From 7033b937e21b12629d920e7864c20c46bc4ccf39 Mon Sep 17 00:00:00 2001 From: Eric Biggers Date: Mon, 25 Jul 2022 11:36:34 -0700 Subject: crypto: lib - create utils module and move __crypto_memneq into it As requested at https://lore.kernel.org/r/YtEgzHuuMts0YBCz@gondor.apana.org.au, move __crypto_memneq into lib/crypto/ and put it under a new tristate. The tristate is CRYPTO_LIB_UTILS, and it builds a module libcryptoutils. As more crypto library utilities are being added, this creates a single place for them to go without cluttering up the main lib directory. The module's main file will be lib/crypto/utils.c. However, leave memneq.c as its own file because of its nonstandard license. Signed-off-by: Eric Biggers Reviewed-by: Jason A. Donenfeld Signed-off-by: Herbert Xu --- crypto/Kconfig | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index bb427a835e44..b1ccf873779d 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -15,7 +15,7 @@ source "crypto/async_tx/Kconfig" # menuconfig CRYPTO tristate "Cryptographic API" - select LIB_MEMNEQ + select CRYPTO_LIB_UTILS help This option provides the core Cryptographic API. -- cgit From 6e78ad0bb45dd20b3c1a56c72a32e1d82f98b422 Mon Sep 17 00:00:00 2001 From: Eric Biggers Date: Mon, 25 Jul 2022 11:36:35 -0700 Subject: crypto: lib - move __crypto_xor into utils CRYPTO_LIB_CHACHA depends on CRYPTO for __crypto_xor, defined in crypto/algapi.c. This is a layering violation because the dependencies should only go in the other direction (crypto/ => lib/crypto/). Also the correct dependency would be CRYPTO_ALGAPI, not CRYPTO. Fix this by moving __crypto_xor into the utils module in lib/crypto/. Note that CRYPTO_LIB_CHACHA_GENERIC selected XOR_BLOCKS, which is unrelated and unnecessary. It was perhaps thought that XOR_BLOCKS was needed for __crypto_xor, but that's not the case. Signed-off-by: Eric Biggers Reviewed-by: Jason A. Donenfeld Signed-off-by: Herbert Xu --- crypto/algapi.c | 71 --------------------------------------------------------- 1 file changed, 71 deletions(-) (limited to 'crypto') diff --git a/crypto/algapi.c b/crypto/algapi.c index d1c99288af3e..5c69ff8e8fa5 100644 --- a/crypto/algapi.c +++ b/crypto/algapi.c @@ -997,77 +997,6 @@ void crypto_inc(u8 *a, unsigned int size) } EXPORT_SYMBOL_GPL(crypto_inc); -void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int len) -{ - int relalign = 0; - - if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) { - int size = sizeof(unsigned long); - int d = (((unsigned long)dst ^ (unsigned long)src1) | - ((unsigned long)dst ^ (unsigned long)src2)) & - (size - 1); - - relalign = d ? 1 << __ffs(d) : size; - - /* - * If we care about alignment, process as many bytes as - * needed to advance dst and src to values whose alignments - * equal their relative alignment. This will allow us to - * process the remainder of the input using optimal strides. - */ - while (((unsigned long)dst & (relalign - 1)) && len > 0) { - *dst++ = *src1++ ^ *src2++; - len--; - } - } - - while (IS_ENABLED(CONFIG_64BIT) && len >= 8 && !(relalign & 7)) { - if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) { - u64 l = get_unaligned((u64 *)src1) ^ - get_unaligned((u64 *)src2); - put_unaligned(l, (u64 *)dst); - } else { - *(u64 *)dst = *(u64 *)src1 ^ *(u64 *)src2; - } - dst += 8; - src1 += 8; - src2 += 8; - len -= 8; - } - - while (len >= 4 && !(relalign & 3)) { - if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) { - u32 l = get_unaligned((u32 *)src1) ^ - get_unaligned((u32 *)src2); - put_unaligned(l, (u32 *)dst); - } else { - *(u32 *)dst = *(u32 *)src1 ^ *(u32 *)src2; - } - dst += 4; - src1 += 4; - src2 += 4; - len -= 4; - } - - while (len >= 2 && !(relalign & 1)) { - if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) { - u16 l = get_unaligned((u16 *)src1) ^ - get_unaligned((u16 *)src2); - put_unaligned(l, (u16 *)dst); - } else { - *(u16 *)dst = *(u16 *)src1 ^ *(u16 *)src2; - } - dst += 2; - src1 += 2; - src2 += 2; - len -= 2; - } - - while (len--) - *dst++ = *src1++ ^ *src2++; -} -EXPORT_SYMBOL_GPL(__crypto_xor); - unsigned int crypto_alg_extsize(struct crypto_alg *alg) { return alg->cra_ctxsize + -- cgit From 66c8137f75315d9b354c63d3aa215fe9d83a9004 Mon Sep 17 00:00:00 2001 From: Dong Chuanjian Date: Thu, 11 Aug 2022 15:17:33 +0800 Subject: crypto: drbg - remove unnecessary (void*) conversions remove unnecessary void* type casting v2: Turn assignments less than 75 characters into one line. Signed-off-by: Dong Chuanjian Signed-off-by: Herbert Xu --- crypto/drbg.c | 12 +++++------- 1 file changed, 5 insertions(+), 7 deletions(-) (limited to 'crypto') diff --git a/crypto/drbg.c b/crypto/drbg.c index 177983b6ae38..982d4ca4526d 100644 --- a/crypto/drbg.c +++ b/crypto/drbg.c @@ -1703,7 +1703,7 @@ static int drbg_init_hash_kernel(struct drbg_state *drbg) static int drbg_fini_hash_kernel(struct drbg_state *drbg) { - struct sdesc *sdesc = (struct sdesc *)drbg->priv_data; + struct sdesc *sdesc = drbg->priv_data; if (sdesc) { crypto_free_shash(sdesc->shash.tfm); kfree_sensitive(sdesc); @@ -1715,7 +1715,7 @@ static int drbg_fini_hash_kernel(struct drbg_state *drbg) static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg, const unsigned char *key) { - struct sdesc *sdesc = (struct sdesc *)drbg->priv_data; + struct sdesc *sdesc = drbg->priv_data; crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg)); } @@ -1723,7 +1723,7 @@ static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg, static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval, const struct list_head *in) { - struct sdesc *sdesc = (struct sdesc *)drbg->priv_data; + struct sdesc *sdesc = drbg->priv_data; struct drbg_string *input = NULL; crypto_shash_init(&sdesc->shash); @@ -1818,8 +1818,7 @@ static int drbg_init_sym_kernel(struct drbg_state *drbg) static void drbg_kcapi_symsetkey(struct drbg_state *drbg, const unsigned char *key) { - struct crypto_cipher *tfm = - (struct crypto_cipher *)drbg->priv_data; + struct crypto_cipher *tfm = drbg->priv_data; crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg))); } @@ -1827,8 +1826,7 @@ static void drbg_kcapi_symsetkey(struct drbg_state *drbg, static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval, const struct drbg_string *in) { - struct crypto_cipher *tfm = - (struct crypto_cipher *)drbg->priv_data; + struct crypto_cipher *tfm = drbg->priv_data; /* there is only component in *in */ BUG_ON(in->len < drbg_blocklen(drbg)); -- cgit From bc9d6dac098bd4f6671970e0ba6c247e3a8c4029 Mon Sep 17 00:00:00 2001 From: Jason Wang Date: Thu, 11 Aug 2022 20:13:49 +0800 Subject: crypto: api - Fix comment typo The double `to' is duplicated in the comment, remove one. Signed-off-by: Jason Wang Signed-off-by: Herbert Xu --- crypto/api.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'crypto') diff --git a/crypto/api.c b/crypto/api.c index 69508ae9345e..ab4b5e2b0756 100644 --- a/crypto/api.c +++ b/crypto/api.c @@ -321,7 +321,7 @@ struct crypto_alg *crypto_alg_mod_lookup(const char *name, u32 type, u32 mask) /* * If the internal flag is set for a cipher, require a caller to - * to invoke the cipher with the internal flag to use that cipher. + * invoke the cipher with the internal flag to use that cipher. * Also, if a caller wants to allocate a cipher that may or may * not be an internal cipher, use type | CRYPTO_ALG_INTERNAL and * !(mask & CRYPTO_ALG_INTERNAL). -- cgit From 5a4c2936669736f2e915fe6135a668e9e079de34 Mon Sep 17 00:00:00 2001 From: Lucas Segarra Fernandez Date: Fri, 12 Aug 2022 16:16:02 +0200 Subject: crypto: testmgr - extend acomp tests for NULL destination buffer Acomp API supports NULL destination buffer for compression and decompression requests. In such cases allocation is performed by API. Add test cases for crypto_acomp_compress() and crypto_acomp_decompress() with dst buffer allocated by API. Tests will only run if CONFIG_CRYPTO_MANAGER_EXTRA_TESTS=y. Signed-off-by: Lucas Segarra Fernandez Reviewed-by: Giovanni Cabiddu Signed-off-by: Herbert Xu --- crypto/testmgr.c | 29 +++++++++++++++++++++++++++++ 1 file changed, 29 insertions(+) (limited to 'crypto') diff --git a/crypto/testmgr.c b/crypto/testmgr.c index 5349ffee6bbd..bf905c1e89ed 100644 --- a/crypto/testmgr.c +++ b/crypto/testmgr.c @@ -3417,6 +3417,21 @@ static int test_acomp(struct crypto_acomp *tfm, goto out; } +#ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS + crypto_init_wait(&wait); + sg_init_one(&src, input_vec, ilen); + acomp_request_set_params(req, &src, NULL, ilen, 0); + + ret = crypto_wait_req(crypto_acomp_compress(req), &wait); + if (ret) { + pr_err("alg: acomp: compression failed on NULL dst buffer test %d for %s: ret=%d\n", + i + 1, algo, -ret); + kfree(input_vec); + acomp_request_free(req); + goto out; + } +#endif + kfree(input_vec); acomp_request_free(req); } @@ -3478,6 +3493,20 @@ static int test_acomp(struct crypto_acomp *tfm, goto out; } +#ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS + crypto_init_wait(&wait); + acomp_request_set_params(req, &src, NULL, ilen, 0); + + ret = crypto_wait_req(crypto_acomp_decompress(req), &wait); + if (ret) { + pr_err("alg: acomp: decompression failed on NULL dst buffer test %d for %s: ret=%d\n", + i + 1, algo, -ret); + kfree(input_vec); + acomp_request_free(req); + goto out; + } +#endif + kfree(input_vec); acomp_request_free(req); } -- cgit From a76bd86a85cac9feddc66d38019f943d054f0218 Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 13 Aug 2022 18:14:43 -0500 Subject: crypto: testmgr - don't generate WARN for missing modules This userspace command: modprobe tcrypt or modprobe tcrypt mode=0 runs all the tcrypt test cases numbered <200 (i.e., all the test cases calling tcrypt_test() and returning return values). Tests are sparsely numbered from 0 to 1000. For example: modprobe tcrypt mode=12 tests sha512, and modprobe tcrypt mode=152 tests rfc4543(gcm(aes))) - AES-GCM as GMAC The test manager generates WARNING crashdumps every time it attempts a test using an algorithm that is not available (not built-in to the kernel or available as a module): alg: skcipher: failed to allocate transform for ecb(arc4): -2 ------------[ cut here ]----------- alg: self-tests for ecb(arc4) (ecb(arc4)) failed (rc=-2) WARNING: CPU: 9 PID: 4618 at crypto/testmgr.c:5777 alg_test+0x30b/0x510 [50 more lines....] ---[ end trace 0000000000000000 ]--- If the kernel is compiled with CRYPTO_USER_API_ENABLE_OBSOLETE disabled (the default), then these algorithms are not compiled into the kernel or made into modules and trigger WARNINGs: arc4 tea xtea khazad anubis xeta seed Additionally, any other algorithms that are not enabled in .config will generate WARNINGs. In RHEL 9.0, for example, the default selection of algorithms leads to 16 WARNING dumps. One attempt to fix this was by modifying tcrypt_test() to check crypto_has_alg() and immediately return 0 if crypto_has_alg() fails, rather than proceed and return a non-zero error value that causes the caller (alg_test() in crypto/testmgr.c) to invoke WARN(). That knocks out too many algorithms, though; some combinations like ctr(des3_ede) would work. Instead, change the condition on the WARN to ignore a return value is ENOENT, which is the value returned when the algorithm or combination of algorithms doesn't exist. Add a pr_warn to communicate that information in case the WARN is skipped. This approach allows algorithm tests to work that are combinations, not provided by one driver, like ctr(blowfish). Result - no more WARNINGs: modprobe tcrypt [ 115.541765] tcrypt: testing md5 [ 115.556415] tcrypt: testing sha1 [ 115.570463] tcrypt: testing ecb(des) [ 115.585303] cryptomgr: alg: skcipher: failed to allocate transform for ecb(des): -2 [ 115.593037] cryptomgr: alg: self-tests for ecb(des) using ecb(des) failed (rc=-2) [ 115.593038] tcrypt: testing cbc(des) [ 115.610641] cryptomgr: alg: skcipher: failed to allocate transform for cbc(des): -2 [ 115.618359] cryptomgr: alg: self-tests for cbc(des) using cbc(des) failed (rc=-2) ... Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- crypto/testmgr.c | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) (limited to 'crypto') diff --git a/crypto/testmgr.c b/crypto/testmgr.c index bf905c1e89ed..2ad4bcc58617 100644 --- a/crypto/testmgr.c +++ b/crypto/testmgr.c @@ -5830,8 +5830,11 @@ test_done: driver, alg, fips_enabled ? "fips" : "panic_on_fail"); } - WARN(1, "alg: self-tests for %s (%s) failed (rc=%d)", - driver, alg, rc); + pr_warn("alg: self-tests for %s using %s failed (rc=%d)", + alg, driver, rc); + WARN(rc != -ENOENT, + "alg: self-tests for %s using %s failed (rc=%d)", + alg, driver, rc); } else { if (fips_enabled) pr_info("alg: self-tests for %s (%s) passed\n", -- cgit From 6363d81b78c00d98f6d92b04acf65b4a18013690 Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sun, 14 Aug 2022 23:29:15 -0500 Subject: crypto: tcrypt - remove mode=1000 The lists of algothms checked for existence by modprobe tcrypt mode=1000 generates three bogus errors: modprobe tcrypt mode=1000 console log: tcrypt: alg rot13 not found tcrypt: alg cts not found tcrypt: alg arc4 not found rot13 is not an algorithm in the crypto API or tested. cts is a wrapper, not a base algorithm. arc4 is named ecb(arc4), not arc4. Also, the list is missing numerous algorithms that are tested by other test modes: blake2b-512 blake2s-256 crct10dif xxhash64 ghash cast5 sm4 ansi_prng Several of the algorithms are only available if CONFIG_CRYPTO_USER_API_ENABLE_OBSOLETE is enabled: arc4 khazad seed tea, xtea, xeta Rather that fix that list, remove test mode=1000 entirely. It seems to have limited utility, and a web search shows no discussion of anybody using it. Suggested-by: Ard Biesheuvel Signed-off-by: Robert Elliott Reviewed-by: Ard Biesheuvel Signed-off-by: Herbert Xu --- crypto/tcrypt.c | 27 --------------------------- 1 file changed, 27 deletions(-) (limited to 'crypto') diff --git a/crypto/tcrypt.c b/crypto/tcrypt.c index 59eb8ec36664..e85f623c3c54 100644 --- a/crypto/tcrypt.c +++ b/crypto/tcrypt.c @@ -66,17 +66,6 @@ static u32 num_mb = 8; static unsigned int klen; static char *tvmem[TVMEMSIZE]; -static const char *check[] = { - "des", "md5", "des3_ede", "rot13", "sha1", "sha224", "sha256", "sm3", - "blowfish", "twofish", "serpent", "sha384", "sha512", "md4", "aes", - "cast6", "arc4", "michael_mic", "deflate", "crc32c", "tea", "xtea", - "khazad", "wp512", "wp384", "wp256", "xeta", "fcrypt", - "camellia", "seed", "rmd160", "aria", - "lzo", "lzo-rle", "cts", "sha3-224", "sha3-256", "sha3-384", - "sha3-512", "streebog256", "streebog512", - NULL -}; - static const int block_sizes[] = { 16, 64, 128, 256, 1024, 1420, 4096, 0 }; static const int aead_sizes[] = { 16, 64, 256, 512, 1024, 1420, 4096, 8192, 0 }; @@ -1454,18 +1443,6 @@ static void test_cipher_speed(const char *algo, int enc, unsigned int secs, false); } -static void test_available(void) -{ - const char **name = check; - - while (*name) { - printk("alg %s ", *name); - printk(crypto_has_alg(*name, 0, 0) ? - "found\n" : "not found\n"); - name++; - } -} - static inline int tcrypt_test(const char *alg) { int ret; @@ -2859,10 +2836,6 @@ static int do_test(const char *alg, u32 type, u32 mask, int m, u32 num_mb) test_mb_skcipher_speed("ctr(blowfish)", DECRYPT, sec, NULL, 0, speed_template_8_32, num_mb); break; - - case 1000: - test_available(); - break; } return ret; -- cgit From dd4f8ee7ed95e01c3e81870b7552799a06b7c7b6 Mon Sep 17 00:00:00 2001 From: Wolfram Sang Date: Thu, 18 Aug 2022 22:59:54 +0200 Subject: crypto: core - move from strlcpy with unused retval to strscpy Follow the advice of the below link and prefer 'strscpy' in this subsystem. Conversion is 1:1 because the return value is not used. Generated by a coccinelle script. Link: https://lore.kernel.org/r/CAHk-=wgfRnXz0W3D37d01q3JFkr_i_uTL=V6A6G1oUZcprmknw@mail.gmail.com/ Signed-off-by: Wolfram Sang Signed-off-by: Herbert Xu --- crypto/api.c | 2 +- crypto/essiv.c | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) (limited to 'crypto') diff --git a/crypto/api.c b/crypto/api.c index ab4b5e2b0756..64f2d365a8e9 100644 --- a/crypto/api.c +++ b/crypto/api.c @@ -114,7 +114,7 @@ struct crypto_larval *crypto_larval_alloc(const char *name, u32 type, u32 mask) larval->alg.cra_priority = -1; larval->alg.cra_destroy = crypto_larval_destroy; - strlcpy(larval->alg.cra_name, name, CRYPTO_MAX_ALG_NAME); + strscpy(larval->alg.cra_name, name, CRYPTO_MAX_ALG_NAME); init_completion(&larval->completion); return larval; diff --git a/crypto/essiv.c b/crypto/essiv.c index 8bcc5bdcb2a9..e33369df9034 100644 --- a/crypto/essiv.c +++ b/crypto/essiv.c @@ -543,7 +543,7 @@ static int essiv_create(struct crypto_template *tmpl, struct rtattr **tb) } /* record the driver name so we can instantiate this exact algo later */ - strlcpy(ictx->shash_driver_name, hash_alg->base.cra_driver_name, + strscpy(ictx->shash_driver_name, hash_alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME); /* Instance fields */ -- cgit From e45f710b42afd7e67276234853d2de19faf46362 Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 20 Aug 2022 13:41:35 -0500 Subject: crypto: Kconfig - move mips entries to a submenu Move CPU-specific crypto/Kconfig entries to arch/xxx/crypto/Kconfig and create a submenu for them under the Crypto API menu. Suggested-by: Eric Biggers Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- crypto/Kconfig | 59 ++++------------------------------------------------------ 1 file changed, 4 insertions(+), 55 deletions(-) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index b1ccf873779d..85fa86f334f2 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -699,14 +699,6 @@ config CRYPTO_CRC32_PCLMUL which will enable any routine to use the CRC-32-IEEE 802.3 checksum and gain better performance as compared with the table implementation. -config CRYPTO_CRC32_MIPS - tristate "CRC32c and CRC32 CRC algorithm (MIPS)" - depends on MIPS_CRC_SUPPORT - select CRYPTO_HASH - help - CRC32c and CRC32 CRC algorithms implemented using mips crypto - instructions, when available. - config CRYPTO_CRC32_S390 tristate "CRC-32 algorithms" depends on S390 @@ -841,11 +833,6 @@ config CRYPTO_POLY1305_X86_64 in IETF protocols. This is the x86_64 assembler implementation using SIMD instructions. -config CRYPTO_POLY1305_MIPS - tristate "Poly1305 authenticator algorithm (MIPS optimized)" - depends on MIPS - select CRYPTO_ARCH_HAVE_LIB_POLY1305 - config CRYPTO_MD4 tristate "MD4 digest algorithm" select CRYPTO_HASH @@ -858,15 +845,6 @@ config CRYPTO_MD5 help MD5 message digest algorithm (RFC1321). -config CRYPTO_MD5_OCTEON - tristate "MD5 digest algorithm (OCTEON)" - depends on CPU_CAVIUM_OCTEON - select CRYPTO_MD5 - select CRYPTO_HASH - help - MD5 message digest algorithm (RFC1321) implemented - using OCTEON crypto instructions, when available. - config CRYPTO_MD5_PPC tristate "MD5 digest algorithm (PPC)" depends on PPC @@ -961,15 +939,6 @@ config CRYPTO_SHA512_S390 It is available as of z10. -config CRYPTO_SHA1_OCTEON - tristate "SHA1 digest algorithm (OCTEON)" - depends on CPU_CAVIUM_OCTEON - select CRYPTO_SHA1 - select CRYPTO_HASH - help - SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented - using OCTEON crypto instructions, when available. - config CRYPTO_SHA1_SPARC64 tristate "SHA1 digest algorithm (SPARC64)" depends on SPARC64 @@ -1025,15 +994,6 @@ config CRYPTO_SHA256_PPC_SPE SHA224 and SHA256 secure hash standard (DFIPS 180-2) implemented using powerpc SPE SIMD instruction set. -config CRYPTO_SHA256_OCTEON - tristate "SHA224 and SHA256 digest algorithm (OCTEON)" - depends on CPU_CAVIUM_OCTEON - select CRYPTO_SHA256 - select CRYPTO_HASH - help - SHA-256 secure hash standard (DFIPS 180-2) implemented - using OCTEON crypto instructions, when available. - config CRYPTO_SHA256_SPARC64 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" depends on SPARC64 @@ -1065,15 +1025,6 @@ config CRYPTO_SHA512 This code also includes SHA-384, a 384 bit hash with 192 bits of security against collision attacks. -config CRYPTO_SHA512_OCTEON - tristate "SHA384 and SHA512 digest algorithms (OCTEON)" - depends on CPU_CAVIUM_OCTEON - select CRYPTO_SHA512 - select CRYPTO_HASH - help - SHA-512 secure hash standard (DFIPS 180-2) implemented - using OCTEON crypto instructions, when available. - config CRYPTO_SHA512_SPARC64 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" depends on SPARC64 @@ -1611,12 +1562,6 @@ config CRYPTO_CHACHA20_X86_64 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, XChaCha20, and XChaCha12 stream ciphers. -config CRYPTO_CHACHA_MIPS - tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" - depends on CPU_MIPS32_R2 - select CRYPTO_SKCIPHER - select CRYPTO_ARCH_HAVE_LIB_CHACHA - config CRYPTO_CHACHA_S390 tristate "ChaCha20 stream cipher" depends on S390 @@ -2128,6 +2073,10 @@ config CRYPTO_STATS config CRYPTO_HASH_INFO bool +if MIPS +source "arch/mips/crypto/Kconfig" +endif + source "drivers/crypto/Kconfig" source "crypto/asymmetric_keys/Kconfig" source "certs/Kconfig" -- cgit From 6a490a4e8b4c015113045d045dc1ae94735211bb Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 20 Aug 2022 13:41:36 -0500 Subject: crypto: Kconfig - move powerpc entries to a submenu Move CPU-specific crypto/Kconfig entries to arch/xxx/crypto/Kconfig and create a submenu for them under the Crypto API menu. Suggested-by: Eric Biggers Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- crypto/Kconfig | 76 +++------------------------------------------------------- 1 file changed, 3 insertions(+), 73 deletions(-) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index 85fa86f334f2..5299929144b6 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -658,17 +658,6 @@ config CRYPTO_CRC32C_INTEL gain performance compared with software implementation. Module will be crc32c-intel. -config CRYPTO_CRC32C_VPMSUM - tristate "CRC32c CRC algorithm (powerpc64)" - depends on PPC64 && ALTIVEC - select CRYPTO_HASH - select CRC32 - help - CRC32c algorithm implemented using vector polynomial multiply-sum - (vpmsum) instructions, introduced in POWER8. Enable on POWER8 - and newer processors for improved performance. - - config CRYPTO_CRC32C_SPARC64 tristate "CRC32c CRC algorithm (SPARC64)" depends on SPARC64 @@ -762,28 +751,11 @@ config CRYPTO_CRCT10DIF_PCLMUL 'crct10dif-pclmul' module, which is faster when computing the crct10dif checksum as compared with the generic table implementation. -config CRYPTO_CRCT10DIF_VPMSUM - tristate "CRC32T10DIF powerpc64 hardware acceleration" - depends on PPC64 && ALTIVEC && CRC_T10DIF - select CRYPTO_HASH - help - CRC10T10DIF algorithm implemented using vector polynomial - multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on - POWER8 and newer processors for improved performance. - config CRYPTO_CRC64_ROCKSOFT tristate "Rocksoft Model CRC64 algorithm" depends on