhcp". - - IP address of the client. - - Default: Determined using autoconfiguration. - - IP address of the NFS server. If RARP is used to determine - the client address and this parameter is NOT empty only - replies from the specified server are accepted. - - Only required for NFS root. That is autoconfiguration - will not be triggered if it is missing and NFS root is not - in operation. - - Default: Determined using autoconfiguration. - The address of the autoconfiguration server is used. - - IP address of a gateway if the server is on a different subnet. - - Default: Determined using autoconfiguration. - - Netmask for local network interface. If unspecified - the netmask is derived from the client IP address assuming - classful addressing. - - Default: Determined using autoconfiguration. - - Name of the client. May be supplied by autoconfiguration, - but its absence will not trigger autoconfiguration. - - Default: Client IP address is used in ASCII notation. - - Name of network device to use. - - Default: If the host only has one device, it is used. - Otherwise the device is determined using - autoconfiguration. This is done by sending - autoconfiguration requests out of all devices, - and using the device that received the first reply. - - Method to use for autoconfiguration. In the case of options - which specify multiple autoconfiguration protocols, - requests are sent using all protocols, and the first one - to reply is used. - - Only autoconfiguration protocols that have been compiled - into the kernel will be used, regardless of the value of - this option. - - off or none: don't use autoconfiguration - (do static IP assignment instead) - on or any: use any protocol available in the kernel - (default) - dhcp: use DHCP - bootp: use BOOTP - rarp: use RARP - both: use both BOOTP and RARP but not DHCP - (old option kept for backwards compatibility) - - Default: any - - - - -3.) Boot Loader - ---------- - -To get the kernel into memory different approaches can be used. -They depend on various facilities being available: - - -3.1) Booting from a floppy using syslinux - - When building kernels, an easy way to create a boot floppy that uses - syslinux is to use the zdisk or bzdisk make targets which use zimage - and bzimage images respectively. Both targets accept the - FDARGS parameter which can be used to set the kernel command line. - - e.g. - make bzdisk FDARGS="root=/dev/nfs" - - Note that the user running this command will need to have - access to the floppy drive device, /dev/fd0 - - For more information on syslinux, including how to create bootdisks - for prebuilt kernels, see http://syslinux.zytor.com/ - - N.B: Previously it was possible to write a kernel directly to - a floppy using dd, configure the boot device using rdev, and - boot using the resulting floppy. Linux no longer supports this - method of booting. - -3.2) Booting from a cdrom using isolinux - - When building kernels, an easy way to create a bootable cdrom that - uses isolinux is to use the isoimage target which uses a bzimage - image. Like zdisk and bzdisk, this target accepts the FDARGS - parameter which can be used to set the kernel command line. - - e.g. - make isoimage FDARGS="root=/dev/nfs" - - The resulting iso image will be arch//boot/image.iso - This can be written to a cdrom using a variety of tools including - cdrecord. - - e.g. - cdrecord dev=ATAPI:1,0,0 arch/i386/boot/image.iso - - For more information on isolinux, including how to create bootdisks - for prebuilt kernels, see http://syslinux.zytor.com/ - -3.2) Using LILO - When using LILO all the necessary command line parameters may be - specified using the 'append=' directive in the LILO configuration - file. - - However, to use the 'root=' directive you also need to create - a dummy root device, which may be removed after LILO is run. - - mknod /dev/boot255 c 0 255 - - For information on configuring LILO, please refer to its documentation. - -3.3) Using GRUB - When using GRUB, kernel parameter are simply appended after the kernel - specification: kernel - -3.4) Using loadlin - loadlin may be used to boot Linux from a DOS command prompt without - requiring a local hard disk to mount as root. This has not been - thoroughly tested by the authors of this document, but in general - it should be possible configure the kernel command line similarly - to the configuration of LILO. - - Please refer to the loadlin documentation for further information. - -3.5) Using a boot ROM - This is probably the most elegant way of booting a diskless client. - With a boot ROM the kernel is loaded using the TFTP protocol. The - authors of this document are not aware of any no commercial boot - ROMs that support booting Linux over the network. However, there - are two free implementations of a boot ROM, netboot-nfs and - etherboot, both of which are available on sunsite.unc.edu, and both - of which contain everything you need to boot a diskless Linux client. - -3.6) Using pxelinux - Pxelinux may be used to boot linux using the PXE boot loader - which is present on many modern network cards. - - When using pxelinux, the kernel image is specified using - "kernel ". The nfsroot parameters - are passed to the kernel by adding them to the "append" line. - It is common to use serial console in conjunction with pxeliunx, - see Documentation/serial-console.txt for more information. - - For more