CRC64 select CRYPTO_HASH -config CRYPTO_VPMSUM_TESTER - tristate "Powerpc64 vpmsum hardware acceleration tester" - depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM - help - Stress test for CRC32c and CRC-T10DIF algorithms implemented with - POWER8 vpmsum instructions. - Unless you are testing these algorithms, you don't need this. - config CRYPTO_GHASH tristate "GHASH hash function" select CRYPTO_GF128MUL @@ -845,14 +817,6 @@ config CRYPTO_MD5 help MD5 message digest algorithm (RFC1321). -config CRYPTO_MD5_PPC - tristate "MD5 digest algorithm (PPC)" - depends on PPC - select CRYPTO_HASH - help - MD5 message digest algorithm (RFC1321) implemented - in PPC assembler. - config CRYPTO_MD5_SPARC64 tristate "MD5 digest algorithm (SPARC64)" depends on SPARC64 @@ -948,20 +912,6 @@ config CRYPTO_SHA1_SPARC64 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented using sparc64 crypto instructions, when available. -config CRYPTO_SHA1_PPC - tristate "SHA1 digest algorithm (powerpc)" - depends on PPC - help - This is the powerpc hardware accelerated implementation of the - SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). - -config CRYPTO_SHA1_PPC_SPE - tristate "SHA1 digest algorithm (PPC SPE)" - depends on PPC && SPE - help - SHA-1 secure hash standard (DFIPS 180-4) implemented - using powerpc SPE SIMD instruction set. - config CRYPTO_SHA1_S390 tristate "SHA1 digest algorithm" depends on S390 @@ -985,15 +935,6 @@ config CRYPTO_SHA256 This code also includes SHA-224, a 224 bit hash with 112 bits of security against collision attacks. -config CRYPTO_SHA256_PPC_SPE - tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" - depends on PPC && SPE - select CRYPTO_SHA256 - select CRYPTO_HASH - help - SHA224 and SHA256 secure hash standard (DFIPS 180-2) - implemented using powerpc SPE SIMD instruction set. - config CRYPTO_SHA256_SPARC64 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" depends on SPARC64 @@ -1235,20 +1176,6 @@ config CRYPTO_AES_SPARC64 for some popular block cipher mode is supported too, including ECB and CBC. -config CRYPTO_AES_PPC_SPE - tristate "AES cipher algorithms (PPC SPE)" - depends on PPC && SPE - select CRYPTO_SKCIPHER - help - AES cipher algorithms (FIPS-197). Additionally the acceleration - for popular block cipher modes ECB, CBC, CTR and XTS is supported. - This module should only be used for low power (router) devices - without hardware AES acceleration (e.g. caam crypto). It reduces the - size of the AES tables from 16KB to 8KB + 256 bytes and mitigates - timining attacks. Nevertheless it might be not as secure as other - architecture specific assembler implementations that work on 1KB - tables or 256 bytes S-boxes. - config CRYPTO_AES_S390 tristate "AES cipher algorithms" depends on S390 @@ -2076,6 +2003,9 @@ config CRYPTO_HASH_INFO if MIPS source "arch/mips/crypto/Kconfig" endif +if PPC +source "arch/powerpc/crypto/Kconfig" +endif source "drivers/crypto/Kconfig" source "crypto/asymmetric_keys/Kconfig" -- cgit From c9d24c97c89c1ba9b2d4ff8b721443d7471f87b6 Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 20 Aug 2022 13:41:37 -0500 Subject: crypto: Kconfig - move s390 entries to a submenu Move CPU-specific crypto/Kconfig entries to arch/xxx/crypto/Kconfig and create a submenu for them under the Crypto API menu. Suggested-by: Eric Biggers Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- crypto/Kconfig | 118 ++------------------------------------------------------- 1 file changed, 3 insertions(+), 115 deletions(-) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index 5299929144b6..0eb6090e7562 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -688,19 +688,6 @@ config CRYPTO_CRC32_PCLMUL which will enable any routine to use the CRC-32-IEEE 802.3 checksum and gain better performance as compared with the table implementation. -config CRYPTO_CRC32_S390 - tristate "CRC-32 algorithms" - depends on S390 - select CRYPTO_HASH - select CRC32 - help - Select this option if you want to use hardware accelerated - implementations of CRC algorithms. With this option, you - can optimize the computation of CRC-32 (IEEE 802.3 Ethernet) - and CRC-32C (Castagnoli). - - It is available with IBM z13 or later. - config CRYPTO_XXHASH tristate "xxHash hash algorithm" select CRYPTO_HASH @@ -893,16 +880,6 @@ config CRYPTO_SHA512_SSSE3 Extensions version 1 (AVX1), or Advanced Vector Extensions version 2 (AVX2) instructions, when available. -config CRYPTO_SHA512_S390 - tristate "SHA384 and SHA512 digest algorithm" - depends on S390 - select CRYPTO_HASH - help - This is the s390 hardware accelerated implementation of the - SHA512 secure hash standard. - - It is available as of z10. - config CRYPTO_SHA1_SPARC64 tristate "SHA1 digest algorithm (SPARC64)" depends on SPARC64 @@ -912,16 +889,6 @@ config CRYPTO_SHA1_SPARC64 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented using sparc64 crypto instructions, when available. -config CRYPTO_SHA1_S390 - tristate "SHA1 digest algorithm" - depends on S390 - select CRYPTO_HASH - help - This is the s390 hardware accelerated implementation of the - SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). - - It is available as of z990. - config CRYPTO_SHA256 tristate "SHA224 and SHA256 digest algorithm" select CRYPTO_HASH @@ -944,16 +911,6 @@ config CRYPTO_SHA256_SPARC64 SHA-256 secure hash standard (DFIPS 180-2) implemented using sparc64 crypto instructions, when available. -config CRYPTO_SHA256_S390 - tristate "SHA256 digest algorithm" - depends on S390 - select CRYPTO_HASH - help - This is the s390 hardware accelerated implementation of the - SHA256 secure hash standard (DFIPS 180-2). - - It is available as of z9. - config CRYPTO_SHA512 tristate "SHA384 and SHA512 digest algorithms" select CRYPTO_HASH @@ -985,26 +942,6 @@ config CRYPTO_SHA3 References: http://keccak.noekeon.org/ -config CRYPTO_SHA3_256_S390 - tristate "SHA3_224 and SHA3_256 digest algorithm" - depends on S390 - select CRYPTO_HASH - help - This is the s390 hardware accelerated implementation of the - SHA3_256 secure hash standard. - - It is available as of z14. - -config CRYPTO_SHA3_512_S390 - tristate "SHA3_384 and SHA3_512 digest algorithm" - depends on S390 - select CRYPTO_HASH - help - This is the s390 hardware accelerated implementation of the - SHA3_512 secure hash standard. - - It is available as of z14. - config CRYPTO_SM3 tristate @@ -1065,16 +1002,6 @@ config CRYPTO_GHASH_CLMUL_NI_INTEL This is the x86_64 CLMUL-NI accelerated implementation of GHASH, the hash function used in GCM (Galois/Counter mode). -config CRYPTO_GHASH_S390 - tristate "GHASH hash function" - depends on S390 - select CRYPTO_HASH - help - This is the s390 hardware accelerated implementation of GHASH, - the hash function used in GCM (Galois/Counter mode). - - It is available as of z196. - comment "Ciphers" config CRYPTO_AES @@ -1176,23 +1103,6 @@ config CRYPTO_AES_SPARC64 for some popular block cipher mode is supported too, including ECB and CBC. -config CRYPTO_AES_S390 - tristate "AES cipher algorithms" - depends on S390 - select CRYPTO_ALGAPI - select CRYPTO_SKCIPHER - help - This is the s390 hardware accelerated implementation of the - AES cipher algorithms (FIPS-197). - - As of z9 the ECB and CBC modes are hardware accelerated - for 128 bit keys. - As of z10 the ECB and CBC modes are hardware accelerated - for all AES key sizes. - As of z196 the CTR mode is hardware accelerated for all AES - key sizes and XTS mode is hardware accelerated for 256 and - 512 bit keys. - config CRYPTO_ANUBIS tristate "Anubis cipher algorithm" depends on CRYPTO_USER_API_ENABLE_OBSOLETE @@ -1423,19 +1333,6 @@ config CRYPTO_DES3_EDE_X86_64 algorithm are provided; regular processing one input block and one that processes three blocks parallel. -config CRYPTO_DES_S390 - tristate "DES and Triple DES cipher algorithms" - depends on S390 - select CRYPTO_ALGAPI - select CRYPTO_SKCIPHER - select CRYPTO_LIB_DES - help - This is the s390 hardware accelerated implementation of the - DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). - - As of z990 the ECB and CBC mode are hardware accelerated. - As of z196 the CTR mode is hardware accelerated. - config CRYPTO_FCRYPT tristate "FCrypt cipher algorithm" select CRYPTO_ALGAPI @@ -1489,18 +1386,6 @@ config CRYPTO_CHACHA20_X86_64 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, XChaCha20, and XChaCha12 stream ciphers. -config CRYPTO_CHACHA_S390 - tristate "ChaCha20 stream cipher" - depends on S390 - select CRYPTO_SKCIPHER - select CRYPTO_LIB_CHACHA_GENERIC - select CRYPTO_ARCH_HAVE_LIB_CHACHA - help - This is the s390 SIMD implementation of the ChaCha20 stream - cipher (RFC 7539). - - It is available as of z13. - config CRYPTO_SEED tristate "SEED cipher algorithm" depends on CRYPTO_USER_API_ENABLE_OBSOLETE @@ -2006,6 +1891,9 @@ endif if PPC source "arch/powerpc/crypto/Kconfig" endif +if S390 +source "arch/s390/crypto/Kconfig" +endif source "drivers/crypto/Kconfig" source "crypto/asymmetric_keys/Kconfig" -- cgit From 0e9f9ea6e21f7e0b2a25abf01140315e36e95d1d Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 20 Aug 2022 13:41:38 -0500 Subject: crypto: Kconfig - move sparc entries to a submenu Move CPU-specific crypto/Kconfig entries to arch/xxx/crypto/Kconfig and create a submenu for them under the Crypto API menu. Suggested-by: Eric Biggers Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- crypto/Kconfig | 101 ++------------------------------------------------------- 1 file changed, 3 insertions(+), 98 deletions(-) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index 0eb6090e7562..5ea3cdb975cd 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -658,15 +658,6 @@ config CRYPTO_CRC32C_INTEL gain performance compared with software implementation. Module will be crc32c-intel. -config CRYPTO_CRC32C_SPARC64 - tristate "CRC32c CRC algorithm (SPARC64)" - depends on SPARC64 - select CRYPTO_HASH - select CRC32 - help - CRC32c CRC algorithm implemented using sparc64 crypto instructions, - when available. - config CRYPTO_CRC32 tristate "CRC32 CRC algorithm" select CRYPTO_HASH @@ -804,15 +795,6 @@ config CRYPTO_MD5 help MD5 message digest algorithm (RFC1321). -config CRYPTO_MD5_SPARC64 - tristate "MD5 digest algorithm (SPARC64)" - depends on SPARC64 - select CRYPTO_MD5 - select CRYPTO_HASH - help - MD5 message digest algorithm (RFC1321) implemented - using sparc64 crypto instructions, when available. - config CRYPTO_MICHAEL_MIC tristate "Michael MIC keyed digest algorithm" select CRYPTO_HASH @@ -880,15 +862,6 @@ config CRYPTO_SHA512_SSSE3 Extensions version 1 (AVX1), or Advanced Vector Extensions version 2 (AVX2) instructions, when available. -config CRYPTO_SHA1_SPARC64 - tristate "SHA1 digest algorithm (SPARC64)" - depends on SPARC64 - select CRYPTO_SHA1 - select CRYPTO_HASH - help - SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented - using sparc64 crypto instructions, when available. - config CRYPTO_SHA256 tristate "SHA224 and SHA256 digest algorithm" select CRYPTO_HASH @@ -902,15 +875,6 @@ config CRYPTO_SHA256 This code also includes SHA-224, a 224 bit hash with 112 bits of security against collision attacks. -config CRYPTO_SHA256_SPARC64 - tristate "SHA224 and SHA256 digest algorithm (SPARC64)" - depends on SPARC64 - select CRYPTO_SHA256 - select CRYPTO_HASH - help - SHA-256 secure hash standard (DFIPS 180-2) implemented - using sparc64 crypto instructions, when available. - config CRYPTO_SHA512 tristate "SHA384 and SHA512 digest algorithms" select CRYPTO_HASH @@ -923,15 +887,6 @@ config CRYPTO_SHA512 This code also includes SHA-384, a 384 bit hash with 192 bits of security against collision attacks. -config CRYPTO_SHA512_SPARC64 - tristate "SHA384 and SHA512 digest algorithm (SPARC64)" - depends on SPARC64 - select CRYPTO_SHA512 - select CRYPTO_HASH - help - SHA-512 secure hash standard (DFIPS 180-2) implemented - using sparc64 crypto instructions, when available. - config CRYPTO_SHA3 tristate "SHA3 digest algorithm" select CRYPTO_HASH @@ -1076,33 +1031,6 @@ config CRYPTO_AES_NI_INTEL ECB, CBC, LRW, XTS. The 64 bit version has additional acceleration for CTR and XCTR. -config CRYPTO_AES_SPARC64 - tristate "AES cipher algorithms (SPARC64)" - depends on SPARC64 - select CRYPTO_SKCIPHER - help - Use SPARC64 crypto opcodes for AES algorithm. - - AES cipher algorithms (FIPS-197). AES uses the Rijndael - algorithm. - - Rijndael appears to be consistently a very good performer in - both hardware and software across a wide range of computing - environments regardless of its use in feedback or non-feedback - modes. Its key setup time is excellent, and its key agility is - good. Rijndael's very low memory requirements make it very well - suited for restricted-space environments, in which it also - demonstrates excellent performance. Rijndael's operations are - among the easiest to defend against power and timing attacks. - - The AES specifies three key sizes: 128, 192 and 256 bits - - See for more information. - - In addition to AES cipher algorithm support, the acceleration - for some popular block cipher mode is supported too, including - ECB and CBC. - config CRYPTO_ANUBIS tristate "Anubis cipher algorithm" depends on CRYPTO_USER_API_ENABLE_OBSOLETE @@ -1233,22 +1161,6 @@ config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 See also: -config CRYPTO_CAMELLIA_SPARC64 - tristate "Camellia cipher algorithm (SPARC64)" - depends on SPARC64 - select CRYPTO_ALGAPI - select CRYPTO_SKCIPHER - help - Camellia cipher algorithm module (SPARC64). - - Camellia is a symmetric key block cipher developed jointly - at NTT and Mitsubishi Electric Corporation. - - The Camellia specifies three key sizes: 128, 192 and 256 bits. - - See also: - - config CRYPTO_CAST_COMMON tristate help @@ -1309,16 +1221,6 @@ config CRYPTO_DES help DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). -config CRYPTO_DES_SPARC64 - tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" - depends on SPARC64 - select CRYPTO_ALGAPI - select CRYPTO_LIB_DES - select CRYPTO_SKCIPHER - help - DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), - optimized using SPARC64 crypto opcodes. - config CRYPTO_DES3_EDE_X86_64 tristate "Triple DES EDE cipher algorithm (x86-64)" depends on X86 && 64BIT @@ -1894,6 +1796,9 @@ endif if S390 source "arch/s390/crypto/Kconfig" endif +if SPARC +source "arch/sparc/crypto/Kconfig" +endif source "drivers/crypto/Kconfig" source "crypto/asymmetric_keys/Kconfig" -- cgit From 28a936ef44e12b4d2b38f45ff767262763b60a20 Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 20 Aug 2022 13:41:39 -0500 Subject: crypto: Kconfig - move x86 entries to a submenu Move CPU-specific crypto/Kconfig entries to arch/xxx/crypto/Kconfig and create a submenu for them under the Crypto API menu. Suggested-by: Eric Biggers Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- crypto/Kconfig | 498 +-------------------------------------------------------- 1 file changed, 3 insertions(+), 495 deletions(-) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index 5ea3cdb975cd..c249fdacba66 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -316,12 +316,6 @@ config CRYPTO_CURVE25519 select CRYPTO_KPP select CRYPTO_LIB_CURVE25519_GENERIC -config CRYPTO_CURVE25519_X86 - tristate "x86_64 accelerated Curve25519 scalar multiplication library" - depends on X86 && 64BIT - select CRYPTO_LIB_CURVE25519_GENERIC - select CRYPTO_ARCH_HAVE_LIB_CURVE25519 - comment "Authenticated Encryption with Associated Data" config CRYPTO_CCM @@ -369,14 +363,6 @@ config CRYPTO_AEGIS128_SIMD depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) default y -config CRYPTO_AEGIS128_AESNI_SSE2 - tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" - depends on X86 && 64BIT - select CRYPTO_AEAD - select CRYPTO_SIMD - help - AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. - config CRYPTO_SEQIV tristate "Sequence Number IV Generator" select CRYPTO_AEAD @@ -514,22 +500,6 @@ config CRYPTO_NHPOLY1305 select CRYPTO_HASH select CRYPTO_LIB_POLY1305_GENERIC -config CRYPTO_NHPOLY1305_SSE2 - tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" - depends on X86 && 64BIT - select CRYPTO_NHPOLY1305 - help - SSE2 optimized implementation of the hash function used by the - Adiantum encryption mode. - -config CRYPTO_NHPOLY1305_AVX2 - tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" - depends on X86 && 64BIT - select CRYPTO_NHPOLY1305 - help - AVX2 optimized implementation of the hash function used by the - Adiantum encryption mode. - config CRYPTO_ADIANTUM tristate "Adiantum support" select CRYPTO_CHACHA20 @@ -646,18 +616,6 @@ config CRYPTO_CRC32C by iSCSI for header and data digests and by others. See Castagnoli93. Module will be crc32c. -config CRYPTO_CRC32C_INTEL - tristate "CRC32c INTEL hardware acceleration" - depends on X86 - select CRYPTO_HASH - help - In Intel processor with SSE4.2 supported, the processor will - support CRC32C implementation using hardware accelerated CRC32 - instruction. This option will create 'crc32c-intel' module, - which will enable any routine to use the CRC32 instruction to - gain performance compared with software implementation. - Module will be crc32c-intel. - config CRYPTO_CRC32 tristate "CRC32 CRC algorithm" select CRYPTO_HASH @@ -666,19 +624,6 @@ config CRYPTO_CRC32 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. Shash crypto api wrappers to crc32_le function. -config CRYPTO_CRC32_PCLMUL - tristate "CRC32 PCLMULQDQ hardware acceleration" - depends on X86 - select CRYPTO_HASH - select CRC32 - help - From Intel Westmere and AMD Bulldozer processor with SSE4.2 - and PCLMULQDQ supported, the processor will support - CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ - instruction. This option will create 'crc32-pclmul' module, - which will enable any routine to use the CRC-32-IEEE 802.3 checksum - and gain better performance as compared with the table implementation. - config CRYPTO_XXHASH tristate "xxHash hash algorithm" select CRYPTO_HASH @@ -704,12 +649,6 @@ config CRYPTO_BLAKE2B See https://blake2.net for further information. -config CRYPTO_BLAKE2S_X86 - bool "BLAKE2s digest algorithm (x86 accelerated version)" - depends on X86 && 64BIT - select CRYPTO_LIB_BLAKE2S_GENERIC - select CRYPTO_ARCH_HAVE_LIB_BLAKE2S - config CRYPTO_CRCT10DIF tristate "CRCT10DIF algorithm" select CRYPTO_HASH @@ -718,17 +657,6 @@ config CRYPTO_CRCT10DIF a crypto transform. This allows for faster crc t10 diff transforms to be used if they are available. -config CRYPTO_CRCT10DIF_PCLMUL - tristate "CRCT10DIF PCLMULQDQ hardware acceleration" - depends on X86 && 64BIT && CRC_T10DIF - select CRYPTO_HASH - help - For x86_64 processors with SSE4.2 and PCLMULQDQ supported, - CRC T10 DIF PCLMULQDQ computation can be hardware - accelerated PCLMULQDQ instruction. This option will create - 'crct10dif-pclmul' module, which is faster when computing the - crct10dif checksum as compared with the generic table implementation. - config CRYPTO_CRC64_ROCKSOFT tristate "Rocksoft Model CRC64 algorithm" depends on CRC64 @@ -750,15 +678,6 @@ config CRYPTO_POLYVAL POLYVAL is the hash function used in HCTR2. It is not a general-purpose cryptographic hash function. -config CRYPTO_POLYVAL_CLMUL_NI - tristate "POLYVAL hash function (CLMUL-NI accelerated)" - depends on X86 && 64BIT - select CRYPTO_POLYVAL - help - This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is - used to efficiently implement HCTR2 on x86-64 processors that support - carry-less multiplication instructions. - config CRYPTO_POLY1305 tristate "Poly1305 authenticator algorithm" select CRYPTO_HASH @@ -770,19 +689,6 @@ config CRYPTO_POLY1305 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use in IETF protocols. This is the portable C implementation of Poly1305. -config CRYPTO_POLY1305_X86_64 - tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" - depends on X86 && 64BIT - select CRYPTO_LIB_POLY1305_GENERIC - select CRYPTO_ARCH_HAVE_LIB_POLY1305 - help - Poly1305 authenticator algorithm, RFC7539. - - Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. - It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use - in IETF protocols. This is the x86_64 assembler implementation using SIMD - instructions. - config CRYPTO_MD4 tristate "MD4 digest algorithm" select CRYPTO_HASH @@ -828,40 +734,6 @@ config CRYPTO_SHA1 help SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). -config CRYPTO_SHA1_SSSE3 - tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" - depends on X86 && 64BIT - select CRYPTO_SHA1 - select CRYPTO_HASH - help - SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented - using Supplemental SSE3 (SSSE3) instructions or Advanced Vector - Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), - when available. - -config CRYPTO_SHA256_SSSE3 - tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" - depends on X86 && 64BIT - select CRYPTO_SHA256 - select CRYPTO_HASH - help - SHA-256 secure hash standard (DFIPS 180-2) implemented - using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector - Extensions version 1 (AVX1), or Advanced Vector Extensions - version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New - Instructions) when available. - -config CRYPTO_SHA512_SSSE3 - tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" - depends on X86 && 64BIT - select CRYPTO_SHA512 - select CRYPTO_HASH - help - SHA-512 secure hash standard (DFIPS 180-2) implemented - using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector - Extensions version 1 (AVX1), or Advanced Vector Extensions - version 2 (AVX2) instructions, when available. - config CRYPTO_SHA256 tristate "SHA224 and SHA256 digest algorithm" select CRYPTO_HASH @@ -912,19 +784,6 @@ config CRYPTO_SM3_GENERIC http://www.oscca.gov.cn/UpFile/20101222141857786.pdf https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash -config CRYPTO_SM3_AVX_X86_64 - tristate "SM3 digest algorithm (x86_64/AVX)" - depends on X86 && 64BIT - select CRYPTO_HASH - select CRYPTO_SM3 - help - SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). - It is part of the Chinese Commercial Cryptography suite. This is - SM3 optimized implementation using Advanced Vector Extensions (AVX) - when available. - - If unsure, say N. - config CRYPTO_STREEBOG tristate "Streebog Hash Function" select CRYPTO_HASH @@ -949,14 +808,6 @@ config CRYPTO_WP512 See also: -config CRYPTO_GHASH_CLMUL_NI_INTEL - tristate "GHASH hash function (CLMUL-NI accelerated)" - depends on X86 && 64BIT - select CRYPTO_CRYPTD - help - This is the x86_64 CLMUL-NI accelerated implementation of - GHASH, the hash function used in GCM (Galois/Counter mode). - comment "Ciphers" config CRYPTO_AES @@ -999,38 +850,6 @@ config CRYPTO_AES_TI block. Interrupts are also disabled to avoid races where cachelines are evicted when the CPU is interrupted to do something else. -config CRYPTO_AES_NI_INTEL - tristate "AES cipher algorithms (AES-NI)" - depends on X86 - select CRYPTO_AEAD - select CRYPTO_LIB_AES - select CRYPTO_ALGAPI - select CRYPTO_SKCIPHER - select CRYPTO_SIMD - help - Use Intel AES-NI instructions for AES algorithm. - - AES cipher algorithms (FIPS-197). AES uses the Rijndael - algorithm. - - Rijndael appears to be consistently a very good performer in - both hardware and software across a wide range of computing - environments regardless of its use in feedback or non-feedback - modes. Its key setup time is excellent, and its key agility is - good. Rijndael's very low memory requirements make it very well - suited for restricted-space environments, in which it also - demonstrates excellent performance. Rijndael's operations are - among the easiest to defend against power and timing attacks. - - The AES specifies three key sizes: 128, 192 and 256 bits - - See for more information. - - In addition to AES cipher algorithm support, the acceleration - for some popular block cipher mode is supported too, including - ECB, CBC, LRW, XTS. The 64 bit version has additional - acceleration for CTR and XCTR. - config CRYPTO_ANUBIS tristate "Anubis cipher algorithm" depends on CRYPTO_USER_API_ENABLE_OBSOLETE @@ -1082,22 +901,6 @@ config CRYPTO_BLOWFISH_COMMON See also: -config CRYPTO_BLOWFISH_X86_64 - tristate "Blowfish cipher algorithm (x86_64)" - depends on X86 && 64BIT - select CRYPTO_SKCIPHER - select CRYPTO_BLOWFISH_COMMON - imply CRYPTO_CTR - help - Blowfish cipher algorithm (x86_64), by Bruce Schneier. - - This is a variable key length cipher which can use keys from 32 - bits to 448 bits in length. It's fast, simple and specifically - designed for use on "large microprocessors". - - See also: - - config CRYPTO_CAMELLIA tristate "Camellia cipher algorithms" select CRYPTO_ALGAPI @@ -1112,55 +915,6 @@ config CRYPTO_CAMELLIA See also: -config CRYPTO_CAMELLIA_X86_64 - tristate "Camellia cipher algorithm (x86_64)" - depends on X86 && 64BIT - select CRYPTO_SKCIPHER - imply CRYPTO_CTR - help - Camellia cipher algorithm module (x86_64). - - Camellia is a symmetric key block cipher developed jointly - at NTT and Mitsubishi Electric Corporation. - - The Camellia specifies three key sizes: 128, 192 and 256 bits. - - See also: - - -config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 - tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" - depends on X86 && 64BIT - select CRYPTO_SKCIPHER - select CRYPTO_CAMELLIA_X86_64 - select CRYPTO_SIMD - imply CRYPTO_XTS - help - Camellia cipher algorithm module (x86_64/AES-NI/AVX). - - Camellia is a symmetric key block cipher developed jointly - at NTT and Mitsubishi Electric Corporation. - - The Camellia specifies three key sizes: 128, 192 and 256 bits. - - See also: - - -config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 - tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" - depends on X86 && 64BIT - select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 - help - Camellia cipher algorithm module (x86_64/AES-NI/AVX2). - - Camellia is a symmetric key block cipher developed jointly - at NTT and Mitsubishi Electric Corporation. - - The Camellia specifies three key sizes: 128, 192 and 256 bits. - - See also: - - config CRYPTO_CAST_COMMON tristate help @@ -1175,21 +929,6 @@ config CRYPTO_CAST5 The CAST5 encryption algorithm (synonymous with CAST-128) is described in RFC2144. -config CRYPTO_CAST5_AVX_X86_64 - tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" - depends on X86 && 64BIT - select CRYPTO_SKCIPHER - select CRYPTO_CAST5 - select CRYPTO_CAST_COMMON - select CRYPTO_SIMD - imply CRYPTO_CTR - help - The CAST5 encryption algorithm (synonymous with CAST-128) is - described in RFC2144. - - This module provides the Cast5 cipher algorithm that processes - sixteen blocks parallel using the AVX instruction set. - config CRYPTO_CAST6 tristate "CAST6 (CAST-256) cipher algorithm" select CRYPTO_ALGAPI @@ -1198,22 +937,6 @@ config CRYPTO_CAST6 The CAST6 encryption algorithm (synonymous with CAST-256) is described in RFC2612. -config CRYPTO_CAST6_AVX_X86_64 - tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" - depends on X86 && 64BIT - select CRYPTO_SKCIPHER - select CRYPTO_CAST6 - select CRYPTO_CAST_COMMON - select CRYPTO_SIMD - imply CRYPTO_XTS - imply CRYPTO_CTR - help - The CAST6 encryption algorithm (synonymous with CAST-256) is - described in RFC2612. - - This module provides the Cast6 cipher algorithm that processes - eight blocks parallel using the AVX instruction set. - config CRYPTO_DES tristate "DES and Triple DES EDE cipher algorithms" select CRYPTO_ALGAPI @@ -1221,20 +944,6 @@ config CRYPTO_DES help DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). -config CRYPTO_DES3_EDE_X86_64 - tristate "Triple DES EDE cipher algorithm (x86-64)" - depends on X86 && 64BIT - select CRYPTO_SKCIPHER - select CRYPTO_LIB_DES - imply CRYPTO_CTR - help - Triple DES EDE (FIPS 46-3) algorithm. - - This module provides implementation of the Triple DES EDE cipher - algorithm that is optimized for x86-64 processors. Two versions of - algorithm are provided; regular processing one input block and - one that processes three blocks parallel. - config CRYPTO_FCRYPT tristate "FCrypt cipher algorithm" select CRYPTO_ALGAPI @@ -1278,16 +987,6 @@ config CRYPTO_CHACHA20 reduced security margin but increased performance. It can be needed in some performance-sensitive scenarios. -config CRYPTO_CHACHA20_X86_64 - tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" - depends on X86 && 64BIT - select CRYPTO_SKCIPHER - select CRYPTO_LIB_CHACHA_GENERIC - select CRYPTO_ARCH_HAVE_LIB_CHACHA - help - SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, - XChaCha20, and XChaCha12 stream ciphers. - config CRYPTO_SEED tristate "SEED cipher algorithm" depends on CRYPTO_USER_API_ENABLE_OBSOLETE @@ -1330,80 +1029,6 @@ config CRYPTO_SERPENT See also: -config CRYPTO_SERPENT_SSE2_X86_64 - tristate "Serpent cipher algorithm (x86_64/SSE2)" - depends on X86 && 64BIT - select CRYPTO_SKCIPHER - select CRYPTO_SERPENT - select CRYPTO_SIMD - imply CRYPTO_CTR - help - Serpent cipher algorithm, by Anderson, Biham & Knudsen. - - Keys are allowed to be from 0 to 256 bits in length, in steps - of 8 bits. - - This module provides Serpent cipher algorithm that processes eight - blocks parallel using SSE2 instruction set. - - See also: - - -config CRYPTO_SERPENT_SSE2_586 - tristate "Serpent cipher algorithm (i586/SSE2)" - depends on X86 && !64BIT - select CRYPTO_SKCIPHER - select CRYPTO_SERPENT - select CRYPTO_SIMD - imply CRYPTO_CTR - help - Serpent cipher algorithm, by Anderson, Biham & Knudsen. - - Keys are allowed to be from 0 to 256 bits in length, in steps - of 8 bits. - - This module provides Serpent cipher algorithm that processes four - blocks parallel using SSE2 instruction set. - - See also: - - -config CRYPTO_SERPENT_AVX_X86_64 - tristate "Serpent cipher algorithm (x86_64/AVX)" - depends on X86 && 64BIT - select CRYPTO_SKCIPHER - select CRYPTO_SERPENT - select CRYPTO_SIMD - imply CRYPTO_XTS - imply CRYPTO_CTR - help - Serpent cipher algorithm, by Anderson, Biham & Knudsen. - - Keys are allowed to be from 0 to 256 bits in length, in steps - of 8 bits. - - This module provides the Serpent cipher algorithm that processes - eight blocks parallel using the AVX instruction set. - - See also: - - -config CRYPTO_SERPENT_AVX2_X86_64 - tristate "Serpent cipher algorithm (x86_64/AVX2)" - depends on X86 && 64BIT - select CRYPTO_SERPENT_AVX_X86_64 - help - Serpent cipher algorithm, by Anderson, Biham & Knudsen. - - Keys are allowed to be from 0 to 256 bits in length, in steps - of 8 bits. - - This module provides Serpent cipher algorithm that processes 16 - blocks parallel using AVX2 instruction set. - - See also: - - config CRYPTO_SM4 tristate @@ -1433,49 +1058,6 @@ config CRYPTO_SM4_GENERIC If unsure, say N. -config CRYPTO_SM4_AESNI_AVX_X86_64 - tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" - depends on X86 && 64BIT - select CRYPTO_SKCIPHER - select CRYPTO_SIMD - select CRYPTO_ALGAPI - select CRYPTO_SM4 - help - SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). - - SM4 (GBT.32907-2016) is a cryptographic standard issued by the - Organization of State Commercial Administration of China (OSCCA) - as an authorized cryptographic algorithms for the use within China. - - This is SM4 optimized implementation using AES-NI/AVX/x86_64 - instruction set for block cipher. Through two affine transforms, - we can use the AES S-Box to simulate the SM4 S-Box to achieve the - effect of instruction acceleration. - - If unsure, say N. - -config CRYPTO_SM4_AESNI_AVX2_X86_64 - tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" - depends on X86 && 64BIT - select CRYPTO_SKCIPHER - select CRYPTO_SIMD - select CRYPTO_ALGAPI - select CRYPTO_SM4 - select CRYPTO_SM4_AESNI_AVX_X86_64 - help - SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). - - SM4 (GBT.32907-2016) is a cryptographic standard issued by the - Organization of State Commercial Administration of China (OSCCA) - as an authorized cryptographic algorithms for the use within China. - - This is SM4 optimized implementation using AES-NI/AVX2/x86_64 - instruction set for block cipher. Through two affine transforms, - we can use the AES S-Box to simulate the SM4 S-Box to achieve the - effect of instruction acceleration. - - If unsure, say N. - config CRYPTO_TEA tristate "TEA, XTEA and XETA cipher algorithms" depends on CRYPTO_USER_API_ENABLE_OBSOLETE @@ -1515,83 +1097,6 @@ config CRYPTO_TWOFISH_COMMON Common parts of the Twofish cipher algorithm shared by the generic c and the assembler implementations. -config CRYPTO_TWOFISH_586 - tristate "Twofish cipher algorithms (i586)" - depends on (X86 || UML_X86) && !64BIT - select CRYPTO_ALGAPI - select CRYPTO_TWOFISH_COMMON - imply CRYPTO_CTR - help - Twofish cipher algorithm. - - Twofish was submitted as an AES (Advanced Encryption Standard) - candidate cipher by researchers at CounterPane Systems. It is a - 16 round block cipher supporting key sizes of 128, 192, and 256 - bits. - - See also: - - -config CRYPTO_TWOFISH_X86_64 - tristate "Twofish cipher algorithm (x86_64)" - depends on (X86 || UML_X86) && 64BIT - select CRYPTO_ALGAPI - select CRYPTO_TWOFISH_COMMON - imply CRYPTO_CTR - help - Twofish cipher algorithm (x86_64). - - Twofish was submitted as an AES (Advanced Encryption Standard) - candidate cipher by researchers at CounterPane Systems. It is a - 16 round block cipher supporting key sizes of 128, 192, and 256 - bits. - - See also: - - -config CRYPTO_TWOFISH_X86_64_3WAY - tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" - depends on X86 && 64BIT - select CRYPTO_SKCIPHER - select CRYPTO_TWOFISH_COMMON - select CRYPTO_TWOFISH_X86_64 - help - Twofish cipher algorithm (x86_64, 3-way parallel). - - Twofish was submitted as an AES (Advanced Encryption Standard) - candidate cipher by researchers at CounterPane Systems. It is a - 16 round block cipher supporting key sizes of 128, 192, and 256 - bits. - - This module provides Twofish cipher algorithm that processes three - blocks parallel, utilizing resources of out-of-order CPUs better. - - See also: - - -config CRYPTO_TWOFISH_AVX_X86_64 - tristate "Twofish cipher algorithm (x86_64/AVX)" - depends on X86 && 64BIT - select CRYPTO_SKCIPHER - select CRYPTO_SIMD - select CRYPTO_TWOFISH_COMMON - select CRYPTO_TWOFISH_X86_64 - select CRYPTO_TWOFISH_X86_64_3WAY - imply CRYPTO_XTS - help - Twofish cipher algorithm (x86_64/AVX). - - Twofish was submitted as an AES (Advanced Encryption Standard) - candidate cipher by researchers at CounterPane Systems. It is a - 16 round block cipher supporting key sizes of 128, 192, and 256 - bits. - - This module provides the Twofish cipher algorithm that processes - eight blocks parallel using the AVX Instruction Set. - - See also: - - comment "Compression" config CRYPTO_DEFLATE @@ -1799,6 +1304,9 @@ endif if SPARC source "arch/sparc/crypto/Kconfig" endif +if X86 +source "arch/x86/crypto/Kconfig" +endif source "drivers/crypto/Kconfig" source "crypto/asymmetric_keys/Kconfig" -- cgit From 4a329fecc9aaebb27a53fa7abfa53bbc2ee42f3f Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 20 Aug 2022 13:41:41 -0500 Subject: crypto: Kconfig - submenus for arm and arm64 Move ARM- and ARM64-accelerated menus into a submenu under the Crypto API menu (paralleling all the architectures). Make each submenu always appear if the corresponding architecture is supported. Get rid of the ARM_CRYPTO and ARM64_CRYPTO symbols. The "ARM Accelerated" or "ARM64 Accelerated" entry disappears from: General setup ---> Platform selection ---> Kernel Features ---> Boot options ---> Power management options ---> CPU Power Management ---> [*] ACPI (Advanced Configuration and Power Interface) Support ---> [*] Virtualization ---> [*] ARM Accelerated Cryptographic Algorithms ---> (or) [*] ARM64 Accelerated Cryptographic Algorithms ---> ... -*- Cryptographic API ---> Library routines ---> Kernel hacking ---> and moves into the Cryptographic API menu, which now contains: ... Accelerated Cryptographic Algorithms for CPU (arm) ---> (or) Accelerated Cryptographic Algorithms for CPU (arm64) ---> [*] Hardware crypto devices ---> ... Suggested-by: Eric Biggers Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- crypto/Kconfig | 6 ++++++ 1 file changed, 6 insertions(+) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index c249fdacba66..0349b27075ab 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -1292,6 +1292,12 @@ config CRYPTO_STATS config CRYPTO_HASH_INFO bool +if ARM +source "arch/arm/crypto/Kconfig" +endif +if ARM64 +source "arch/arm64/crypto/Kconfig" +endif if MIPS source "arch/mips/crypto/Kconfig" endif -- cgit From f1f142ad434883616c313bc93b9f443d496293db Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 20 Aug 2022 13:41:44 -0500 Subject: crypto: Kconfig - add submenus Convert each comment section into a submenu: Cryptographic API Crypto core or helper Public-key cryptography Block ciphers Length-preserving ciphers and modes AEAD (authenticated encryption with associated data) ciphers Hashes, digests, and MACs CRCs (cyclic redundancy checks) Compression Random number generation Userspace interface That helps find entries (e.g., searching for a name like SHA512 doesn't just report the location is Main menu -> Cryptography API, leaving you to wade through 153 entries; it points you to the Digests page). Move entries so they fall into the correct submenus and are better sorted. Suggested-by: Eric Biggers Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- crypto/Kconfig | 1225 ++++++++++++++++++++++++++++---------------------------- 1 file changed, 623 insertions(+), 602 deletions(-) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index 0349b27075ab..e2e364cfa93e 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -21,7 +21,7 @@ menuconfig CRYPTO if CRYPTO -comment "Crypto core or helper" +menu "Crypto core or helper" config CRYPTO_FIPS bool "FIPS 200 compliance" @@ -235,7 +235,9 @@ config CRYPTO_SIMD config CRYPTO_ENGINE tristate -comment "Public-key cryptography" +endmenu + +menu "Public-key cryptography" config CRYPTO_RSA tristate "RSA algorithm" @@ -316,189 +318,265 @@ config CRYPTO_CURVE25519 select CRYPTO_KPP select CRYPTO_LIB_CURVE25519_GENERIC -comment "Authenticated Encryption with Associated Data" +endmenu -config CRYPTO_CCM - tristate "CCM support" - select CRYPTO_CTR - select CRYPTO_HASH - select CRYPTO_AEAD - select CRYPTO_MANAGER - help - Support for Counter with CBC MAC. Required for IPsec. +menu "Block ciphers" -config CRYPTO_GCM - tristate "GCM/GMAC support" - select CRYPTO_CTR - select CRYPTO_AEAD - select CRYPTO_GHASH - select CRYPTO_NULL - select CRYPTO_MANAGER +config CRYPTO_AES + tristate "AES cipher algorithms" + select CRYPTO_ALGAPI + select CRYPTO_LIB_AES help - Support for Galois/Counter Mode (GCM) and Galois Message - Authentication Code (GMAC). Required for IPSec. + AES cipher algorithms (FIPS-197). AES uses the Rijndael + algorithm. -config CRYPTO_CHACHA20POLY1305 - tristate "ChaCha20-Poly1305 AEAD support" - select CRYPTO_CHACHA20 - select CRYPTO_POLY1305 - select CRYPTO_AEAD - select CRYPTO_MANAGER - help - ChaCha20-Poly1305 AEAD support, RFC7539. + Rijndael appears to be consistently a very good performer in + both hardware and software across a wide range of computing + environments regardless of its use in feedback or non-feedback + modes. Its key setup time is excellent, and its key agility is + good. Rijndael's very low memory requirements make it very well + suited for restricted-space environments, in which it also + demonstrates excellent performance. Rijndael's operations are + among the easiest to defend against power and timing attacks. - Support for the AEAD wrapper using the ChaCha20 stream cipher combined - with the Poly1305 authenticator. It is defined in RFC7539 for use in - IETF protocols. + The AES specifies three key sizes: 128, 192 and 256 bits -config CRYPTO_AEGIS128 - tristate "AEGIS-128 AEAD algorithm" - select CRYPTO_AEAD - select CRYPTO_AES # for AES S-box tables + See for more information. + +config CRYPTO_AES_TI + tristate "Fixed time AES cipher" + select CRYPTO_ALGAPI + select CRYPTO_LIB_AES help - Support for the AEGIS-128 dedicated AEAD algorithm. + This is a generic implementation of AES that attempts to eliminate + data dependent latencies as much as possible without affecting + performance too much. It is intended for use by the generic CCM + and GCM drivers, and other CTR or CMAC/XCBC based modes that rely + solely on encryption (although decryption is supported as well, but + with a more dramatic performance hit) -config CRYPTO_AEGIS128_SIMD - bool "Support SIMD acceleration for AEGIS-128" - depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) - default y + Instead of using 16 lookup tables of 1 KB each, (8 for encryption and + 8 for decryption), this implementation only uses just two S-boxes of + 256 bytes each, and attempts to eliminate data dependent latencies by + prefetching the entire table into the cache at the start of each + block. Interrupts are also disabled to avoid races where cachelines + are evicted when the CPU is interrupted to do something else. -config CRYPTO_SEQIV - tristate "Sequence Number IV Generator" - select CRYPTO_AEAD - select CRYPTO_SKCIPHER - select CRYPTO_NULL - select CRYPTO_RNG_DEFAULT - select CRYPTO_MANAGER +config CRYPTO_ANUBIS + tristate "Anubis cipher algorithm" + depends on CRYPTO_USER_API_ENABLE_OBSOLETE + select CRYPTO_ALGAPI help - This IV generator generates an IV based on a sequence number by - xoring it with a salt. This algorithm is mainly useful for CTR + Anubis cipher algorithm. -config CRYPTO_ECHAINIV - tristate "Encrypted Chain IV Generator" - select CRYPTO_AEAD - select CRYPTO_NULL - select CRYPTO_RNG_DEFAULT - select CRYPTO_MANAGER - help - This IV generator generates an IV based on the encryption of - a sequence number xored with a salt. This is the default - algorithm for CBC. + Anubis is a variable key length cipher which can use keys from + 128 bits to 320 bits in length. It was evaluated as a entrant + in the NESSIE competition. -comment "Block modes" + See also: + + -config CRYPTO_CBC - tristate "CBC support" - select CRYPTO_SKCIPHER - select CRYPTO_MANAGER +config CRYPTO_ARIA + tristate "ARIA cipher algorithm" + select CRYPTO_ALGAPI help - CBC: Cipher Block Chaining mode - This block cipher algorithm is required for IPSec. + ARIA cipher algorithm (RFC5794). -config CRYPTO_CFB - tristate "CFB support" - select CRYPTO_SKCIPHER - select CRYPTO_MANAGER - help - CFB: Cipher FeedBack mode - This block cipher algorithm is required for TPM2 Cryptography. + ARIA is a standard encryption algorithm of the Republic of Korea. + The ARIA specifies three key sizes and rounds. + 128-bit: 12 rounds. + 192-bit: 14 rounds. + 256-bit: 16 rounds. -config CRYPTO_CTR - tristate "CTR support" - select CRYPTO_SKCIPHER - select CRYPTO_MANAGER - help - CTR: Counter mode - This block cipher algorithm is required for IPSec. + See also: + -config CRYPTO_CTS - tristate "CTS support" - select CRYPTO_SKCIPHER - select CRYPTO_MANAGER +config CRYPTO_BLOWFISH + tristate "Blowfish cipher algorithm" + select CRYPTO_ALGAPI + select CRYPTO_BLOWFISH_COMMON help - CTS: Cipher Text Stealing - This is the Cipher Text Stealing mode as described by - Section 8 of rfc2040 and referenced by rfc3962 - (rfc3962 includes errata information in its Appendix A) or - CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. - This mode is required for Kerberos gss mechanism support - for AES encryption. + Blowfish cipher algorithm, by Bruce Schneier. - See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final + This is a variable key length cipher which can use keys from 32 + bits to 448 bits in length. It's fast, simple and specifically + designed for use on "large microprocessors". -config CRYPTO_ECB - tristate "ECB support" - select CRYPTO_SKCIPHER - select CRYPTO_MANAGER + See also: + + +config CRYPTO_BLOWFISH_COMMON + tristate help - ECB: Electronic CodeBook mode - This is the simplest block cipher algorithm. It simply encrypts - the input block by block. + Common parts of the Blowfish cipher algorithm shared by the + generic c and the assembler implementations. -config CRYPTO_LRW - tristate "LRW support" - select CRYPTO_SKCIPHER - select CRYPTO_MANAGER - select CRYPTO_GF128MUL - select CRYPTO_ECB + See also: + + +config CRYPTO_CAMELLIA + tristate "Camellia cipher algorithms" + select CRYPTO_ALGAPI help - LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable - narrow block cipher mode for dm-crypt. Use it with cipher - specification string aes-lrw-benbi, the key must be 256, 320 or 384. - The first 128, 192 or 256 bits in the key are used for AES and the - rest is used to tie each cipher block to its logical position. + Camellia cipher algorithms module. -config CRYPTO_OFB - tristate "OFB support" - select CRYPTO_SKCIPHER - select CRYPTO_MANAGER + Camellia is a symmetric key block cipher developed jointly + at NTT and Mitsubishi Electric Corporation. + + The Camellia specifies three key sizes: 128, 192 and 256 bits. + + See also: + + +config CRYPTO_CAST_COMMON + tristate help - OFB: the Output Feedback mode makes a block cipher into a synchronous - stream cipher. It generates keystream blocks, which are then XORed - with the plaintext blocks to get the ciphertext. Flipping a bit in the - ciphertext produces a flipped bit in the plaintext at the same - location. This property allows many error correcting codes to function - normally even when applied before encryption. + Common parts of the CAST cipher algorithms shared by the + generic c and the