information on isolinux, including how to create bootdisks - for prebuilt kernels, see http://syslinux.zytor.com/ - - - - -4.) Credits - ------- - - The nfsroot code in the kernel and the RARP support have been written - by Gero Kuhlmann . - - The rest of the IP layer autoconfiguration code has been written - by Martin Mares . - - In order to write the initial version of nfsroot I would like to thank - Jens-Uwe Mager for his help. diff --git a/Documentation/filesystems/porting b/Documentation/filesystems/porting index 92b888d540a6..a7e9746ee7ea 100644 --- a/Documentation/filesystems/porting +++ b/Documentation/filesystems/porting @@ -140,7 +140,7 @@ Callers of notify_change() need ->i_mutex now. New super_block field "struct export_operations *s_export_op" for explicit support for exporting, e.g. via NFS. The structure is fully documented at its declaration in include/linux/fs.h, and in -Documentation/filesystems/Exporting. +Documentation/filesystems/nfs/Exporting. Briefly it allows for the definition of decode_fh and encode_fh operations to encode and decode filehandles, and allows the filesystem to use diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 9107b387e91f..dab0f04b4264 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -1017,7 +1017,7 @@ and is between 256 and 4096 characters. It is defined in the file No delay ip= [IP_PNP] - See Documentation/filesystems/nfsroot.txt. + See Documentation/filesystems/nfs/nfsroot.txt. ip2= [HW] Set IO/IRQ pairs for up to 4 IntelliPort boards See comment before ip2_setup() in @@ -1538,10 +1538,10 @@ and is between 256 and 4096 characters. It is defined in the file going to be removed in 2.6.29. nfsaddrs= [NFS] - See Documentation/filesystems/nfsroot.txt. + See Documentation/filesystems/nfs/nfsroot.txt. nfsroot= [NFS] nfs root filesystem for disk-less boxes. - See Documentation/filesystems/nfsroot.txt. + See Documentation/filesystems/nfs/nfsroot.txt. nfs.callback_tcpport= [NFS] set the TCP port on which the NFSv4 callback diff --git a/fs/cifs/export.c b/fs/cifs/export.c index 75949d6a5f1b..6177f7cca16a 100644 --- a/fs/cifs/export.c +++ b/fs/cifs/export.c @@ -24,7 +24,7 @@ */ /* - * See Documentation/filesystems/Exporting + * See Documentation/filesystems/nfs/Exporting * and examples in fs/exportfs * * Since cifs is a network file system, an "fsid" must be included for diff --git a/fs/exportfs/expfs.c b/fs/exportfs/expfs.c index 197c7db583c7..e9e175949a63 100644 --- a/fs/exportfs/expfs.c +++ b/fs/exportfs/expfs.c @@ -6,7 +6,7 @@ * and for mapping back from file handles to dentries. * * For details on why we do all the strange and hairy things in here - * take a look at Documentation/filesystems/Exporting. + * take a look at Documentation/filesystems/nfs/Exporting. */ #include #include diff --git a/fs/isofs/export.c b/fs/isofs/export.c index e81a30593ba9..ed752cb38474 100644 --- a/fs/isofs/export.c +++ b/fs/isofs/export.c @@ -9,7 +9,7 @@ * * The following files are helpful: * - * Documentation/filesystems/Exporting + * Documentation/filesystems/nfs/Exporting * fs/exportfs/expfs.c. */ diff --git a/fs/nfs/Kconfig b/fs/nfs/Kconfig index 2a77bc25d5af..59e5673b4597 100644 --- a/fs/nfs/Kconfig +++ b/fs/nfs/Kconfig @@ -90,7 +90,7 @@ config ROOT_NFS If you want your system to mount its root file system via NFS, choose Y here. This is common practice for managing systems without local permanent storage. For details, read - . + . Most people say N here. diff --git a/include/linux/exportfs.h b/include/linux/exportfs.h index 27e772cefb6a..dc12f416a49f 100644 --- a/include/linux/exportfs.h +++ b/include/linux/exportfs.h @@ -97,7 +97,7 @@ struct fid { * @get_name: find the name for a given inode in a given directory * @get_parent: find the parent of a given directory * - * See Documentation/filesystems/Exporting for details on how to use + * See Documentation/filesystems/nfs/Exporting for details on how to use * this interface correctly. * * encode_fh: diff --git a/net/ipv4/Kconfig b/net/ipv4/Kconfig index 70491d9035eb..0c94a1ac2946 100644 --- a/net/ipv4/Kconfig +++ b/net/ipv4/Kconfig @@ -166,7 +166,7 @@ config IP_PNP_DHCP If unsure, say Y. Note that if you want to use DHCP, a DHCP server must be operating on your network. Read - for details. + for details. config IP_PNP_BOOTP bool "IP: BOOTP support" @@ -181,7 +181,7 @@ config IP_PNP_BOOTP does BOOTP itself, providing all necessary information on the kernel command line, you can say N here. If unsure, say Y. Note that if you want to use BOOTP, a BOOTP server must be operating on your network. - Read for details. + Read for details. config IP_PNP_RARP bool "IP: RARP support" @@ -194,7 +194,7 @@ config IP_PNP_RARP older protocol which is being obsoleted by BOOTP and DHCP), say Y here. Note that if you want to use RARP, a RARP server must be operating on your network. Read - for details. + for details. # not yet ready.. # bool ' IP: ARP support' CONFIG_IP_PNP_ARP diff --git a/net/ipv4/ipconfig.c b/net/ipv4/ipconfig.c index f8d04c256454..7dcbf4706099 100644 --- a/net/ipv4/ipconfig.c +++ b/net/ipv4/ipconfig.c @@ -1447,7 +1447,7 @@ late_initcall(ip_auto_config); /* * Decode any IP configuration options in the "ip=" or "nfsaddrs=" kernel - * command line parameter. See Documentation/filesystems/nfsroot.txt. + * command line parameter. See Documentation/filesystems/nfs/nfsroot.txt. */ static int __init ic_proto_name(char *name) { -- cgit