assembler implementations. -config CRYPTO_PCBC - tristate "PCBC support" - select CRYPTO_SKCIPHER - select CRYPTO_MANAGER +config CRYPTO_CAST5 + tristate "CAST5 (CAST-128) cipher algorithm" + select CRYPTO_ALGAPI + select CRYPTO_CAST_COMMON help - PCBC: Propagating Cipher Block Chaining mode - This block cipher algorithm is required for RxRPC. + The CAST5 encryption algorithm (synonymous with CAST-128) is + described in RFC2144. -config CRYPTO_XCTR - tristate - select CRYPTO_SKCIPHER - select CRYPTO_MANAGER +config CRYPTO_CAST6 + tristate "CAST6 (CAST-256) cipher algorithm" + select CRYPTO_ALGAPI + select CRYPTO_CAST_COMMON help - XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode - using XORs and little-endian addition rather than big-endian arithmetic. - XCTR mode is used to implement HCTR2. + The CAST6 encryption algorithm (synonymous with CAST-256) is + described in RFC2612. -config CRYPTO_XTS - tristate "XTS support" - select CRYPTO_SKCIPHER - select CRYPTO_MANAGER - select CRYPTO_ECB +config CRYPTO_DES + tristate "DES and Triple DES EDE cipher algorithms" + select CRYPTO_ALGAPI + select CRYPTO_LIB_DES help - XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, - key size 256, 384 or 512 bits. This implementation currently - can't handle a sectorsize which is not a multiple of 16 bytes. + DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). -config CRYPTO_KEYWRAP - tristate "Key wrapping support" +config CRYPTO_FCRYPT + tristate "FCrypt cipher algorithm" + select CRYPTO_ALGAPI select CRYPTO_SKCIPHER - select CRYPTO_MANAGER help - Support for key wrapping (NIST SP800-38F / RFC3394) without - padding. + FCrypt algorithm used by RxRPC. -config CRYPTO_NHPOLY1305 - tristate - select CRYPTO_HASH - select CRYPTO_LIB_POLY1305_GENERIC +config CRYPTO_KHAZAD + tristate "Khazad cipher algorithm" + depends on CRYPTO_USER_API_ENABLE_OBSOLETE + select CRYPTO_ALGAPI + help + Khazad cipher algorithm. + + Khazad was a finalist in the initial NESSIE competition. It is + an algorithm optimized for 64-bit processors with good performance + on 32-bit processors. Khazad uses an 128 bit key size. + + See also: + + +config CRYPTO_SEED + tristate "SEED cipher algorithm" + depends on CRYPTO_USER_API_ENABLE_OBSOLETE + select CRYPTO_ALGAPI + help + SEED cipher algorithm (RFC4269). + + SEED is a 128-bit symmetric key block cipher that has been + developed by KISA (Korea Information Security Agency) as a + national standard encryption algorithm of the Republic of Korea. + It is a 16 round block cipher with the key size of 128 bit. + + See also: + + +config CRYPTO_SERPENT + tristate "Serpent cipher algorithm" + select CRYPTO_ALGAPI + help + Serpent cipher algorithm, by Anderson, Biham & Knudsen. + + Keys are allowed to be from 0 to 256 bits in length, in steps + of 8 bits. + + See also: + + +config CRYPTO_SM4 + tristate + +config CRYPTO_SM4_GENERIC + tristate "SM4 cipher algorithm" + select CRYPTO_ALGAPI + select CRYPTO_SM4 + help + SM4 cipher algorithms (OSCCA GB/T 32907-2016). + + SM4 (GBT.32907-2016) is a cryptographic standard issued by the + Organization of State Commercial Administration of China (OSCCA) + as an authorized cryptographic algorithms for the use within China. + + SMS4 was originally created for use in protecting wireless + networks, and is mandated in the Chinese National Standard for + Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) + (GB.15629.11-2003). + + The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and + standardized through TC 260 of the Standardization Administration + of the People's Republic of China (SAC). + + The input, output, and key of SMS4 are each 128 bits. + + See also: + + If unsure, say N. + +config CRYPTO_TEA + tristate "TEA, XTEA and XETA cipher algorithms" + depends on CRYPTO_USER_API_ENABLE_OBSOLETE + select CRYPTO_ALGAPI + help + TEA cipher algorithm. + + Tiny Encryption Algorithm is a simple cipher that uses + many rounds for security. It is very fast and uses + little memory. + + Xtendend Tiny Encryption Algorithm is a modification to + the TEA algorithm to address a potential key weakness + in the TEA algorithm. + + Xtendend Encryption Tiny Algorithm is a mis-implementation + of the XTEA algorithm for compatibility purposes. + +config CRYPTO_TWOFISH + tristate "Twofish cipher algorithm" + select CRYPTO_ALGAPI + select CRYPTO_TWOFISH_COMMON + help + Twofish cipher algorithm. + + Twofish was submitted as an AES (Advanced Encryption Standard) + candidate cipher by researchers at CounterPane Systems. It is a + 16 round block cipher supporting key sizes of 128, 192, and 256 + bits. + + See also: + + +config CRYPTO_TWOFISH_COMMON + tristate + help + Common parts of the Twofish cipher algorithm shared by the + generic c and the assembler implementations. + +endmenu + +menu "Length-preserving ciphers and modes" config CRYPTO_ADIANTUM tristate "Adiantum support" @@ -524,580 +602,516 @@ config CRYPTO_ADIANTUM If unsure, say N. -config CRYPTO_HCTR2 - tristate "HCTR2 support" - select CRYPTO_XCTR - select CRYPTO_POLYVAL - select CRYPTO_MANAGER +config CRYPTO_ARC4 + tristate "ARC4 cipher algorithm" + depends on CRYPTO_USER_API_ENABLE_OBSOLETE + select CRYPTO_SKCIPHER + select CRYPTO_LIB_ARC4 help - HCTR2 is a length-preserving encryption mode for storage encryption that - is efficient on processors with instructions to accelerate AES and - carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and - ARM processors with the ARMv8 crypto extensions. + ARC4 cipher algorithm. -config CRYPTO_ESSIV - tristate "ESSIV support for block encryption" - select CRYPTO_AUTHENC + ARC4 is a stream cipher using keys ranging from 8 bits to 2048 + bits in length. This algorithm is required for driver-based + WEP, but it should not be for other purposes because of the + weakness of the algorithm. + +config CRYPTO_CHACHA20 + tristate "ChaCha stream cipher algorithms" + select CRYPTO_LIB_CHACHA_GENERIC + select CRYPTO_SKCIPHER help - Encrypted salt-sector initialization vector (ESSIV) is an IV - generation method that is used in some cases by fscrypt and/or - dm-crypt. It uses the hash of the block encryption key as the - symmetric key for a block encryption pass applied to the input - IV, making low entropy IV sources more suitable for block - encryption. + The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. - This driver implements a crypto API template that can be - instantiated either as an skcipher or as an AEAD (depending on the - type of the first template argument), and which defers encryption - and decryption requests to the encapsulated cipher after applying - ESSIV to the input IV. Note that in the AEAD case, it is assumed - that the keys are presented in the same format used by the authenc - template, and that the IV appears at the end of the authenticated - associated data (AAD) region (which is how dm-crypt uses it.) + ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. + Bernstein and further specified in RFC7539 for use in IETF protocols. + This is the portable C implementation of ChaCha20. See also: + - Note that the use of ESSIV is not recommended for new deployments, - and so this only needs to be enabled when interoperability with - existing encrypted volumes of filesystems is required, or when - building for a particular system that requires it (e.g., when - the SoC in question has accelerated CBC but not XTS, making CBC - combined with ESSIV the only feasible mode for h/w accelerated - block encryption) + XChaCha20 is the application of the XSalsa20 construction to ChaCha20 + rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length + from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, + while provably retaining ChaCha20's security. See also: + -comment "Hash modes" + XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly + reduced security margin but increased performance. It can be needed + in some performance-sensitive scenarios. -config CRYPTO_CMAC - tristate "CMAC support" - select CRYPTO_HASH +config CRYPTO_CBC + tristate "CBC support" + select CRYPTO_SKCIPHER select CRYPTO_MANAGER help - Cipher-based Message Authentication Code (CMAC) specified by - The National Institute of Standards and Technology (NIST). - - https://tools.ietf.org/html/rfc4493 - http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf + CBC: Cipher Block Chaining mode + This block cipher algorithm is required for IPSec. -config CRYPTO_HMAC - tristate "HMAC support" - select CRYPTO_HASH +config CRYPTO_CFB + tristate "CFB support" + select CRYPTO_SKCIPHER select CRYPTO_MANAGER help - HMAC: Keyed-Hashing for Message Authentication (RFC2104). - This is required for IPSec. + CFB: Cipher FeedBack mode + This block cipher algorithm is required for TPM2 Cryptography. -config CRYPTO_XCBC - tristate "XCBC support" - select CRYPTO_HASH +config CRYPTO_CTR + tristate "CTR support" + select CRYPTO_SKCIPHER select CRYPTO_MANAGER help - XCBC: Keyed-Hashing with encryption algorithm - https://www.ietf.org/rfc/rfc3566.txt - http://csrc.nist.gov/encryption/modes/proposedmodes/ - xcbc-mac/xcbc-mac-spec.pdf + CTR: Counter mode + This block cipher algorithm is required for IPSec. -config CRYPTO_VMAC - tristate "VMAC support" - select CRYPTO_HASH +config CRYPTO_CTS + tristate "CTS support" + select CRYPTO_SKCIPHER select CRYPTO_MANAGER help - VMAC is a message authentication algorithm designed for - very high speed on 64-bit architectures. - - See also: - + CTS: Cipher Text Stealing + This is the Cipher Text Stealing mode as described by + Section 8 of rfc2040 and referenced by rfc3962 + (rfc3962 includes errata information in its Appendix A) or + CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. + This mode is required for Kerberos gss mechanism support + for AES encryption. -comment "Digest" + See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final -config CRYPTO_CRC32C - tristate "CRC32c CRC algorithm" - select CRYPTO_HASH - select CRC32 +config CRYPTO_ECB + tristate "ECB support" + select CRYPTO_SKCIPHER + select CRYPTO_MANAGER help - Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used - by iSCSI for header and data digests and by others. - See Castagnoli93. Module will be crc32c. + ECB: Electronic CodeBook mode + This is the simplest block cipher algorithm. It simply encrypts + the input block by block. -config CRYPTO_CRC32 - tristate "CRC32 CRC algorithm" - select CRYPTO_HASH - select CRC32 +config CRYPTO_HCTR2 + tristate "HCTR2 support" + select CRYPTO_XCTR + select CRYPTO_POLYVAL + select CRYPTO_MANAGER help - CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. - Shash crypto api wrappers to crc32_le function. + HCTR2 is a length-preserving encryption mode for storage encryption that + is efficient on processors with instructions to accelerate AES and + carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and + ARM processors with the ARMv8 crypto extensions. -config CRYPTO_XXHASH - tristate "xxHash hash algorithm" - select CRYPTO_HASH - select XXHASH - help - xxHash non-cryptographic hash algorithm. Extremely fast, working at - speeds close to RAM limits. - -config CRYPTO_BLAKE2B - tristate "BLAKE2b digest algorithm" - select CRYPTO_HASH - help - Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), - optimized for 64bit platforms and can produce digests of any size - between 1 to 64. The keyed hash is also implemented. - - This module provides the following algorithms: - - - blake2b-160 - - blake2b-256 - - blake2b-384 - - blake2b-512 - - See https://blake2.net for further information. - -config CRYPTO_CRCT10DIF - tristate "CRCT10DIF algorithm" - select CRYPTO_HASH - help - CRC T10 Data Integrity Field computation is being cast as - a crypto transform. This allows for faster crc t10 diff - transforms to be used if they are available. - -config CRYPTO_CRC64_ROCKSOFT - tristate "Rocksoft Model CRC64 algorithm" - depends on CRC64 - select CRYPTO_HASH - -config CRYPTO_GHASH - tristate "GHASH hash function" - select CRYPTO_GF128MUL - select CRYPTO_HASH +config CRYPTO_KEYWRAP + tristate "Key wrapping support" + select CRYPTO_SKCIPHER + select CRYPTO_MANAGER help - GHASH is the hash function used in GCM (Galois/Counter Mode). - It is not a general-purpose cryptographic hash function. + Support for key wrapping (NIST SP800-38F / RFC3394) without + padding. -config CRYPTO_POLYVAL - tristate +config CRYPTO_LRW + tristate "LRW support" + select CRYPTO_SKCIPHER + select CRYPTO_MANAGER select CRYPTO_GF128MUL - select CRYPTO_HASH + select CRYPTO_ECB help - POLYVAL is the hash function used in HCTR2. It is not a general-purpose - cryptographic hash function. + LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable + narrow block cipher mode for dm-crypt. Use it with cipher + specification string aes-lrw-benbi, the key must be 256, 320 or 384. + The first 128, 192 or 256 bits in the key are used for AES and the + rest is used to tie each cipher block to its logical position. -config CRYPTO_POLY1305 - tristate "Poly1305 authenticator algorithm" - select CRYPTO_HASH - select CRYPTO_LIB_POLY1305_GENERIC +config CRYPTO_OFB + tristate "OFB support" + select CRYPTO_SKCIPHER + select CRYPTO_MANAGER help - Poly1305 authenticator algorithm, RFC7539. - - Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. - It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use - in IETF protocols. This is the portable C implementation of Poly1305. + OFB: the Output Feedback mode makes a block cipher into a synchronous + stream cipher. It generates keystream blocks, which are then XORed + with the plaintext blocks to get the ciphertext. Flipping a bit in the + ciphertext produces a flipped bit in the plaintext at the same + location. This property allows many error correcting codes to function + normally even when applied before encryption. -config CRYPTO_MD4 - tristate "MD4 digest algorithm" - select CRYPTO_HASH +config CRYPTO_PCBC + tristate "PCBC support" + select CRYPTO_SKCIPHER + select CRYPTO_MANAGER help - MD4 message digest algorithm (RFC1320). + PCBC: Propagating Cipher Block Chaining mode + This block cipher algorithm is required for RxRPC. -config CRYPTO_MD5 - tristate "MD5 digest algorithm" - select CRYPTO_HASH +config CRYPTO_XCTR + tristate + select CRYPTO_SKCIPHER + select CRYPTO_MANAGER help - MD5 message digest algorithm (RFC1321). + XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode + using XORs and little-endian addition rather than big-endian arithmetic. + XCTR mode is used to implement HCTR2. -config CRYPTO_MICHAEL_MIC - tristate "Michael MIC keyed digest algorithm" - select CRYPTO_HASH +config CRYPTO_XTS + tristate "XTS support" + select CRYPTO_SKCIPHER + select CRYPTO_MANAGER + select CRYPTO_ECB help - Michael MIC is used for message integrity protection in TKIP - (IEEE 802.11i). This algorithm is required for TKIP, but it - should not be used for other purposes because of the weakness - of the algorithm. + XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, + key size 256, 384 or 512 bits. This implementation currently + can't handle a sectorsize which is not a multiple of 16 bytes. -config CRYPTO_RMD160 - tristate "RIPEMD-160 digest algorithm" +config CRYPTO_NHPOLY1305 + tristate select CRYPTO_HASH - help - RIPEMD-160 (ISO/IEC 10118-3:2004). - - RIPEMD-160 is a 160-bit cryptographic hash function. It is intended - to be used as a secure replacement for the 128-bit hash functions - MD4, MD5 and its predecessor RIPEMD - (not to be confused with RIPEMD-128). - - It's speed is comparable to SHA1 and there are no known attacks - against RIPEMD-160. + select CRYPTO_LIB_POLY1305_GENERIC - Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. - See +endmenu -config CRYPTO_SHA1 - tristate "SHA1 digest algorithm" - select CRYPTO_HASH - select CRYPTO_LIB_SHA1 - help - SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). +menu "AEAD (authenticated encryption with associated data) ciphers" -config CRYPTO_SHA256 - tristate "SHA224 and SHA256 digest algorithm" - select CRYPTO_HASH - select CRYPTO_LIB_SHA256 +config CRYPTO_AEGIS128 + tristate "AEGIS-128 AEAD algorithm" + select CRYPTO_AEAD + select CRYPTO_AES # for AES S-box tables help - SHA256 secure hash standard (DFIPS 180-2). - - This version of SHA implements a 256 bit hash with 128 bits of - security against collision attacks. + Support for the AEGIS-128 dedicated AEAD algorithm. - This code also includes SHA-224, a 224 bit hash with 112 bits - of security against collision attacks. +config CRYPTO_AEGIS128_SIMD + bool "Support SIMD acceleration for AEGIS-128" + depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) + default y -config CRYPTO_SHA512 - tristate "SHA384 and SHA512 digest algorithms" - select CRYPTO_HASH +config CRYPTO_CHACHA20POLY1305 + tristate "ChaCha20-Poly1305 AEAD support" + select CRYPTO_CHACHA20 + select CRYPTO_POLY1305 + select CRYPTO_AEAD + select CRYPTO_MANAGER help - SHA512 secure hash standard (DFIPS 180-2). - - This version of SHA implements a 512 bit hash with 256 bits of - security against collision attacks. + ChaCha20-Poly1305 AEAD support, RFC7539. - This code also includes SHA-384, a 384 bit hash with 192 bits - of security against collision attacks. + Support for the AEAD wrapper using the ChaCha20 stream cipher combined + with the Poly1305 authenticator. It is defined in RFC7539 for use in + IETF protocols. -config CRYPTO_SHA3 - tristate "SHA3 digest algorithm" +config CRYPTO_CCM + tristate "CCM support" + select CRYPTO_CTR select CRYPTO_HASH + select CRYPTO_AEAD + select CRYPTO_MANAGER help - SHA-3 secure hash standard (DFIPS 202). It's based on - cryptographic sponge function family called Keccak. - - References: - http://keccak.noekeon.org/ - -config CRYPTO_SM3 - tristate + Support for Counter with CBC MAC. Required for IPsec. -config CRYPTO_SM3_GENERIC - tristate "SM3 digest algorithm" - select CRYPTO_HASH - select CRYPTO_SM3 +config CRYPTO_GCM + tristate "GCM/GMAC support" + select CRYPTO_CTR + select CRYPTO_AEAD + select CRYPTO_GHASH + select CRYPTO_NULL + select CRYPTO_MANAGER help - SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). - It is part of the Chinese Commercial Cryptography suite. - - References: - http://www.oscca.gov.cn/UpFile/20101222141857786.pdf - https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash + Support for Galois/Counter Mode (GCM) and Galois Message + Authentication Code (GMAC). Required for IPSec. -config CRYPTO_STREEBOG - tristate "Streebog Hash Function" - select CRYPTO_HASH +config CRYPTO_SEQIV + tristate "Sequence Number IV Generator" + select CRYPTO_AEAD + select CRYPTO_SKCIPHER + select CRYPTO_NULL + select CRYPTO_RNG_DEFAULT + select CRYPTO_MANAGER help - Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian - cryptographic standard algorithms (called GOST algorithms). - This setting enables two hash algorithms with 256 and 512 bits output. - - References: - https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf - https://tools.ietf.org/html/rfc6986 + This IV generator generates an IV based on a sequence number by + xoring it with a salt. This algorithm is mainly useful for CTR -config CRYPTO_WP512 - tristate "Whirlpool digest algorithms" - select CRYPTO_HASH +config CRYPTO_ECHAINIV + tristate "Encrypted Chain IV Generator" + select CRYPTO_AEAD + select CRYPTO_NULL + select CRYPTO_RNG_DEFAULT + select CRYPTO_MANAGER help - Whirlpool hash algorithm 512, 384 and 256-bit hashes - - Whirlpool-512 is part of the NESSIE cryptographic primitives. - Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard - - See also: - - -comment "Ciphers" + This IV generator generates an IV based on the encryption of + a sequence number xored with a salt. This is the default + algorithm for CBC. -config CRYPTO_AES - tristate "AES cipher algorithms" - select CRYPTO_ALGAPI - select CRYPTO_LIB_AES +config CRYPTO_ESSIV + tristate "ESSIV support for block encryption" + select CRYPTO_AUTHENC help - AES cipher algorithms (FIPS-197). AES uses the Rijndael - algorithm. - - Rijndael appears to be consistently a very good performer in - both hardware and software across a wide range of computing - environments regardless of its use in feedback or non-feedback - modes. Its key setup time is excellent, and its key agility is - good. Rijndael's very low memory requirements make it very well - suited for restricted-space environments, in which it also - demonstrates excellent performance. Rijndael's operations are - among the easiest to defend against power and timing attacks. + Encrypted salt-sector initialization vector (ESSIV) is an IV + generation method that is used in some cases by fscrypt and/or + dm-crypt. It uses the hash of the block encryption key as the + symmetric key for a block encryption pass applied to the input + IV, making low entropy IV sources more suitable for block + encryption. - The AES specifies three key sizes: 128, 192 and 256 bits + This driver implements a crypto API template that can be + instantiated either as an skcipher or as an AEAD (depending on the + type of the first template argument), and which defers encryption + and decryption requests to the encapsulated cipher after applying + ESSIV to the input IV. Note that in the AEAD case, it is assumed + that the keys are presented in the same format used by the authenc + template, and that the IV appears at the end of the authenticated + associated data (AAD) region (which is how dm-crypt uses it.) - See for more information. + Note that the use of ESSIV is not recommended for new deployments, + and so this only needs to be enabled when interoperability with + existing encrypted volumes of filesystems is required, or when + building for a particular system that requires it (e.g., when + the SoC in question has accelerated CBC but not XTS, making CBC + combined with ESSIV the only feasible mode for h/w accelerated + block encryption) -config CRYPTO_AES_TI - tristate "Fixed time AES cipher" - select CRYPTO_ALGAPI - select CRYPTO_LIB_AES - help - This is a generic implementation of AES that attempts to eliminate - data dependent latencies as much as possible without affecting - performance too much. It is intended for use by the generic CCM - and GCM drivers, and other CTR or CMAC/XCBC based modes that rely - solely on encryption (although decryption is supported as well, but - with a more dramatic performance hit) +endmenu - Instead of using 16 lookup tables of 1 KB each, (8 for encryption and - 8 for decryption), this implementation only uses just two S-boxes of - 256 bytes each, and attempts to eliminate data dependent latencies by - prefetching the entire table into the cache at the start of each - block. Interrupts are also disabled to avoid races where cachelines - are evicted when the CPU is interrupted to do something else. +menu "Hashes, digests, and MACs" -config CRYPTO_ANUBIS - tristate "Anubis cipher algorithm" - depends on CRYPTO_USER_API_ENABLE_OBSOLETE - select CRYPTO_ALGAPI +config CRYPTO_BLAKE2B + tristate "BLAKE2b digest algorithm" + select CRYPTO_HASH help - Anubis cipher algorithm. - - Anubis is a variable key length cipher which can use keys from - 128 bits to 320 bits in length. It was evaluated as a entrant - in the NESSIE competition. + Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), + optimized for 64bit platforms and can produce digests of any size + between 1 to 64. The keyed hash is also implemented. - See also: - - + This module provides the following algorithms: -config CRYPTO_ARC4 - tristate "ARC4 cipher algorithm" - depends on CRYPTO_USER_API_ENABLE_OBSOLETE - select CRYPTO_SKCIPHER - select CRYPTO_LIB_ARC4 - help - ARC4 cipher algorithm. + - blake2b-160 + - blake2b-256 + - blake2b-384 + - blake2b-512 - ARC4 is a stream cipher using keys ranging from 8 bits to 2048 - bits in length. This algorithm is required for driver-based - WEP, but it should not be for other purposes because of the - weakness of the algorithm. + See https://blake2.net for further information. -config CRYPTO_BLOWFISH - tristate "Blowfish cipher algorithm" - select CRYPTO_ALGAPI - select CRYPTO_BLOWFISH_COMMON +config CRYPTO_CMAC + tristate "CMAC support" + select CRYPTO_HASH + select CRYPTO_MANAGER help - Blowfish cipher algorithm, by Bruce Schneier. - - This is a variable key length cipher which can use keys from 32 - bits to 448 bits in length. It's fast, simple and specifically - designed for use on "large microprocessors". + Cipher-based Message Authentication Code (CMAC) specified by + The National Institute of Standards and Technology (NIST). - See also: - + https://tools.ietf.org/html/rfc4493 + http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf -config CRYPTO_BLOWFISH_COMMON - tristate +config CRYPTO_GHASH + tristate "GHASH hash function" + select CRYPTO_GF128MUL + select CRYPTO_HASH help - Common parts of the Blowfish cipher algorithm shared by the - generic c and the assembler implementations. - - See also: - + GHASH is the hash function used in GCM (Galois/Counter Mode). + It is not a general-purpose cryptographic hash function. -config CRYPTO_CAMELLIA - tristate "Camellia cipher algorithms" - select CRYPTO_ALGAPI +config CRYPTO_HMAC + tristate "HMAC support" + select CRYPTO_HASH + select CRYPTO_MANAGER help - Camellia cipher algorithms module. - - Camellia is a symmetric key block cipher developed jointly - at NTT and Mitsubishi Electric Corporation. - - The Camellia specifies three key sizes: 128, 192 and 256 bits. - - See also: - + HMAC: Keyed-Hashing for Message Authentication (RFC2104). + This is required for IPSec. -config CRYPTO_CAST_COMMON - tristate +config CRYPTO_MD4 + tristate "MD4 digest algorithm" + select CRYPTO_HASH help - Common parts of the CAST cipher algorithms shared by the - generic c and the assembler implementations. + MD4 message digest algorithm (RFC1320). -config CRYPTO_CAST5 - tristate "CAST5 (CAST-128) cipher algorithm" - select CRYPTO_ALGAPI - select CRYPTO_CAST_COMMON +config CRYPTO_MD5 + tristate "MD5 digest algorithm" + select CRYPTO_HASH help - The CAST5 encryption algorithm (synonymous with CAST-128) is - described in RFC2144. + MD5 message digest algorithm (RFC1321). -config CRYPTO_CAST6 - tristate "CAST6 (CAST-256) cipher algorithm" - select CRYPTO_ALGAPI - select CRYPTO_CAST_COMMON +config CRYPTO_MICHAEL_MIC + tristate "Michael MIC keyed digest algorithm" + select CRYPTO_HASH help - The CAST6 encryption algorithm (synonymous with CAST-256) is - described in RFC2612. + Michael MIC is used for message integrity protection in TKIP + (IEEE 802.11i). This algorithm is required for TKIP, but it + should not be used for other purposes because of the weakness + of the algorithm. -config CRYPTO_DES - tristate "DES and Triple DES EDE cipher algorithms" - select CRYPTO_ALGAPI - select CRYPTO_LIB_DES +config CRYPTO_POLYVAL + tristate + select CRYPTO_GF128MUL + select CRYPTO_HASH help - DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). + POLYVAL is the hash function used in HCTR2. It is not a general-purpose + cryptographic hash function. -config CRYPTO_FCRYPT - tristate "FCrypt cipher algorithm" - select CRYPTO_ALGAPI - select CRYPTO_SKCIPHER +config CRYPTO_POLY1305 + tristate "Poly1305 authenticator algorithm" + select CRYPTO_HASH + select CRYPTO_LIB_POLY1305_GENERIC help - FCrypt algorithm used by RxRPC. + Poly1305 authenticator algorithm, RFC7539. -config CRYPTO_KHAZAD - tristate "Khazad cipher algorithm" - depends on CRYPTO_USER_API_ENABLE_OBSOLETE - select CRYPTO_ALGAPI + Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. + It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use + in IETF protocols. This is the portable C implementation of Poly1305. + +config CRYPTO_RMD160 + tristate "RIPEMD-160 digest algorithm" + select CRYPTO_HASH help - Khazad cipher algorithm. + RIPEMD-160 (ISO/IEC 10118-3:2004). - Khazad was a finalist in the initial NESSIE competition. It is - an algorithm optimized for 64-bit processors with good performance - on 32-bit processors. Khazad uses an 128 bit key size. + RIPEMD-160 is a 160-bit cryptographic hash function. It is intended + to be used as a secure replacement for the 128-bit hash functions + MD4, MD5 and its predecessor RIPEMD + (not to be confused with RIPEMD-128). - See also: - + It's speed is comparable to SHA1 and there are no known attacks + against RIPEMD-160. -config CRYPTO_CHACHA20 - tristate "ChaCha stream cipher algorithms" - select CRYPTO_LIB_CHACHA_GENERIC - select CRYPTO_SKCIPHER + Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. + See + +config CRYPTO_SHA1 + tristate "SHA1 digest algorithm" + select CRYPTO_HASH + select CRYPTO_LIB_SHA1 help - The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. + SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). - ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. - Bernstein and further specified in RFC7539 for use in IETF protocols. - This is the portable C implementation of ChaCha20. See also: - +config CRYPTO_SHA256 + tristate "SHA224 and SHA256 digest algorithm" + select CRYPTO_HASH + select CRYPTO_LIB_SHA256 + help + SHA256 secure hash standard (DFIPS 180-2). - XChaCha20 is the application of the XSalsa20 construction to ChaCha20 - rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length - from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, - while provably retaining ChaCha20's security. See also: - + This version of SHA implements a 256 bit hash with 128 bits of + security against collision attacks. - XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly - reduced security margin but increased performance. It can be needed - in some performance-sensitive scenarios. + This code also includes SHA-224, a 224 bit hash with 112 bits + of security against collision attacks. -config CRYPTO_SEED - tristate "SEED cipher algorithm" - depends on CRYPTO_USER_API_ENABLE_OBSOLETE - select CRYPTO_ALGAPI +config CRYPTO_SHA512 + tristate "SHA384 and SHA512 digest algorithms" + select CRYPTO_HASH help - SEED cipher algorithm (RFC4269). + SHA512 secure hash standard (DFIPS 180-2). - SEED is a 128-bit symmetric key block cipher that has been - developed by KISA (Korea Information Security Agency) as a - national standard encryption algorithm of the Republic of Korea. - It is a 16 round block cipher with the key size of 128 bit. + This version of SHA implements a 512 bit hash with 256 bits of + security against collision attacks. - See also: - + This code also includes SHA-384, a 384 bit hash with 192 bits + of security against collision attacks. -config CRYPTO_ARIA - tristate "ARIA cipher algorithm" - select CRYPTO_ALGAPI +config CRYPTO_SHA3 + tristate "SHA3 digest algorithm" + select CRYPTO_HASH help - ARIA cipher algorithm (RFC5794). + SHA-3 secure hash standard (DFIPS 202). It's based on + cryptographic sponge function family called Keccak. - ARIA is a standard encryption algorithm of the Republic of Korea. - The ARIA specifies three key sizes and rounds. - 128-bit: 12 rounds. - 192-bit: 14 rounds. - 256-bit: 16 rounds. + References: + http://keccak.noekeon.org/ - See also: - +config CRYPTO_SM3 + tristate -config CRYPTO_SERPENT - tristate "Serpent cipher algorithm" - select CRYPTO_ALGAPI +config CRYPTO_SM3_GENERIC + tristate "SM3 digest algorithm" + select CRYPTO_HASH + select CRYPTO_SM3 help - Serpent cipher algorithm, by Anderson, Biham & Knudsen. + SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). + It is part of the Chinese Commercial Cryptography suite. - Keys are allowed to be from 0 to 256 bits in length, in steps - of 8 bits. + References: + http://www.oscca.gov.cn/UpFile/20101222141857786.pdf + https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash - See also: - +config CRYPTO_STREEBOG + tristate "Streebog Hash Function" + select CRYPTO_HASH + help + Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian + cryptographic standard algorithms (called GOST algorithms). + This setting enables two hash algorithms with 256 and 512 bits output. -config CRYPTO_SM4 - tristate + References: + https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf + https://tools.ietf.org/html/rfc6986 -config CRYPTO_SM4_GENERIC - tristate "SM4 cipher algorithm" - select CRYPTO_ALGAPI - select CRYPTO_SM4 +config CRYPTO_VMAC + tristate "VMAC support" + select CRYPTO_HASH + select CRYPTO_MANAGER help - SM4 cipher algorithms (OSCCA GB/T 32907-2016). - - SM4 (GBT.32907-2016) is a cryptographic standard issued by the - Organization of State Commercial Administration of China (OSCCA) - as an authorized cryptographic algorithms for the use within China. + VMAC is a message authentication algorithm designed for + very high speed on 64-bit architectures. - SMS4 was originally created for use in protecting wireless - networks, and is mandated in the Chinese National Standard for - Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) - (GB.15629.11-2003). + See also: + - The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and - standardized through TC 260 of the Standardization Administration - of the People's Republic of China (SAC). +config CRYPTO_WP512 + tristate "Whirlpool digest algorithms" + select CRYPTO_HASH + help + Whirlpool hash algorithm 512, 384 and 256-bit hashes - The input, output, and key of SMS4 are each 128 bits. + Whirlpool-512 is part of the NESSIE cryptographic primitives. + Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard - See also: + See also: + - If unsure, say N. +config CRYPTO_XCBC + tristate "XCBC support" + select CRYPTO_HASH + select CRYPTO_MANAGER + help + XCBC: Keyed-Hashing with encryption algorithm + https://www.ietf.org/rfc/rfc3566.txt + http://csrc.nist.gov/encryption/modes/proposedmodes/ + xcbc-mac/xcbc-mac-spec.pdf -config CRYPTO_TEA - tristate "TEA, XTEA and XETA cipher algorithms" - depends on CRYPTO_USER_API_ENABLE_OBSOLETE - select CRYPTO_ALGAPI +config CRYPTO_XXHASH + tristate "xxHash hash algorithm" + select CRYPTO_HASH + select XXHASH help - TEA cipher algorithm. + xxHash non-cryptographic hash algorithm. Extremely fast, working at + speeds close to RAM limits. - Tiny Encryption Algorithm is a simple cipher that uses - many rounds for security. It is very fast and uses - little memory. +endmenu - Xtendend Tiny Encryption Algorithm is a modification to - the TEA algorithm to address a potential key weakness - in the TEA algorithm. +menu "CRCs (cyclic redundancy checks)" - Xtendend Encryption Tiny Algorithm is a mis-implementation - of the XTEA algorithm for compatibility purposes. +config CRYPTO_CRC32C + tristate "CRC32c CRC algorithm" + select CRYPTO_HASH + select CRC32 + help + Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used + by iSCSI for header and data digests and by others. + See Castagnoli93. Module will be crc32c. -config CRYPTO_TWOFISH - tristate "Twofish cipher algorithm" - select CRYPTO_ALGAPI - select CRYPTO_TWOFISH_COMMON +config CRYPTO_CRC32 + tristate "CRC32 CRC algorithm" + select CRYPTO_HASH + select CRC32 help - Twofish cipher algorithm. + CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. + Shash crypto api wrappers to crc32_le function. - Twofish was submitted as an AES (Advanced Encryption Standard) - candidate cipher by researchers at CounterPane Systems. It is a - 16 round block cipher supporting key sizes of 128, 192, and 256 - bits. +config CRYPTO_CRCT10DIF + tristate "CRCT10DIF algorithm" + select CRYPTO_HASH + help + CRC T10 Data Integrity Field computation is being cast as + a crypto transform. This allows for faster crc t10 diff + transforms to be used if they are available. - See also: - +config CRYPTO_CRC64_ROCKSOFT + tristate "Rocksoft Model CRC64 algorithm" + depends on CRC64 + select CRYPTO_HASH -config CRYPTO_TWOFISH_COMMON - tristate - help - Common parts of the Twofish cipher algorithm shared by the - generic c and the assembler implementations. +endmenu -comment "Compression" +menu "Compression" config CRYPTO_DEFLATE tristate "Deflate compression algorithm" @@ -1156,7 +1170,9 @@ config CRYPTO_ZSTD help This is the zstd algorithm. -comment "Random Number Generation" +endmenu + +menu "Random number generation" config CRYPTO_ANSI_CPRNG tristate "Pseudo Random Number Generation for Cryptographic modules" @@ -1218,6 +1234,9 @@ config CRYPTO_KDF800108_CTR select CRYPTO_HMAC select CRYPTO_SHA256 +endmenu +menu "User-space interface" + config CRYPTO_USER_API tristate @@ -1289,6 +1308,8 @@ config CRYPTO_STATS - encrypt/decrypt/sign/verify numbers for asymmetric operations - generate/seed numbers for rng operations +endmenu + config CRYPTO_HASH_INFO bool -- cgit From 05b374652737706557d0360064b07cfbeccb93d2 Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 20 Aug 2022 13:41:45 -0500 Subject: crypto: Kconfig - simplify public-key entries Shorten menu titles and make them consistent: - acronym - name - architecture features in parenthesis - no suffixes like " algorithm", "support", or "hardware acceleration", or "optimized" Simplify help text descriptions, update references, and ensure that https references are still valid. Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- crypto/Kconfig | 55 ++++++++++++++++++++++++++++++++++--------------------- 1 file changed, 34 insertions(+), 21 deletions(-) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index e2e364cfa93e..1fda21abb0d1 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -240,51 +240,60 @@ endmenu menu "Public-key cryptography" config CRYPTO_RSA - tristate "RSA algorithm" + tristate "RSA (Rivest-Shamir-Adleman)" select CRYPTO_AKCIPHER select CRYPTO_MANAGER select MPILIB select ASN1 help - Generic implementation of the RSA public key algorithm. + RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017) config CRYPTO_DH - tristate "Diffie-Hellman algorithm" + tristate "DH (Diffie-Hellman)" select CRYPTO_KPP select MPILIB help - Generic implementation of the Diffie-Hellman algorithm. + DH (Diffie-Hellman) key exchange algorithm config CRYPTO_DH_RFC7919_GROUPS - bool "Support for RFC 7919 FFDHE group parameters" + bool "RFC 7919 FFDHE groups" depends on CRYPTO_DH select CRYPTO_RNG_DEFAULT help - Provide support for RFC 7919 FFDHE group parameters. If unsure, say N. + FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups + defined in RFC7919. + + Support these finite-field groups in DH key exchanges: + - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192 + + If unsure, say N. config CRYPTO_ECC tristate select CRYPTO_RNG_DEFAULT config CRYPTO_ECDH - tristate "ECDH algorithm" + tristate "ECDH (Elliptic Curve Diffie-Hellman)" select CRYPTO_ECC select CRYPTO_KPP help - Generic implementation of the ECDH algorithm + ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm + using curves P-192, P-256, and P-384 (FIPS 186) config CRYPTO_ECDSA - tristate "ECDSA (NIST P192, P256 etc.) algorithm" + tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)" select CRYPTO_ECC select CRYPTO_AKCIPHER select ASN1 help - Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) - is A NIST cryptographic standard algorithm. Only signature verification - is implemented. + ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186, + ISO/IEC 14888-3) + using curves P-192, P-256, and P-384 + + Only signature verification is implemented. config CRYPTO_ECRDSA - tristate "EC-RDSA (GOST 34.10) algorithm" + tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)" select CRYPTO_ECC select CRYPTO_AKCIPHER select CRYPTO_STREEBOG @@ -292,31 +301,35 @@ config CRYPTO_ECRDSA select ASN1 help Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, - RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic - standard algorithms (called GOST algorithms). Only signature verification - is implemented. + RFC 7091, ISO/IEC 14888-3) + + One of the Russian cryptographic standard algorithms (called GOST + algorithms). Only signature verification is implemented. config CRYPTO_SM2 - tristate "SM2 algorithm" + tristate "SM2 (ShangMi 2)" select CRYPTO_SM3 select CRYPTO_AKCIPHER select CRYPTO_MANAGER select MPILIB select ASN1 help - Generic implementation of the SM2 public key algorithm. It was - published by State Encryption Management Bureau, China. + SM2 (ShangMi 2) public key algorithm + + Published by State Encryption Management Bureau, China, as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. References: - https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 + https://datatracker.ietf.org/doc/draft-shen-sm2-ecdsa/ http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml http://www.gmbz.org.cn/main/bzlb.html config CRYPTO_CURVE25519 - tristate "Curve25519 algorithm" + tristate "Curve25519" select CRYPTO_KPP select CRYPTO_LIB_CURVE25519_GENERIC + help + Curve25519 elliptic curve (RFC7748) endmenu -- cgit From ec84348da449d96ce5be47f7d00221cb8374f462 Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 20 Aug 2022 13:41:46 -0500 Subject: crypto: Kconfig - simplify CRC entries Shorten menu titles and make them consistent: - acronym - name - architecture features in parenthesis - no suffixes like " algorithm", "support", or "hardware acceleration", or "optimized" Simplify help text descriptions, update references, and ensure that https references are still valid. Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- crypto/Kconfig | 37 +++++++++++++++++++++++++------------ 1 file changed, 25 insertions(+), 12 deletions(-) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index 1fda21abb0d1..6dea21229376 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -1093,34 +1093,47 @@ endmenu menu "CRCs (cyclic redundancy checks)" config CRYPTO_CRC32C - tristate "CRC32c CRC algorithm" + tristate "CRC32c" select CRYPTO_HASH select CRC32 help - Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used - by iSCSI for header and data digests and by others. - See Castagnoli93. Module will be crc32c. + CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720) + + A 32-bit CRC (cyclic redundancy check) with a polynomial defined + by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic + Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions + on Communications, Vol. 41, No. 6, June 1993, selected for use with + iSCSI. + + Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI. config CRYPTO_CRC32 - tristate "CRC32 CRC algorithm" + tristate "CRC32" select CRYPTO_HASH select CRC32 help - CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. - Shash crypto api wrappers to crc32_le function. + CRC32 CRC algorithm (IEEE 802.3) + + Used by RoCEv2 and f2fs. config CRYPTO_CRCT10DIF - tristate "CRCT10DIF algorithm" + tristate "CRCT10DIF" select CRYPTO_HASH help - CRC T10 Data Integrity Field computation is being cast as - a crypto transform. This allows for faster crc t10 diff - transforms to be used if they are available. + CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF) + + CRC algorithm used by the SCSI Block Commands standard. config CRYPTO_CRC64_ROCKSOFT - tristate "Rocksoft Model CRC64 algorithm" + tristate "CRC64 based on Rocksoft Model algorithm" depends on CRC64 select CRYPTO_HASH + help + CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm + + Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY) + + See https://zlib.net/crc_v3.txt endmenu -- cgit From e3d2eadd06b39b69fbbc27de8e3ac2db022e8616 Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 20 Aug 2022 13:41:47 -0500 Subject: crypto: Kconfig - simplify aead entries Shorten menu titles and make them consistent: - acronym - name - architecture features in parenthesis - no suffixes like " algorithm", "support", or "hardware acceleration", or "optimized" Simplify help text descriptions, update references, and ensure that https references are still valid. Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- crypto/Kconfig | 48 ++++++++++++++++++++++++++++++------------------ 1 file changed, 30 insertions(+), 18 deletions(-) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index 6dea21229376..5159a0efec84 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -779,49 +779,54 @@ endmenu menu "AEAD (authenticated encryption with associated data) ciphers" config CRYPTO_AEGIS128 - tristate "AEGIS-128 AEAD algorithm" + tristate "AEGIS-128" select CRYPTO_AEAD select CRYPTO_AES # for AES S-box tables help - Support for the AEGIS-128 dedicated AEAD algorithm. + AEGIS-128 AEAD algorithm config CRYPTO_AEGIS128_SIMD - bool "Support SIMD acceleration for AEGIS-128" + bool "AEGIS-128 (arm NEON, arm64 NEON)" depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) default y + help + AEGIS-128 AEAD algorithm + + Architecture: arm or arm64 using: + - NEON (Advanced SIMD) extension config CRYPTO_CHACHA20POLY1305 - tristate "ChaCha20-Poly1305 AEAD support" + tristate "ChaCha20-Poly1305" select CRYPTO_CHACHA20 select CRYPTO_POLY1305 select CRYPTO_AEAD select CRYPTO_MANAGER help - ChaCha20-Poly1305 AEAD support, RFC7539. - - Support for the AEAD wrapper using the ChaCha20 stream cipher combined - with the Poly1305 authenticator. It is defined in RFC7539 for use in - IETF protocols. + ChaCha20 stream cipher and Poly1305 authenticator combined + mode (RFC8439) config CRYPTO_CCM - tristate "CCM support" + tristate "CCM (Counter with Cipher Block Chaining-Message Authentication Code)" select CRYPTO_CTR select CRYPTO_HASH select CRYPTO_AEAD select CRYPTO_MANAGER help - Support for Counter with CBC MAC. Required for IPsec. + CCM (Counter with Cipher Block Chaining-Message Authentication Code) + authenticated encryption mode (NIST SP800-38C) config CRYPTO_GCM - tristate "GCM/GMAC support" + tristate "GCM (Galois/Counter Mode) and GMAC (GCM Message Authentication Code)" select CRYPTO_CTR select CRYPTO_AEAD select CRYPTO_GHASH select CRYPTO_NULL select CRYPTO_MANAGER help - Support for Galois/Counter Mode (GCM) and Galois Message - Authentication Code (GMAC). Required for IPSec. + GCM (Galois/Counter Mode) authenticated encryption mode and GMAC + (GCM Message Authentication Code) (NIST SP800-38D) + + This is required for IPSec ESP (XFRM_ESP). config CRYPTO_SEQIV tristate "Sequence Number IV Generator" @@ -831,8 +836,12 @@ config CRYPTO_SEQIV select CRYPTO_RNG_DEFAULT select CRYPTO_MANAGER help + Sequence Number IV generator + This IV generator generates an IV based on a sequence number by - xoring it with a salt. This algorithm is mainly useful for CTR + xoring it with a salt. This algorithm is mainly useful for CTR. + + This is required for IPsec ESP (XFRM_ESP). config CRYPTO_ECHAINIV tristate "Encrypted Chain IV Generator" @@ -841,16 +850,19 @@ config CRYPTO_ECHAINIV select CRYPTO_RNG_DEFAULT select CRYPTO_MANAGER help + Encrypted Chain IV generator + This IV generator generates an IV based on the encryption of a sequence number xored with a salt. This is the default algorithm for CBC. config CRYPTO_ESSIV - tristate "ESSIV support for block encryption" + tristate "Encrypted Salt-Sector IV Generator" select CRYPTO_AUTHENC help - Encrypted salt-sector initialization vector (ESSIV) is an IV - generation method that is used in some cases by fscrypt and/or + Encrypted Salt-Sector IV generator + + This IV generator is used in some cases by fscrypt and/or dm-crypt. It uses the hash of the block encryption key as the symmetric key for a block encryption pass applied to the input IV, making low entropy IV sources more suitable for block -- cgit From 3f342a23257df99b792c1edb1236e85badc157de Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 20 Aug 2022 13:41:48 -0500 Subject: crypto: Kconfig - simplify hash entries Shorten menu titles and make them consistent: - acronym - name - architecture features in parenthesis - no suffixes like " algorithm", "support", or "hardware acceleration", or "optimized" Simplify help text descriptions, update references, and ensure that https references are still valid. Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- crypto/Kconfig | 176 +++++++++++++++++++++++++++++++-------------------------- 1 file changed, 97 insertions(+), 79 deletions(-) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index 5159a0efec84..0a385a7aa040 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -890,215 +890,233 @@ endmenu menu "Hashes, digests, and MACs" config CRYPTO_BLAKE2B - tristate "BLAKE2b digest algorithm" + tristate "BLAKE2b" select CRYPTO_HASH help - Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), - optimized for 64bit platforms and can produce digests of any size - between 1 to 64. The keyed hash is also implemented. + BLAKE2b cryptographic hash function (RFC 7693) - This module provides the following algorithms: + BLAKE2b is optimized for 64-bit platforms and can produce digests + of any size between 1 and 64 bytes. The keyed hash is also implemented. + This module provides the following algorithms: - blake2b-160 - blake2b-256 - blake2b-384 - blake2b-512 + Used by the btrfs filesystem. + See https://blake2.net for further information. + config CRYPTO_BLAKE2S + tristate "BLAKE2s" + select CRYPTO_LIB_BLAKE2S_GENERIC + select CRYPTO_HASH + help + BLAKE2s cryptographic hash function (RFC 7693) + + BLAKE2s is optimized for 8 to 32-bit platforms and can produce + digests of any size between 1 and 32 bytes. The keyed hash is + also implemented. + + This module provides the following algorithms: + - blake2s-128 + - blake2s-160 + - blake2s-224 + - blake2s-256 + + Used by Wireguard. + + See https://blake2.net for further information. + config CRYPTO_CMAC - tristate "CMAC support" + tristate "CMAC (Cipher-based MAC)" select CRYPTO_HASH select CRYPTO_MANAGER help - Cipher-based Message Authentication Code (CMAC) specified by - The National Institute of Standards and Technology (NIST). - - https://tools.ietf.org/html/rfc4493 - http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf + CMAC (Cipher-based Message Authentication Code) authentication + mode (NIST SP800-38B and IETF RFC4493) config CRYPTO_GHASH - tristate "GHASH hash function" + tristate "GHASH" select CRYPTO_GF128MUL select CRYPTO_HASH help - GHASH is the hash function used in GCM (Galois/Counter Mode). - It is not a general-purpose cryptographic hash function. + GCM GHASH function (NIST SP800-38D) config CRYPTO_HMAC - tristate "HMAC support" + tristate "HMAC (Keyed-Hash MAC)" select CRYPTO_HASH select CRYPTO_MANAGER help - HMAC: Keyed-Hashing for Message Authentication (RFC2104). - This is required for IPSec. + HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and + RFC2104) + + This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP). config CRYPTO_MD4 - tristate "MD4 digest algorithm" + tristate "MD4" select CRYPTO_HASH help - MD4 message digest algorithm (RFC1320). + MD4 message digest algorithm (RFC1320) config CRYPTO_MD5 - tristate "MD5 digest algorithm" + tristate "MD5" select CRYPTO_HASH help - MD5 message digest algorithm (RFC1321). + MD5 message digest algorithm (RFC1321) config CRYPTO_MICHAEL_MIC - tristate "Michael MIC keyed digest algorithm" + tristate "Michael MIC" select CRYPTO_HASH help - Michael MIC is used for message integrity protection in TKIP - (IEEE 802.11i). This algorithm is required for TKIP, but it - should not be used for other purposes because of the weakness - of the algorithm. + Michael MIC (Message Integrity Code) (IEEE 802.11i) + + Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol), + known as WPA (Wif-Fi Protected Access). + + This algorithm is required for TKIP, but it should not be used for + other purposes because of the weakness of the algorithm. config CRYPTO_POLYVAL tristate select CRYPTO_GF128MUL select CRYPTO_HASH help - POLYVAL is the hash function used in HCTR2. It is not a general-purpose + POLYVAL hash function for HCTR2 + + This is used in HCTR2. It is not a general-purpose cryptographic hash function. config CRYPTO_POLY1305 - tristate "Poly1305 authenticator algorithm" + tristate "Poly1305" select CRYPTO_HASH select CRYPTO_LIB_POLY1305_GENERIC help - Poly1305 authenticator algorithm, RFC7539. + Poly1305 authenticator algorithm (RFC7539) Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use in IETF protocols. This is the portable C implementation of Poly1305. config CRYPTO_RMD160 - tristate "RIPEMD-160 digest algorithm" + tristate "RIPEMD-160" select CRYPTO_HASH help - RIPEMD-160 (ISO/IEC 10118-3:2004). + RIPEMD-160 hash function (ISO/IEC 10118-3) RIPEMD-160 is a 160-bit cryptographic hash function. It is intended to be used as a secure replacement for the 128-bit hash functions MD4, MD5 and its predecessor RIPEMD (not to be confused with RIPEMD-128). - It's speed is comparable to SHA1 and there are no known attacks + Its speed is comparable to SHA-1 and there are no known attacks against RIPEMD-160. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. - See + See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html + for further information. config CRYPTO_SHA1 - tristate "SHA1 digest algorithm" + tristate "SHA-1" select CRYPTO_HASH select CRYPTO_LIB_SHA1 help - SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). + SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3) config CRYPTO_SHA256 - tristate "SHA224 and SHA256 digest algorithm" + tristate "SHA-224 and SHA-256" select CRYPTO_HASH select CRYPTO_LIB_SHA256 help - SHA256 secure hash standard (DFIPS 180-2). - - This version of SHA implements a 256 bit hash with 128 bits of - security against collision attacks. + SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3) - This code also includes SHA-224, a 224 bit hash with 112 bits - of security against collision attacks. + This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP). + Used by the btrfs filesystem, Ceph, NFS, and SMB. config CRYPTO_SHA512 - tristate "SHA384 and SHA512 digest algorithms" + tristate "SHA-384 and SHA-512" select CRYPTO_HASH help - SHA512 secure hash standard (DFIPS 180-2). - - This version of SHA implements a 512 bit hash with 256 bits of - security against collision attacks. - - This code also includes SHA-384, a 384 bit hash with 192 bits - of security against collision attacks. + SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3) config CRYPTO_SHA3 - tristate "SHA3 digest algorithm" + tristate "SHA-3" select CRYPTO_HASH help - SHA-3 secure hash standard (DFIPS 202). It's based on - cryptographic sponge function family called Keccak. - - References: - http://keccak.noekeon.org/ + SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3) config CRYPTO_SM3 tristate config CRYPTO_SM3_GENERIC - tristate "SM3 digest algorithm" + tristate "SM3 (ShangMi 3)" select CRYPTO_HASH select CRYPTO_SM3 help - SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). - It is part of the Chinese Commercial Cryptography suite. + SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3) + + This is part of the Chinese Commercial Cryptography suite. References: http://www.oscca.gov.cn/UpFile/20101222141857786.pdf https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash config CRYPTO_STREEBOG - tristate "Streebog Hash Function" + tristate "Streebog" select CRYPTO_HASH help - Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian - cryptographic standard algorithms (called GOST algorithms). - This setting enables two hash algorithms with 256 and 512 bits output. + Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3) + + This is one of the Russian cryptographic standard algorithms (called + GOST algorithms). This setting enables two hash algorithms with + 256 and 512 bits output. References: https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf https://tools.ietf.org/html/rfc6986 config CRYPTO_VMAC - tristate "VMAC support" + tristate "VMAC" select CRYPTO_HASH select CRYPTO_MANAGER help VMAC is a message authentication algorithm designed for very high speed on 64-bit architectures. - See also: - + See https://fastcrypto.org/vmac for further information. config CRYPTO_WP512 - tristate "Whirlpool digest algorithms" + tristate "Whirlpool" select CRYPTO_HASH help - Whirlpool hash algorithm 512, 384 and 256-bit hashes + Whirlpool hash function (ISO/IEC 10118-3) + + 512, 384 and 256-bit hashes. Whirlpool-512 is part of the NESSIE cryptographic primitives. - Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard - See also: - + See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html + for further information. config CRYPTO_XCBC - tristate "XCBC support" + tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)" select CRYPTO_HASH select CRYPTO_MANAGER help - XCBC: Keyed-Hashing with encryption algorithm - https://www.ietf.org/rfc/rfc3566.txt - http://csrc.nist.gov/encryption/modes/proposedmodes/ - xcbc-mac/xcbc-mac-spec.pdf + XCBC-MAC (Extended Cipher Block Chaining Message Authentication + Code) (RFC3566) config CRYPTO_XXHASH - tristate "xxHash hash algorithm" + tristate "xxHash" select CRYPTO_HASH select XXHASH help - xxHash non-cryptographic hash algorithm. Extremely fast, working at - speeds close to RAM limits. + xxHash non-cryptographic hash algorithm + + Extremely fast, working at speeds close to RAM limits. + + Used by the btrfs filesystem. endmenu -- cgit From 9bc517155f41fbe387a4602e1860ab1ae0eae638 Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 20 Aug 2022 13:41:49 -0500 Subject: crypto: Kconfig - simplify userspace entries Shorten menu titles and make them consistent: - acronym - name - architecture features in parenthesis - no suffixes like " algorithm", "support", or "hardware acceleration", or "optimized" Simplify help text descriptions, update references, and ensure that https references are still valid. Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- crypto/Kconfig | 65 ++++++++++++++++++++++++++++++++++++---------------------- 1 file changed, 41 insertions(+), 24 deletions(-) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index 0a385a7aa040..6621122984c0 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -1291,60 +1291,72 @@ config CRYPTO_KDF800108_CTR select CRYPTO_SHA256 endmenu -menu "User-space interface" +menu "Userspace interface" config CRYPTO_USER_API tristate config CRYPTO_USER_API_HASH - tristate "User-space interface for hash algorithms" + tristate "Hash algorithms" depends on NET select CRYPTO_HASH select CRYPTO_USER_API help - This option enables the user-spaces interface for hash - algorithms. + Enable the userspace interface for hash algorithms. + + See Documentation/crypto/userspace-if.rst and + https://www.chronox.de/libkcapi/html/index.html config CRYPTO_USER_API_SKCIPHER - tristate "User-space interface for symmetric key cipher algorithms" + tristate "Symmetric key cipher algorithms" depends on NET select CRYPTO_SKCIPHER select CRYPTO_USER_API help - This option enables the user-spaces interface for symmetric - key cipher algorithms. + Enable the userspace interface for symmetric key cipher algorithms. + + See Documentation/crypto/userspace-if.rst and + https://www.chronox.de/libkcapi/html/index.html config CRYPTO_USER_API_RNG - tristate "User-space interface for random number generator algorithms" + tristate "RNG (random number generator) algorithms" depends on NET select CRYPTO_RNG select CRYPTO_USER_API help - This option enables the user-spaces interface for random - number generator algorithms. + Enable the userspace interface for RNG (random number generator) + algorithms. + + See Documentation/crypto/userspace-if.rst and + https://www.chronox.de/libkcapi/html/index.html config CRYPTO_USER_API_RNG_CAVP bool "Enable CAVP testing of DRBG" depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG help - This option enables extra API for CAVP testing via the user-space - interface: resetting of DRBG entropy, and providing Additional Data. + Enable extra APIs in the userspace interface for NIST CAVP + (Cryptographic Algorithm Validation Program) testing: + - resetting DRBG entropy + - providing Additional Data + This should only be enabled for CAVP testing. You should say no unless you know what this is. config CRYPTO_USER_API_AEAD - tristate "User-space interface for AEAD cipher algorithms" + tristate "AEAD cipher algorithms" depends on NET select CRYPTO_AEAD select CRYPTO_SKCIPHER select CRYPTO_NULL select CRYPTO_USER_API help - This option enables the user-spaces interface for AEAD - cipher algorithms. + Enable the userspace interface for AEAD cipher algorithms. + + See Documentation/crypto/userspace-if.rst and + https://www.chronox.de/libkcapi/html/index.html config CRYPTO_USER_API_ENABLE_OBSOLETE - bool "Enable obsolete cryptographic algorithms for userspace" + bool "Obsolete cryptographic algorithms" depends on CRYPTO_USER_API default y help @@ -1353,16 +1365,21 @@ config CRYPTO_USER_API_ENABLE_OBSOLETE only useful for userspace clients that still rely on them. config CRYPTO_STATS - bool "Crypto usage statistics for User-space" + bool "Crypto usage statistics" depends on CRYPTO_USER help - This option enables the gathering of crypto stats. - This will collect: - - encrypt/decrypt size and numbers of symmeric operations - - compress/decompress size and numbers of compress operations - - size and numbers of hash operations - - encrypt/decrypt/sign/verify numbers for asymmetric operations - - generate/seed numbers for rng operations + Enable the gathering of crypto stats. + + This collects data sizes, numbers of requests, and numbers + of errors processed by: + - AEAD ciphers (encrypt, decrypt) + - asymmetric key ciphers (encrypt, decrypt, verify, sign) + - symmetric key ciphers (encrypt, decrypt) + - compression algorithms (compress, decompress) + - hash algorithms (hash) + - key-agreement protocol primitives (setsecret, generate + public key, compute shared secret) + - RNG (generate, seed) endmenu -- cgit From cf514b2a5902ee4f93e9636ace5228fed27f23bb Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 20 Aug 2022 13:41:50 -0500 Subject: crypto: Kconfig - simplify cipher entries Shorten menu titles and make them consistent: - acronym - name - architecture features in parenthesis - no suffixes like " algorithm", "support", or "hardware acceleration", or "optimized" Simplify help text descriptions, update references, and ensure that https references are still valid. Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- crypto/Kconfig | 234 +++++++++++++++++++++++++++++---------------------------- 1 file changed, 121 insertions(+), 113 deletions(-) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index 6621122984c0..89a6cb5ee63f 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -219,7 +219,8 @@ config CRYPTO_AUTHENC select CRYPTO_NULL help Authenc: Combined mode wrapper for IPsec. - This is required for IPSec. + + This is required for IPSec ESP (XFRM_ESP). config CRYPTO_TEST tristate "Testing module" @@ -336,12 +337,11 @@ endmenu menu "Block ciphers" config CRYPTO_AES - tristate "AES cipher algorithms" + tristate "AES (Advanced Encryption Standard)" select CRYPTO_ALGAPI select CRYPTO_LIB_AES help - AES cipher algorithms (FIPS-197). AES uses the Rijndael - algorithm. + AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3) Rijndael appears to be consistently a very good performer in both hardware and software across a wide range of computing @@ -354,13 +354,13 @@ config CRYPTO_AES The AES specifies three key sizes: 128, 192 and 256 bits - See for more information. - config CRYPTO_AES_TI - tristate "Fixed time AES cipher" + tristate "AES (Advanced Encryption Standard) (fixed time)" select CRYPTO_ALGAPI select CRYPTO_LIB_AES help + AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3) + This is a generic implementation of AES that attempts to eliminate data dependent latencies as much as possible without affecting performance too much. It is intended for use by the generic CCM @@ -376,25 +376,24 @@ config CRYPTO_AES_TI are evicted when the CPU is interrupted to do something else. config CRYPTO_ANUBIS - tristate "Anubis cipher algorithm" + tristate "Anubis" depends on CRYPTO_USER_API_ENABLE_OBSOLETE select CRYPTO_ALGAPI help - Anubis cipher algorithm. + Anubis cipher algorithm Anubis is a variable key length cipher which can use keys from 128 bits to 320 bits in length. It was evaluated as a entrant in the NESSIE competition. - See also: - - + See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html + for further information. config CRYPTO_ARIA - tristate "ARIA cipher algorithm" + tristate "ARIA" select CRYPTO_ALGAPI help - ARIA cipher algorithm (RFC5794). + ARIA cipher algorithm (RFC5794) ARIA is a standard encryption algorithm of the Republic of Korea. The ARIA specifies three key sizes and rounds. @@ -402,22 +401,21 @@ config CRYPTO_ARIA 192-bit: 14 rounds. 256-bit: 16 rounds. - See also: - + See: + https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do config CRYPTO_BLOWFISH - tristate "Blowfish cipher algorithm" + tristate "Blowfish" select CRYPTO_ALGAPI select CRYPTO_BLOWFISH_COMMON help - Blowfish cipher algorithm, by Bruce Schneier. + Blowfish cipher algorithm, by Bruce Schneier This is a variable key length cipher which can use keys from 32 bits to 448 bits in length. It's fast, simple and specifically designed for use on "large microprocessors". - See also: - + See https://www.schneier.com/blowfish.html for further information. config CRYPTO_BLOWFISH_COMMON tristate @@ -425,22 +423,18 @@ config CRYPTO_BLOWFISH_COMMON Common parts of the Blowfish cipher algorithm shared by the generic c and the assembler implementations. - See also: - - config CRYPTO_CAMELLIA - tristate "Camellia cipher algorithms" + tristate "Camellia" select CRYPTO_ALGAPI help - Camellia cipher algorithms module. + Camellia cipher algorithms (ISO/IEC 18033-3) Camellia is a symmetric key block cipher developed jointly at NTT and Mitsubishi Electric Corporation. The Camellia specifies three key sizes: 128, 192 and 256 bits. - See also: - + See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information. config CRYPTO_CAST_COMMON tristate @@ -449,85 +443,87 @@ config CRYPTO_CAST_COMMON generic c and the assembler implementations. config CRYPTO_CAST5 - tristate "CAST5 (CAST-128) cipher algorithm" + tristate "CAST5 (CAST-128)" select CRYPTO_ALGAPI select CRYPTO_CAST_COMMON help - The CAST5 encryption algorithm (synonymous with CAST-128) is - described in RFC2144. + CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3) config CRYPTO_CAST6 - tristate "CAST6 (CAST-256) cipher algorithm" + tristate "CAST6 (CAST-256)" select CRYPTO_ALGAPI select CRYPTO_CAST_COMMON help - The CAST6 encryption algorithm (synonymous with CAST-256) is - described in RFC2612. + CAST6 (CAST-256) encryption algorithm (RFC2612) config CRYPTO_DES - tristate "DES and Triple DES EDE cipher algorithms" + tristate "DES and Triple DES EDE" select CRYPTO_ALGAPI select CRYPTO_LIB_DES help - DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). + DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and + Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3) + cipher algorithms config CRYPTO_FCRYPT - tristate "FCrypt cipher algorithm" + tristate "FCrypt" select CRYPTO_ALGAPI select CRYPTO_SKCIPHER help - FCrypt algorithm used by RxRPC. + FCrypt algorithm used by RxRPC + + See https://ota.polyonymo.us/fcrypt-paper.txt config CRYPTO_KHAZAD - tristate "Khazad cipher algorithm" + tristate "Khazad" depends on CRYPTO_USER_API_ENABLE_OBSOLETE select CRYPTO_ALGAPI help - Khazad cipher algorithm. + Khazad cipher algorithm Khazad was a finalist in the initial NESSIE competition. It is an algorithm optimized for 64-bit processors with good performance on 32-bit processors. Khazad uses an 128 bit key size. - See also: - + See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html + for further information. config CRYPTO_SEED - tristate "SEED cipher algorithm" + tristate "SEED" depends on CRYPTO_USER_API_ENABLE_OBSOLETE select CRYPTO_ALGAPI help - SEED cipher algorithm (RFC4269). + SEED cipher algorithm (RFC4269, ISO/IEC 18033-3) SEED is a 128-bit symmetric key block cipher that has been developed by KISA (Korea Information Security Agency) as a national standard encryption algorithm of the Republic of Korea. It is a 16 round block cipher with the key size of 128 bit. - See also: - + See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do + for further information. config CRYPTO_SERPENT - tristate "Serpent cipher algorithm" + tristate "Serpent" select CRYPTO_ALGAPI help - Serpent cipher algorithm, by Anderson, Biham & Knudsen. + Serpent cipher algorithm, by Anderson, Biham & Knudsen Keys are allowed to be from 0 to 256 bits in length, in steps of 8 bits. - See also: - + See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information. config CRYPTO_SM4 tristate config CRYPTO_SM4_GENERIC - tristate "SM4 cipher algorithm" + tristate "SM4 (ShangMi 4)" select CRYPTO_ALGAPI select CRYPTO_SM4 help - SM4 cipher algorithms (OSCCA GB/T 32907-2016). + SM4 cipher algorithms (OSCCA GB/T 32907-2016, + ISO/IEC 18033-3:2010/Amd 1:2021) SM4 (GBT.32907-2016) is a cryptographic standard issued by the Organization of State Commercial Administration of China (OSCCA) @@ -544,16 +540,16 @@ config CRYPTO_SM4_GENERIC The input, output, and key of SMS4 are each 128 bits. - See also: + See https://eprint.iacr.org/2008/329.pdf for further information. If unsure, say N. config CRYPTO_TEA - tristate "TEA, XTEA and XETA cipher algorithms" + tristate "TEA, XTEA and XETA" depends on CRYPTO_USER_API_ENABLE_OBSOLETE select CRYPTO_ALGAPI help - TEA cipher algorithm. + TEA (Tiny Encryption Algorithm) cipher algorithms Tiny Encryption Algorithm is a simple cipher that uses many rounds for security. It is very fast and uses @@ -567,19 +563,18 @@ config CRYPTO_TEA of the XTEA algorithm for compatibility purposes. config CRYPTO_TWOFISH - tristate "Twofish cipher algorithm" + tristate "Twofish" select CRYPTO_ALGAPI select CRYPTO_TWOFISH_COMMON help - Twofish cipher algorithm. + Twofish cipher algorithm Twofish was submitted as an AES (Advanced Encryption Standard) candidate cipher by researchers at CounterPane Systems. It is a 16 round block cipher supporting key sizes of 128, 192, and 256 bits. - See also: - + See https://www.schneier.com/twofish.html for further information. config CRYPTO_TWOFISH_COMMON tristate @@ -592,14 +587,15 @@ endmenu menu "Length-preserving ciphers and modes" config CRYPTO_ADIANTUM - tristate "Adiantum support" + tristate "Adiantum" select CRYPTO_CHACHA20 select CRYPTO_LIB_POLY1305_GENERIC select CRYPTO_NHPOLY1305 select CRYPTO_MANAGER help - Adiantum is a tweakable, length-preserving encryption mode - designed for fast and secure disk encryption, especially on + Adiantum tweakable, length-preserving encryption mode + + Designed for fast and secure disk encryption, especially on CPUs without dedicated crypto instructions. It encrypts each sector using the XChaCha12 stream cipher, two passes of an ε-almost-∆-universal hash function, and an invocation of @@ -616,12 +612,12 @@ config CRYPTO_ADIANTUM If unsure, say N. config CRYPTO_ARC4 - tristate "ARC4 cipher algorithm" + tristate "ARC4 (Alleged Rivest Cipher 4)" depends on CRYPTO_USER_API_ENABLE_OBSOLETE select CRYPTO_SKCIPHER select CRYPTO_LIB_ARC4 help - ARC4 cipher algorithm. + ARC4 cipher algorithm ARC4 is a stream cipher using keys ranging from 8 bits to 2048 bits in length. This algorithm is required for driver-based @@ -629,113 +625,118 @@ config CRYPTO_ARC4 weakness of the algorithm. config CRYPTO_CHACHA20 - tristate "ChaCha stream cipher algorithms" + tristate "ChaCha" select CRYPTO_LIB_CHACHA_GENERIC select CRYPTO_SKCIPHER help - The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. + The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. Bernstein and further specified in RFC7539 for use in IETF protocols. - This is the portable C implementation of ChaCha20. See also: - + This is the portable C implementation of ChaCha20. See + https://cr.yp.to/chacha/chacha-20080128.pdf for further information. XChaCha20 is the application of the XSalsa20 construction to ChaCha20 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, - while provably retaining ChaCha20's security. See also: - + while provably retaining ChaCha20's security. See + https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information. XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly reduced security margin but increased performance. It can be needed in some performance-sensitive scenarios. config CRYPTO_CBC - tristate "CBC support" + tristate "CBC (Cipher Block Chaining)" select CRYPTO_SKCIPHER select CRYPTO_MANAGER help - CBC: Cipher Block Chaining mode - This block cipher algorithm is required for IPSec. + CBC (Cipher Block Chaining) mode (NIST SP800-38A) + + This block cipher mode is required for IPSec ESP (XFRM_ESP). config CRYPTO_CFB - tristate "CFB support" + tristate "CFB (Cipher Feedback)" select CRYPTO_SKCIPHER select CRYPTO_MANAGER help - CFB: Cipher FeedBack mode - This block cipher algorithm is required for TPM2 Cryptography. + CFB (Cipher Feedback) mode (NIST SP800-38A) + + This block cipher mode is required for TPM2 Cryptography. config CRYPTO_CTR - tristate "CTR support" + tristate "CTR (Counter)" select CRYPTO_SKCIPHER select CRYPTO_MANAGER help - CTR: Counter mode - This block cipher algorithm is required for IPSec. + CTR (Counter) mode (NIST SP800-38A) config CRYPTO_CTS - tristate "CTS support" + tristate "CTS (Cipher Text Stealing)" select CRYPTO_SKCIPHER select CRYPTO_MANAGER help - CTS: Cipher Text Stealing - This is the Cipher Text Stealing mode as described by - Section 8 of rfc2040 and referenced by rfc3962 - (rfc3962 includes errata information in its Appendix A) or - CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. + CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST + Addendum to SP800-38A (October 2010)) + This mode is required for Kerberos gss mechanism support for AES encryption. - See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final - config CRYPTO_ECB - tristate "ECB support" + tristate "ECB (Electronic Codebook)" select CRYPTO_SKCIPHER select CRYPTO_MANAGER help - ECB: Electronic CodeBook mode - This is the simplest block cipher algorithm. It simply encrypts - the input block by block. + ECB (Electronic Codebook) mode (NIST SP800-38A) config CRYPTO_HCTR2 - tristate "HCTR2 support" + tristate "HCTR2" select CRYPTO_XCTR select CRYPTO_POLYVAL select CRYPTO_MANAGER help - HCTR2 is a length-preserving encryption mode for storage encryption that - is efficient on processors with instructions to accelerate AES and - carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and - ARM processors with the ARMv8 crypto extensions. + HCTR2 length-preserving encryption mode + + A mode for storage encryption that is efficient on processors with + instructions to accelerate AES and carryless multiplication, e.g. + x86 processors with AES-NI and CLMUL, and ARM processors with the + ARMv8 crypto extensions. + + See https://eprint.iacr.org/2021/1441 config CRYPTO_KEYWRAP - tristate "Key wrapping support" + tristate "KW (AES Key Wrap)" select CRYPTO_SKCIPHER select CRYPTO_MANAGER help - Support for key wrapping (NIST SP800-38F / RFC3394) without - padding. + KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F + and RFC3394) without padding. config CRYPTO_LRW - tristate "LRW support" + tristate "LRW (Liskov Rivest Wagner)" select CRYPTO_SKCIPHER select CRYPTO_MANAGER select CRYPTO_GF128MUL select CRYPTO_ECB help - LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable + LRW (Liskov Rivest Wagner) mode + + A tweakable, non malleable, non movable narrow block cipher mode for dm-crypt. Use it with cipher specification string aes-lrw-benbi, the key must be 256, 320 or 384. The first 128, 192 or 256 bits in the key are used for AES and the rest is used to tie each cipher block to its logical position. + See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf + config CRYPTO_OFB - tristate "OFB support" + tristate "OFB (Output Feedback)" select CRYPTO_SKCIPHER select CRYPTO_MANAGER help - OFB: the Output Feedback mode makes a block cipher into a synchronous + OFB (Output Feedback) mode (NIST SP800-38A) + + This mode makes a block cipher into a synchronous stream cipher. It generates keystream blocks, which are then XORed with the plaintext blocks to get the ciphertext. Flipping a bit in the ciphertext produces a flipped bit in the plaintext at the same @@ -743,31 +744,38 @@ config CRYPTO_OFB normally even when applied before encryption. config CRYPTO_PCBC - tristate "PCBC support" + tristate "PCBC (Propagating Cipher Block Chaining)" select CRYPTO_SKCIPHER select CRYPTO_MANAGER help - PCBC: Propagating Cipher Block Chaining mode - This block cipher algorithm is required for RxRPC. + PCBC (Propagating Cipher Block Chaining) mode + + This block cipher mode is required for RxRPC. config CRYPTO_XCTR tristate select CRYPTO_SKCIPHER select CRYPTO_MANAGER help - XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode - using XORs and little-endian addition rather than big-endian arithmetic. + XCTR (XOR Counter) mode for HCTR2 + + This blockcipher mode is a variant of CTR mode using XORs and little-endian + addition rather than big-endian arithmetic. + XCTR mode is used to implement HCTR2. config CRYPTO_XTS - tristate "XTS support" + tristate "XTS (XOR Encrypt XOR with ciphertext stealing)" select CRYPTO_SKCIPHER select CRYPTO_MANAGER select CRYPTO_ECB help - XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, - key size 256, 384 or 512 bits. This implementation currently - can't handle a sectorsize which is not a multiple of 16 bytes. + XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E + and IEEE 1619) + + Use with aes-xts-plain, key size 256, 384 or 512 bits. This + implementation currently can't handle a sectorsize which is not a + multiple of 16 bytes. config CRYPTO_NHPOLY1305 tristate @@ -806,7 +814,7 @@ config CRYPTO_CHACHA20POLY1305 mode (RFC8439) config CRYPTO_CCM - tristate "CCM (Counter with Cipher Block Chaining-Message Authentication Code)" + tristate "CCM (Counter with Cipher Block Chaining-MAC)" select CRYPTO_CTR select CRYPTO_HASH select CRYPTO_AEAD @@ -816,7 +824,7 @@ config CRYPTO_CCM authenticated encryption mode (NIST SP800-38C) config CRYPTO_GCM - tristate "GCM (Galois/Counter Mode) and GMAC (GCM Message Authentication Code)" + tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)" select CRYPTO_CTR select CRYPTO_AEAD select CRYPTO_GHASH -- cgit From a9a98d49da52c5bf63cd8bbc1f33b52edec2e9c9 Mon Sep 17 00:00:00 2001 From: Robert Elliott Date: Sat, 20 Aug 2022 13:41:51 -0500 Subject: crypto: Kconfig - simplify compression/RNG entries Shorten menu titles and make them consistent: - acronym - name - architecture features in parenthesis - no suffixes like " algorithm", "support", or "hardware acceleration", or "optimized" Simplify help text descriptions, update references, and ensure that https references are still valid. Signed-off-by: Robert Elliott Signed-off-by: Herbert Xu --- crypto/Kconfig | 82 +++++++++++++++++++++++++++++++++++----------------------- 1 file changed, 50 insertions(+), 32 deletions(-) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index 89a6cb5ee63f..40423a14f86f 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -1178,81 +1178,92 @@ endmenu menu "Compression" config CRYPTO_DEFLATE - tristate "Deflate compression algorithm" + tristate "Deflate" select CRYPTO_ALGAPI select CRYPTO_ACOMP2 select ZLIB_INFLATE select ZLIB_DEFLATE help - This is the Deflate algorithm (RFC1951), specified for use in - IPSec with the IPCOMP protocol (RFC3173, RFC2394). + Deflate compression algorithm (RFC1951) - You will most probably want this if using IPSec. + Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394) config CRYPTO_LZO - tristate "LZO compression algorithm" + tristate "LZO" select CRYPTO_ALGAPI select CRYPTO_ACOMP2 select LZO_COMPRESS select LZO_DECOMPRESS help - This is the LZO algorithm. + LZO compression algorithm + + See https://www.oberhumer.com/opensource/lzo/ for further information. config CRYPTO_842 - tristate "842 compression algorithm" + tristate "842" select CRYPTO_ALGAPI select CRYPTO_ACOMP2 select 842_COMPRESS select 842_DECOMPRESS help - This is the 842 algorithm. + 842 compression algorithm by IBM + + See https://github.com/plauth/lib842 for further information. config CRYPTO_LZ4 - tristate "LZ4 compression algorithm" + tristate "LZ4" select CRYPTO_ALGAPI select CRYPTO_ACOMP2 select LZ4_COMPRESS select LZ4_DECOMPRESS help - This is the LZ4 algorithm. + LZ4 compression algorithm + + See https://github.com/lz4/lz4 for further information. config CRYPTO_LZ4HC - tristate "LZ4HC compression algorithm" + tristate "LZ4HC" select CRYPTO_ALGAPI select CRYPTO_ACOMP2 select LZ4HC_COMPRESS select LZ4_DECOMPRESS help - This is the LZ4 high compression mode algorithm. + LZ4 high compression mode algorithm + + See https://github.com/lz4/lz4 for further information. config CRYPTO_ZSTD - tristate "Zstd compression algorithm" + tristate "Zstd" select CRYPTO_ALGAPI select CRYPTO_ACOMP2 select ZSTD_COMPRESS select ZSTD_DECOMPRESS help - This is the zstd algorithm. + zstd compression algorithm + + See https://github.com/facebook/zstd for further information. endmenu menu "Random number generation" config CRYPTO_ANSI_CPRNG - tristate "Pseudo Random Number Generation for Cryptographic modules" + tristate "ANSI PRNG (Pseudo Random Number Generator)" select CRYPTO_AES select CRYPTO_RNG help - This option enables the generic pseudo random number generator - for cryptographic modules. Uses the Algorithm specified in - ANSI X9.31 A.2.4. Note that this option must be enabled if - CRYPTO_FIPS is selected + Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4) + + This uses the AES cipher algorithm. + + Note that this option must be enabled if CRYPTO_FIPS is selected menuconfig CRYPTO_DRBG_MENU - tristate "NIST SP800-90A DRBG" + tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)" help - NIST SP800-90A compliant DRBG. In the following submenu, one or - more of the DRBG types must be selected. + DRBG (Deterministic Random Bit Generator) (NIST SP800-90A) + + In the following submenu, one or more of the DRBG types must be selected. if CRYPTO_DRBG_MENU @@ -1263,17 +1274,21 @@ config CRYPTO_DRBG_HMAC select CRYPTO_SHA512 config CRYPTO_DRBG_HASH - bool "Enable Hash DRBG" + bool "Hash_DRBG" select CRYPTO_SHA256 help - Enable the Hash DRBG variant as defined in NIST SP800-90A. + Hash_DRBG variant as defined in NIST SP800-90A. + + This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms. config CRYPTO_DRBG_CTR - bool "Enable CTR DRBG" + bool "CTR_DRBG" select CRYPTO_AES select CRYPTO_CTR help - Enable the CTR DRBG variant as defined in NIST SP800-90A. + CTR_DRBG variant as defined in NIST SP800-90A. + + This uses the AES cipher algorithm with the counter block mode. config CRYPTO_DRBG tristate @@ -1284,14 +1299,17 @@ config CRYPTO_DRBG endif # if CRYPTO_DRBG_MENU config CRYPTO_JITTERENTROPY - tristate "Jitterentropy Non-Deterministic Random Number Generator" + tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)" select CRYPTO_RNG help - The Jitterentropy RNG is a noise that is intended - to provide seed to another RNG. The RNG does not - perform any cryptographic whitening of the generated - random numbers. This Jitterentropy RNG registers with - the kernel crypto API and can be used by any caller. + CPU Jitter RNG (Random Number Generator) from the Jitterentropy library + + A non-physical non-deterministic ("true") RNG (e.g., an entropy source + compliant with NIST SP800-90B) intended to provide a seed to a + deterministic RNG (e.g. per NIST SP800-90C). + This RNG does not perform any cryptographic whitening of the generated + + See https://www.chronox.de/jent.html config CRYPTO_KDF800108_CTR tristate -- cgit From 442f06067f155aeb35696cf59f4f458ee7da83a8 Mon Sep 17 00:00:00 2001 From: Lucas Segarra Fernandez Date: Thu, 25 Aug 2022 12:24:51 +0200 Subject: crypto: testmgr - fix indentation for test_acomp() args Set right indentation for test_acomp(). Signed-off-by: Lucas Segarra Fernandez Reviewed-by: Giovanni Cabiddu Signed-off-by: Herbert Xu --- crypto/testmgr.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'crypto') diff --git a/crypto/testmgr.c b/crypto/testmgr.c index 2ad4bcc58617..e4bb03b8b924 100644 --- a/crypto/testmgr.c +++ b/crypto/testmgr.c @@ -3322,7 +3322,7 @@ out: } static int test_acomp(struct crypto_acomp *tfm, - const struct comp_testvec *ctemplate, + const struct comp_testvec *ctemplate, const struct comp_testvec *dtemplate, int ctcount, int dtcount) { -- cgit From bc155c6c188c2f0c5749993b1405673d25a80389 Mon Sep 17 00:00:00 2001 From: Ignat Korchagin Date: Wed, 31 Aug 2022 19:37:06 +0100 Subject: crypto: akcipher - default implementation for setting a private key Changes from v1: * removed the default implementation from set_pub_key: it is assumed that an implementation must always have this callback defined as there are no use case for an algorithm, which doesn't need a public key Many akcipher implementations (like ECDSA) support only signature verifications, so they don't have all callbacks defined. Commit 78a0324f4a53 ("crypto: akcipher - default implementations for request callbacks") introduced default callbacks for sign/verify operations, which just return an error code. However, these are not enough, because before calling sign the caller would likely call set_priv_key first on the instantiated transform (as the in-kernel testmgr does). This function does not have a default stub, so the kernel crashes, when trying to set a private key on an akcipher, which doesn't support signature generation. I've noticed this, when trying to add a KAT vector for ECDSA signature to the testmgr. With this patch the testmgr returns an error in dmesg (as it should) instead of crashing the kernel NULL ptr dereference. Fixes: 78a0324f4a53 ("crypto: akcipher - default implementations for request callbacks") Signed-off-by: Ignat Korchagin Signed-off-by: Herbert Xu --- crypto/akcipher.c | 8 ++++++++ 1 file changed, 8 insertions(+) (limited to 'crypto') diff --git a/crypto/akcipher.c b/crypto/akcipher.c index f866085c8a4a..ab975a420e1e 100644 --- a/crypto/akcipher.c +++ b/crypto/akcipher.c @@ -120,6 +120,12 @@ static int akcipher_default_op(struct akcipher_request *req) return -ENOSYS; } +static int akcipher_default_set_key(struct crypto_akcipher *tfm, + const void *key, unsigned int keylen) +{ + return -ENOSYS; +} + int crypto_register_akcipher(struct akcipher_alg *alg) { struct crypto_alg *base = &alg->base; @@ -132,6 +138,8 @@ int crypto_register_akcipher(struct akcipher_alg *alg) alg->encrypt = akcipher_default_op; if (!alg->decrypt) alg->decrypt = akcipher_default_op; + if (!alg->set_priv_key) + alg->set_priv_key = akcipher_default_set_key; akcipher_prepare_alg(alg); return crypto_register_alg(base); -- cgit From 1b79573de717cfabe28221a98afaa6a3ff0e7458 Mon Sep 17 00:00:00 2001 From: Lukas Bulwahn Date: Wed, 14 Sep 2022 10:38:27 +0200 Subject: crypto: blake2s - revert unintended config addition of CRYPTO_BLAKE2S Commit 2d16803c562e ("crypto: blake2s - remove shash module") removes the config CRYPTO_BLAKE2S. Commit 3f342a23257d ("crypto: Kconfig - simplify hash entries") makes various changes to the config descriptions as part of some consolidation and clean-up, but among all those changes, it also accidently adds back CRYPTO_BLAKE2S after its removal due to the original patch being based on a state before the CRYPTO_BLAKE2S removal. See Link for the author's confirmation of this happening accidently. Fixes: 3f342a23257d ("crypto: Kconfig - simplify hash entries") Link: https://lore.kernel.org/all/MW5PR84MB18424AB8C095BFC041AE33FDAB479@MW5PR84MB1842.NAMPRD84.PROD.OUTLOOK.COM/ Signed-off-by: Lukas Bulwahn Signed-off-by: Herbert Xu --- crypto/Kconfig | 21 --------------------- 1 file changed, 21 deletions(-) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index 40423a14f86f..2589ad5357df 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -916,27 +916,6 @@ config CRYPTO_BLAKE2B See https://blake2.net for further information. - config CRYPTO_BLAKE2S - tristate "BLAKE2s" - select CRYPTO_LIB_BLAKE2S_GENERIC - select CRYPTO_HASH - help - BLAKE2s cryptographic hash function (RFC 7693) - - BLAKE2s is optimized for 8 to 32-bit platforms and can produce - digests of any size between 1 and 32 bytes. The keyed hash is - also implemented. - - This module provides the following algorithms: - - blake2s-128 - - blake2s-160 - - blake2s-224 - - blake2s-256 - - Used by Wireguard. - - See https://blake2.net for further information. - config CRYPTO_CMAC tristate "CMAC (Cipher-based MAC)" select CRYPTO_HASH -- cgit From 33837be33367172d66d1f2bd6964cc41448e6e7c Mon Sep 17 00:00:00 2001 From: Xiu Jianfeng Date: Thu, 15 Sep 2022 11:36:15 +0800 Subject: crypto: add __init/__exit annotations to init/exit funcs Add missing __init/__exit annotations to init/exit funcs. Signed-off-by: Xiu Jianfeng Signed-off-by: Herbert Xu --- crypto/async_tx/raid6test.c | 4 ++-- crypto/curve25519-generic.c | 4 ++-- crypto/dh.c | 4 ++-- crypto/ecdh.c | 4 ++-- crypto/ecdsa.c | 4 ++-- crypto/rsa.c | 4 ++-- crypto/sm2.c | 4 ++-- 7 files changed, 14 insertions(+), 14 deletions(-) (limited to 'crypto') diff --git a/crypto/async_tx/raid6test.c b/crypto/async_tx/raid6test.c index c9d218e53bcb..9719c7520661 100644 --- a/crypto/async_tx/raid6test.c +++ b/crypto/async_tx/raid6test.c @@ -189,7 +189,7 @@ static int test(int disks, int *tests) } -static int raid6_test(void) +static int __init raid6_test(void) { int err = 0; int tests = 0; @@ -236,7 +236,7 @@ static int raid6_test(void) return 0; } -static void raid6_test_exit(void) +static void __exit raid6_test_exit(void) { } diff --git a/crypto/curve25519-generic.c b/crypto/curve25519-generic.c index bd88fd571393..d055b0784c77 100644 --- a/crypto/curve25519-generic.c +++ b/crypto/curve25519-generic.c @@ -72,12 +72,12 @@ static struct kpp_alg curve25519_alg = { .max_size = curve25519_max_size, }; -static int curve25519_init(void) +static int __init curve25519_init(void) { return crypto_register_kpp(&curve25519_alg); } -static void curve25519_exit(void) +static void __exit curve25519_exit(void) { crypto_unregister_kpp(&curve25519_alg); } diff --git a/crypto/dh.c b/crypto/dh.c index 4406aeb1ff61..99c3b2ef7adc 100644 --- a/crypto/dh.c +++ b/crypto/dh.c @@ -893,7 +893,7 @@ static struct crypto_template crypto_ffdhe_templates[] = {}; #endif /* CONFIG_CRYPTO_DH_RFC7919_GROUPS */ -static int dh_init(void) +static int __init dh_init(void) { int err; @@ -911,7 +911,7 @@ static int dh_init(void) return 0; } -static void dh_exit(void) +static void __exit dh_exit(void) { crypto_unregister_templates(crypto_ffdhe_templates, ARRAY_SIZE(crypto_ffdhe_templates)); diff --git a/crypto/ecdh.c b/crypto/ecdh.c index e4857d534344..80afee3234fb 100644 --- a/crypto/ecdh.c +++ b/crypto/ecdh.c @@ -200,7 +200,7 @@ static struct kpp_alg ecdh_nist_p384 = { static bool ecdh_nist_p192_registered; -static int ecdh_init(void) +static int __init ecdh_init(void) { int ret; @@ -227,7 +227,7 @@ nist_p256_error: return ret; } -static void ecdh_exit(void) +static void __exit ecdh_exit(void) { if (ecdh_nist_p192_registered) crypto_unregister_kpp(&ecdh_nist_p192); diff --git a/crypto/ecdsa.c b/crypto/ecdsa.c index b3a8a6b572ba..fbd76498aba8 100644 --- a/crypto/ecdsa.c +++ b/crypto/ecdsa.c @@ -332,7 +332,7 @@ static struct akcipher_alg ecdsa_nist_p192 = { }; static bool ecdsa_nist_p192_registered; -static int ecdsa_init(void) +static int __init ecdsa_init(void) { int ret; @@ -359,7 +359,7 @@ nist_p256_error: return ret; } -static void ecdsa_exit(void) +static void __exit ecdsa_exit(void) { if (ecdsa_nist_p192_registered) crypto_unregister_akcipher(&ecdsa_nist_p192); diff --git a/crypto/rsa.c b/crypto/rsa.c index 0e555ee4addb..c50f2d2a4d06 100644 --- a/crypto/rsa.c +++ b/crypto/rsa.c @@ -327,7 +327,7 @@ static struct akcipher_alg rsa = { }, }; -static int rsa_init(void) +static int __init rsa_init(void) { int err; @@ -344,7 +344,7 @@ static int rsa_init(void) return 0; } -static void rsa_exit(void) +static void __exit rsa_exit(void) { crypto_unregister_template(&rsa_pkcs1pad_tmpl); crypto_unregister_akcipher(&rsa); diff --git a/crypto/sm2.c b/crypto/sm2.c index f3e1592965c0..ed9307dac3d1 100644 --- a/crypto/sm2.c +++ b/crypto/sm2.c @@ -441,12 +441,12 @@ static struct akcipher_alg sm2 = { }, }; -static int sm2_init(void) +static int __init sm2_init(void) { return crypto_register_akcipher(&sm2); } -static void sm2_exit(void) +static void __exit sm2_exit(void) { crypto_unregister_akcipher(&sm2); } -- cgit From a9b0838dd82534c49dd4e5e2172ddea3fb2b5d39 Mon Sep 17 00:00:00 2001 From: Taehee Yoo Date: Fri, 16 Sep 2022 12:57:34 +0000 Subject: crypto: aria - prepare generic module for optimized implementations It renames aria to aria_generic and exports some functions such as aria_set_key(), aria_encrypt(), and aria_decrypt() to be able to be used by aria-avx implementation. Signed-off-by: Taehee Yoo Signed-off-by: Herbert Xu --- crypto/Makefile | 2 +- crypto/aria.c | 288 ---------------------------------------------- crypto/aria_generic.c | 313 ++++++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 314 insertions(+), 289 deletions(-) delete mode 100644 crypto/aria.c create mode 100644 crypto/aria_generic.c (limited to 'crypto') diff --git a/crypto/Makefile b/crypto/Makefile index a6f94e04e1da..303b21c43df0 100644 --- a/crypto/Makefile +++ b/crypto/Makefile @@ -149,7 +149,7 @@ obj-$(CONFIG_CRYPTO_TEA) += tea.o obj-$(CONFIG_CRYPTO_KHAZAD) += khazad.o obj-$(CONFIG_CRYPTO_ANUBIS) += anubis.o obj-$(CONFIG_CRYPTO_SEED) += seed.o -obj-$(CONFIG_CRYPTO_ARIA) += aria.o +obj-$(CONFIG_CRYPTO_ARIA) += aria_generic.o obj-$(CONFIG_CRYPTO_CHACHA20) += chacha_generic.o obj-$(CONFIG_CRYPTO_POLY1305) += poly1305_generic.o obj-$(CONFIG_CRYPTO_DEFLATE) += deflate.o diff --git a/crypto/aria.c b/crypto/aria.c deleted file mode 100644 index ac3dffac34bb..000000000000 --- a/crypto/aria.c +++ /dev/null @@ -1,288 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0-or-later -/* - * Cryptographic API. - * - * ARIA Cipher Algorithm. - * - * Documentation of ARIA can be found in RFC 5794. - * Copyright (c) 2022 Taehee Yoo - * - * Information for ARIA - * http://210.104.33.10/ARIA/index-e.html (English) - * http://seed.kisa.or.kr/ (Korean) - * - * Public domain version is distributed above. - */ - -#include - -static void aria_set_encrypt_key(struct aria_ctx *ctx, const u8 *in_key, - unsigned int key_len) -{ - const __be32 *key = (const __be32 *)in_key; - u32 w0[4], w1[4], w2[4], w3[4]; - u32 reg0, reg1, reg2, reg3; - const u32 *ck; - int rkidx = 0; - - ck = &key_rc[(key_len - 16) / 8][0]; - - w0[0] = be32_to_cpu(key[0]); - w0[1] = be32_to_cpu(key[1]); - w0[2] = be32_to_cpu(key[2]); - w0[3] = be32_to_cpu(key[3]); - - reg0 = w0[0] ^ ck[0]; - reg1 = w0[1] ^ ck[1]; - reg2 = w0[2] ^ ck[2]; - reg3 = w0[3] ^ ck[3]; - - aria_subst_diff_odd(®0, ®1, ®2, ®3); - - if (key_len > 16) { - w1[0] = be32_to_cpu(key[4]); - w1[1] = be32_to_cpu(key[5]); - if (key_len > 24) { - w1[2] = be32_to_cpu(key[6]); - w1[3] = be32_to_cpu(key[7]); - } else { - w1[2] = 0; - w1[3] = 0; - } - } else { - w1[0] = 0; - w1[1] = 0; - w1[2] = 0; - w1[3] = 0; - } - - w1[0] ^= reg0; - w1[1] ^= reg1; - w1[2] ^= reg2; - w1[3] ^= reg3; - - reg0 = w1[0]; - reg1 = w1[1]; - reg2 = w1[2]; - reg3 = w1[3]; - - reg0 ^= ck[4]; - reg1 ^= ck[5]; - reg2 ^= ck[6]; - reg3 ^= ck[7]; - - aria_subst_diff_even(®0, ®1, ®2, ®3); - - reg0 ^= w0[0]; - reg1 ^= w0[1]; - reg2 ^= w0[2]; - reg3 ^= w0[3]; - - w2[0] = reg0; - w2[1] = reg1; - w2[2] = reg2; - w2[3] = reg3; - - reg0 ^= ck[8]; - reg1 ^= ck[9]; - reg2 ^= ck[10]; - reg3 ^= ck[11]; - - aria_subst_diff_odd(®0, ®1, ®2, ®3); - - w3[0] = reg0 ^ w1[0]; - w3[1] = reg1 ^ w1[1]; - w3[2] = reg2 ^ w1[2]; - w3[3] = reg3 ^ w1[3]; - - aria_gsrk(ctx->enc_key[rkidx], w0, w1, 19); - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w1, w2, 19); - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w2, w3, 19); - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w3, w0, 19); - - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w0, w1, 31); - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w1, w2, 31); - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w2, w3, 31); - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w3, w0, 31); - - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w0, w1, 67); - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w1, w2, 67); - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w2, w3, 67); - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w3, w0, 67); - - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w0, w1, 97); - if (key_len > 16) { - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w1, w2, 97); - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w2, w3, 97); - - if (key_len > 24) { - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w3, w0, 97); - - rkidx++; - aria_gsrk(ctx->enc_key[rkidx], w0, w1, 109); - } - } -} - -static void aria_set_decrypt_key(struct aria_ctx *ctx) -{ - int i; - - for (i = 0; i < 4; i++) { - ctx->dec_key[0][i] = ctx->enc_key[ctx->rounds][i]; - ctx->dec_key[ctx->rounds][i] = ctx->enc_key[0][i]; - } - - for (i = 1; i < ctx->rounds; i++) { - ctx->dec_key[i][0] = aria_m(ctx->enc_key[ctx->rounds - i][0]); - ctx->dec_key[i][1] = aria_m(ctx->enc_key[ctx->rounds - i][1]); - ctx->dec_key[i][2] = aria_m(ctx->enc_key[ctx->rounds - i][2]); - ctx->dec_key[i][3] = aria_m(ctx->enc_key[ctx->rounds - i][3]); - - aria_diff_word(&ctx->dec_key[i][0], &ctx->dec_key[i][1], - &ctx->dec_key[i][2], &ctx->dec_key[i][3]); - aria_diff_byte(&ctx->dec_key[i][1], - &ctx->dec_key[i][2], &ctx->dec_key[i][3]); - aria_diff_word(&ctx->dec_key[i][0], &ctx->dec_key[i][1], - &ctx->dec_key[i][2], &ctx->dec_key[i][3]); - } -} - -static int aria_set_key(struct crypto_tfm *tfm, const u8 *in_key, - unsigned int key_len) -{ - struct aria_ctx *ctx = crypto_tfm_ctx(tfm); - - if (key_len != 16 && key_len != 24 && key_len != 32) - return -EINVAL; - - ctx->key_length = key_len; - ctx->rounds = (key_len + 32) / 4; - - aria_set_encrypt_key(ctx, in_key, key_len); - aria_set_decrypt_key(ctx); - - return 0; -} - -static void __aria_crypt(struct aria_ctx *ctx, u8 *out, const u8 *in, - u32 key[][ARIA_RD_KEY_WORDS]) -{ - const __be32 *src = (const __be32 *)in; - __be32 *dst = (__be32 *)out; - u32 reg0, reg1, reg2, reg3; - int rounds, rkidx = 0; - - rounds = ctx->rounds; - - reg0 = be32_to_cpu(src[0]); - reg1 = be32_to_cpu(src[1]); - reg2 = be32_to_cpu(src[2]); - reg3 = be32_to_cpu(src[3]); - - aria_add_round_key(key[rkidx], ®0, ®1, ®2, ®3); - rkidx++; - - aria_subst_diff_odd(®0, ®1, ®2, ®3); - aria_add_round_key(key[rkidx], ®0, ®1, ®2, ®3); - rkidx++; - - while ((rounds -= 2) > 0) { - aria_subst_diff_even(®0, ®1, ®2, ®3); - aria_add_round_key(key[rkidx], ®0, ®1, ®2, ®3); - rkidx++; - - aria_subst_diff_odd(®0, ®1, ®2, ®3); - aria_add_round_key(key[rkidx], ®0, ®1, ®2, ®3); - rkidx++; - } - - reg0 = key[rkidx][0] ^ make_u32((u8)(x1[get_u8(reg0, 0)]), - (u8)(x2[get_u8(reg0, 1)] >> 8), - (u8)(s1[get_u8(reg0, 2)]), - (u8)(s2[get_u8(reg0, 3)])); - reg1 = key[rkidx][1] ^ make_u32((u8)(x1[get_u8(reg1, 0)]), - (u8)(x2[get_u8(reg1, 1)] >> 8), - (u8)(s1[get_u8(reg1, 2)]), - (u8)(s2[get_u8(reg1, 3)])); - reg2 = key[rkidx][2] ^ make_u32((u8)(x1[get_u8(reg2, 0)]), - (u8)(x2[get_u8(reg2, 1)] >> 8), - (u8)(s1[get_u8(reg2, 2)]), - (u8)(s2[get_u8(reg2, 3)])); - reg3 = key[rkidx][3] ^ make_u32((u8)(x1[get_u8(reg3, 0)]), - (u8)(x2[get_u8(reg3, 1)] >> 8), - (u8)(s1[get_u8(reg3, 2)]), - (u8)(s2[get_u8(reg3, 3)])); - - dst[0] = cpu_to_be32(reg0); - dst[1] = cpu_to_be32(reg1); - dst[2] = cpu_to_be32(reg2); - dst[3] = cpu_to_be32(reg3); -} - -static void aria_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) -{ - struct aria_ctx *ctx = crypto_tfm_ctx(tfm); - - __aria_crypt(ctx, out, in, ctx->enc_key); -} - -static void aria_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) -{ - struct aria_ctx *ctx = crypto_tfm_ctx(tfm); - - __aria_crypt(ctx, out, in, ctx->dec_key); -} - -static struct crypto_alg aria_alg = { - .cra_name = "aria", - .cra_driver_name = "aria-generic", - .cra_priority = 100, - .cra_flags = CRYPTO_ALG_TYPE_CIPHER, - .cra_blocksize = ARIA_BLOCK_SIZE, - .cra_ctxsize = sizeof(struct aria_ctx), - .cra_alignmask = 3, - .cra_module = THIS_MODULE, - .cra_u = { - .cipher = { - .cia_min_keysize = ARIA_MIN_KEY_SIZE, - .cia_max_keysize = ARIA_MAX_KEY_SIZE, - .cia_setkey = aria_set_key, - .cia_encrypt = aria_encrypt, - .cia_decrypt = aria_decrypt - } - } -}; - -static int __init aria_init(void) -{ - return crypto_register_alg(&aria_alg); -} - -static void __exit aria_fini(void) -{ - crypto_unregister_alg(&aria_alg); -} - -subsys_initcall(aria_init); -module_exit(aria_fini); - -MODULE_DESCRIPTION("ARIA Cipher Algorithm"); -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Taehee Yoo "); -MODULE_ALIAS_CRYPTO("aria"); diff --git a/crypto/aria_generic.c b/crypto/aria_generic.c new file mode 100644 index 000000000000..4cc29b82b99d --- /dev/null +++ b/crypto/aria_generic.c @@ -0,0 +1,313 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Cryptographic API. + * + * ARIA Cipher Algorithm. + * + * Documentation of ARIA can be found in RFC 5794. + * Copyright (c) 2022 Taehee Yoo + * + * Information for ARIA + * http://210.104.33.10/ARIA/index-e.html (English) + * http://seed.kisa.or.kr/ (Korean) + * + * Public domain version is distributed above. + */ + +#include + +static const u32 key_rc[20] = { + 0x517cc1b7, 0x27220a94, 0xfe13abe8, 0xfa9a6ee0, + 0x6db14acc, 0x9e21c820, 0xff28b1d5, 0xef5de2b0, + 0xdb92371d, 0x2126e970, 0x03249775, 0x04e8c90e, + 0x517cc1b7, 0x27220a94, 0xfe13abe8, 0xfa9a6ee0, + 0x6db14acc, 0x9e21c820, 0xff28b1d5, 0xef5de2b0 +}; + +static void aria_set_encrypt_key(struct aria_ctx *ctx, const u8 *in_key, + unsigned int key_len) +{ + const __be32 *key = (const __be32 *)in_key; + u32 w0[4], w1[4], w2[4], w3[4]; + u32 reg0, reg1, reg2, reg3; + const u32 *ck; + int rkidx = 0; + + ck = &key_rc[(key_len - 16) / 2]; + + w0[0] = be32_to_cpu(key[0]); + w0[1] = be32_to_cpu(key[1]); + w0[2] = be32_to_cpu(key[2]); + w0[3] = be32_to_cpu(key[3]); + + reg0 = w0[0] ^ ck[0]; + reg1 = w0[1] ^ ck[1]; + reg2 = w0[2] ^ ck[2]; + reg3 = w0[3] ^ ck[3]; + + aria_subst_diff_odd(®0, ®1, ®2, ®3); + + if (key_len > 16) { + w1[0] = be32_to_cpu(key[4]); + w1[1] = be32_to_cpu(key[5]); + if (key_len > 24) { + w1[2] = be32_to_cpu(key[6]); + w1[3] = be32_to_cpu(key[7]); + } else { + w1[2] = 0; + w1[3] = 0; + } + } else { + w1[0] = 0; + w1[1] = 0; + w1[2] = 0; + w1[3] = 0; + } + + w1[0] ^= reg0; + w1[1] ^= reg1; + w1[2] ^= reg2; + w1[3] ^= reg3; + + reg0 = w1[0]; + reg1 = w1[1]; + reg2 = w1[2]; + reg3 = w1[3]; + + reg0 ^= ck[4]; + reg1 ^= ck[5]; + reg2 ^= ck[6]; + reg3 ^= ck[7]; + + aria_subst_diff_even(®0, ®1, ®2, ®3); + + reg0 ^= w0[0]; + reg1 ^= w0[1]; + reg2 ^= w0[2]; + reg3 ^= w0[3]; + + w2[0] = reg0; + w2[1] = reg1; + w2[2] = reg2; + w2[3] = reg3; + + reg0 ^= ck[8]; + reg1 ^= ck[9]; + reg2 ^= ck[10]; + reg3 ^= ck[11]; + + aria_subst_diff_odd(®0, ®1, ®2, ®3); + + w3[0] = reg0 ^ w1[0]; + w3[1] = reg1 ^ w1[1]; + w3[2] = reg2 ^ w1[2]; + w3[3] = reg3 ^ w1[3]; + + aria_gsrk(ctx->enc_key[rkidx], w0, w1, 19); + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w1, w2, 19); + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w2, w3, 19); + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w3, w0, 19); + + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w0, w1, 31); + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w1, w2, 31); + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w2, w3, 31); + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w3, w0, 31); + + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w0, w1, 67); + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w1, w2, 67); + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w2, w3, 67); + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w3, w0, 67); + + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w0, w1, 97); + if (key_len > 16) { + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w1, w2, 97); + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w2, w3, 97); + + if (key_len > 24) { + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w3, w0, 97); + + rkidx++; + aria_gsrk(ctx->enc_key[rkidx], w0, w1, 109); + } + } +} + +static void aria_set_decrypt_key(struct aria_ctx *ctx) +{ + int i; + + for (i = 0; i < 4; i++) { + ctx->dec_key[0][i] = ctx->enc_key[ctx->rounds][i]; + ctx->dec_key[ctx->rounds][i] = ctx->enc_key[0][i]; + } + + for (i = 1; i < ctx->rounds; i++) { + ctx->dec_key[i][0] = aria_m(ctx->enc_key[ctx->rounds - i][0]); + ctx->dec_key[i][1] = aria_m(ctx->enc_key[ctx->rounds - i][1]); + ctx->dec_key[i][2] = aria_m(ctx->enc_key[ctx->rounds - i][2]); + ctx->dec_key[i][3] = aria_m(ctx->enc_key[ctx->rounds - i][3]); + + aria_diff_word(&ctx->dec_key[i][0], &ctx->dec_key[i][1], + &ctx->dec_key[i][2], &ctx->dec_key[i][3]); + aria_diff_byte(&ctx->dec_key[i][1], + &ctx->dec_key[i][2], &ctx->dec_key[i][3]); + aria_diff_word(&ctx->dec_key[i][0], &ctx->dec_key[i][1], + &ctx->dec_key[i][2], &ctx->dec_key[i][3]); + } +} + +int aria_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) +{ + struct aria_ctx *ctx = crypto_tfm_ctx(tfm); + + if (key_len != 16 && key_len != 24 && key_len != 32) + return -EINVAL; + + ctx->key_length = key_len; + ctx->rounds = (key_len + 32) / 4; + + aria_set_encrypt_key(ctx, in_key, key_len); + aria_set_decrypt_key(ctx); + + return 0; +} +EXPORT_SYMBOL_GPL(aria_set_key); + +static void __aria_crypt(struct aria_ctx *ctx, u8 *out, const u8 *in, + u32 key[][ARIA_RD_KEY_WORDS]) +{ + const __be32 *src = (const __be32 *)in; + __be32 *dst = (__be32 *)out; + u32 reg0, reg1, reg2, reg3; + int rounds, rkidx = 0; + + rounds = ctx->rounds; + + reg0 = be32_to_cpu(src[0]); + reg1 = be32_to_cpu(src[1]); + reg2 = be32_to_cpu(src[2]); + reg3 = be32_to_cpu(src[3]); + + aria_add_round_key(key[rkidx], ®0, ®1, ®2, ®3); + rkidx++; + + aria_subst_diff_odd(®0, ®1, ®2, ®3); + aria_add_round_key(key[rkidx], ®0, ®1, ®2, ®3); + rkidx++; + + while ((rounds -= 2) > 0) { + aria_subst_diff_even(®0, ®1, ®2, ®3); + aria_add_round_key(key[rkidx], ®0, ®1, ®2, ®3); + rkidx++; + + aria_subst_diff_odd(®0, ®1, ®2, ®3); + aria_add_round_key(key[rkidx], ®0, ®1, ®2, ®3); + rkidx++; + } + + reg0 = key[rkidx][0] ^ make_u32((u8)(x1[get_u8(reg0, 0)]), + (u8)(x2[get_u8(reg0, 1)] >> 8), + (u8)(s1[get_u8(reg0, 2)]), + (u8)(s2[get_u8(reg0, 3)])); + reg1 = key[rkidx][1] ^ make_u32((u8)(x1[get_u8(reg1, 0)]), + (u8)(x2[get_u8(reg1, 1)] >> 8), + (u8)(s1[get_u8(reg1, 2)]), + (u8)(s2[get_u8(reg1, 3)])); + reg2 = key[rkidx][2] ^ make_u32((u8)(x1[get_u8(reg2, 0)]), + (u8)(x2[get_u8(reg2, 1)] >> 8), + (u8)(s1[get_u8(reg2, 2)]), + (u8)(s2[get_u8(reg2, 3)])); + reg3 = key[rkidx][3] ^ make_u32((u8)(x1[get_u8(reg3, 0)]), + (u8)(x2[get_u8(reg3, 1)] >> 8), + (u8)(s1[get_u8(reg3, 2)]), + (u8)(s2[get_u8(reg3, 3)])); + + dst[0] = cpu_to_be32(reg0); + dst[1] = cpu_to_be32(reg1); + dst[2] = cpu_to_be32(reg2); + dst[3] = cpu_to_be32(reg3); +} + +void aria_encrypt(void *_ctx, u8 *out, const u8 *in) +{ + struct aria_ctx *ctx = (struct aria_ctx *)_ctx; + + __aria_crypt(ctx, out, in, ctx->enc_key); +} +EXPORT_SYMBOL_GPL(aria_encrypt); + +void aria_decrypt(void *_ctx, u8 *out, const u8 *in) +{ + struct aria_ctx *ctx = (struct aria_ctx *)_ctx; + + __aria_crypt(ctx, out, in, ctx->dec_key); +} +EXPORT_SYMBOL_GPL(aria_decrypt); + +static void __aria_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) +{ + struct aria_ctx *ctx = crypto_tfm_ctx(tfm); + + __aria_crypt(ctx, out, in, ctx->enc_key); +} + +static void __aria_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) +{ + struct aria_ctx *ctx = crypto_tfm_ctx(tfm); + + __aria_crypt(ctx, out, in, ctx->dec_key); +} + +static struct crypto_alg aria_alg = { + .cra_name = "aria", + .cra_driver_name = "aria-generic", + .cra_priority = 100, + .cra_flags = CRYPTO_ALG_TYPE_CIPHER, + .cra_blocksize = ARIA_BLOCK_SIZE, + .cra_ctxsize = sizeof(struct aria_ctx), + .cra_alignmask = 3, + .cra_module = THIS_MODULE, + .cra_u = { + .cipher = { + .cia_min_keysize = ARIA_MIN_KEY_SIZE, + .cia_max_keysize = ARIA_MAX_KEY_SIZE, + .cia_setkey = aria_set_key, + .cia_encrypt = __aria_encrypt, + .cia_decrypt = __aria_decrypt + } + } +}; + +static int __init aria_init(void) +{ + return crypto_register_alg(&aria_alg); +} + +static void __exit aria_fini(void) +{ + crypto_unregister_alg(&aria_alg); +} + +subsys_initcall(aria_init); +module_exit(aria_fini); + +MODULE_DESCRIPTION("ARIA Cipher Algorithm"); +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Taehee Yoo "); +MODULE_ALIAS_CRYPTO("aria"); +MODULE_ALIAS_CRYPTO("aria-generic"); -- cgit From c4b1ce72b5c9f7d5772b2f2d4efa25ef0e6fb576 Mon Sep 17 00:00:00 2001 From: Taehee Yoo Date: Fri, 16 Sep 2022 12:57:36 +0000 Subject: crypto: tcrypt - add async speed test for aria cipher In order to test for the performance of aria-avx implementation, it needs an async speed test. So, it adds async speed tests to the tcrypt. Signed-off-by: Taehee Yoo Signed-off-by: Herbert Xu --- crypto/tcrypt.c | 30 ++++++++++++++++++++++++++++++ 1 file changed, 30 insertions(+) (limited to 'crypto') diff --git a/crypto/tcrypt.c b/crypto/tcrypt.c index e85f623c3c54..a82679b576bb 100644 --- a/crypto/tcrypt.c +++ b/crypto/tcrypt.c @@ -2205,6 +2205,13 @@ static int do_test(const char *alg, u32 type, u32 mask, int m, u32 num_mb) NULL, 0, 16, 8, speed_template_16_24_32); break; + case 229: + test_mb_aead_speed("gcm(aria)", ENCRYPT, sec, NULL, 0, 16, 8, + speed_template_16, num_mb); + test_mb_aead_speed("gcm(aria)", DECRYPT, sec, NULL, 0, 16, 8, + speed_template_16, num_mb); + break; + case 300: if (alg) { test_hash_speed(alg, sec, generic_hash_speed_template); @@ -2625,6 +2632,17 @@ static int do_test(const char *alg, u32 type, u32 mask, int m, u32 num_mb) speed_template_16); break; + case 519: + test_acipher_speed("ecb(aria)", ENCRYPT, sec, NULL, 0, + speed_template_16_24_32); + test_acipher_speed("ecb(aria)", DECRYPT, sec, NULL, 0, + speed_template_16_24_32); + test_acipher_speed("ctr(aria)", ENCRYPT, sec, NULL, 0, + speed_template_16_24_32); + test_acipher_speed("ctr(aria)", DECRYPT, sec, NULL, 0, + speed_template_16_24_32); + break; + case 600: test_mb_skcipher_speed("ecb(aes)", ENCRYPT, sec, NULL, 0, speed_template_16_24_32, num_mb); @@ -2836,6 +2854,18 @@ static int do_test(const char *alg, u32 type, u32 mask, int m, u32 num_mb) test_mb_skcipher_speed("ctr(blowfish)", DECRYPT, sec, NULL, 0, speed_template_8_32, num_mb); break; + + case 610: + test_mb_skcipher_speed("ecb(aria)", ENCRYPT, sec, NULL, 0, + speed_template_16_32, num_mb); + test_mb_skcipher_speed("ecb(aria)", DECRYPT, sec, NULL, 0, + speed_template_16_32, num_mb); + test_mb_skcipher_speed("ctr(aria)", ENCRYPT, sec, NULL, 0, + speed_template_16_32, num_mb); + test_mb_skcipher_speed("ctr(aria)", DECRYPT, sec, NULL, 0, + speed_template_16_32, num_mb); + break; + } return ret; -- cgit From 440fed95ebc30420d1f7802c6578f95e18523140 Mon Sep 17 00:00:00 2001 From: Alexander Potapenko Date: Thu, 15 Sep 2022 17:04:00 +0200 Subject: crypto: kmsan: disable accelerated configs under KMSAN KMSAN is unable to understand when initialized values come from assembly. Disable accelerated configs in KMSAN builds to prevent false positive reports. Link: https://lkml.kernel.org/r/20220915150417.722975-27-glider@google.com Signed-off-by: Alexander Potapenko Cc: Alexander Viro Cc: Alexei Starovoitov Cc: Andrey Konovalov Cc: Andrey Konovalov Cc: Andy Lutomirski Cc: Arnd Bergmann Cc: Borislav Petkov Cc: Christoph Hellwig Cc: Christoph Lameter Cc: David Rientjes Cc: Dmitry Vyukov Cc: Eric Biggers Cc: Eric Biggers Cc: Eric Dumazet Cc: Greg Kroah-Hartman Cc: Herbert Xu Cc: Ilya Leoshkevich Cc: Ingo Molnar Cc: Jens Axboe Cc: Joonsoo Kim Cc: Kees Cook Cc: Marco Elver Cc: Mark Rutland Cc: Matthew Wilcox Cc: Michael S. Tsirkin Cc: Pekka Enberg Cc: Peter Zijlstra Cc: Petr Mladek Cc: Stephen Rothwell Cc: Steven Rostedt Cc: Thomas Gleixner Cc: Vasily Gorbik Cc: Vegard Nossum Cc: Vlastimil Babka Signed-off-by: Andrew Morton --- crypto/Kconfig | 30 ++++++++++++++++++++++++++++++ 1 file changed, 30 insertions(+) (limited to 'crypto') diff --git a/crypto/Kconfig b/crypto/Kconfig index bb427a835e44..182fb817ebb5 100644 --- a/crypto/Kconfig +++ b/crypto/Kconfig @@ -319,6 +319,7 @@ config CRYPTO_CURVE25519 config CRYPTO_CURVE25519_X86 tristate "x86_64 accelerated Curve25519 scalar multiplication library" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_LIB_CURVE25519_GENERIC select CRYPTO_ARCH_HAVE_LIB_CURVE25519 @@ -367,11 +368,13 @@ config CRYPTO_AEGIS128 config CRYPTO_AEGIS128_SIMD bool "Support SIMD acceleration for AEGIS-128" depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) + depends on !KMSAN # avoid false positives from assembly default y config CRYPTO_AEGIS128_AESNI_SSE2 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_AEAD select CRYPTO_SIMD help @@ -517,6 +520,7 @@ config CRYPTO_NHPOLY1305 config CRYPTO_NHPOLY1305_SSE2 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_NHPOLY1305 help SSE2 optimized implementation of the hash function used by the @@ -525,6 +529,7 @@ config CRYPTO_NHPOLY1305_SSE2 config CRYPTO_NHPOLY1305_AVX2 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_NHPOLY1305 help AVX2 optimized implementation of the hash function used by the @@ -649,6 +654,7 @@ config CRYPTO_CRC32C config CRYPTO_CRC32C_INTEL tristate "CRC32c INTEL hardware acceleration" depends on X86 + depends on !KMSAN # avoid false positives from assembly select CRYPTO_HASH help In Intel processor with SSE4.2 supported, the processor will @@ -689,6 +695,7 @@ config CRYPTO_CRC32 config CRYPTO_CRC32_PCLMUL tristate "CRC32 PCLMULQDQ hardware acceleration" depends on X86 + depends on !KMSAN # avoid false positives from assembly select CRYPTO_HASH select CRC32 help @@ -748,6 +755,7 @@ config CRYPTO_BLAKE2B config CRYPTO_BLAKE2S_X86 bool "BLAKE2s digest algorithm (x86 accelerated version)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_LIB_BLAKE2S_GENERIC select CRYPTO_ARCH_HAVE_LIB_BLAKE2S @@ -762,6 +770,7 @@ config CRYPTO_CRCT10DIF config CRYPTO_CRCT10DIF_PCLMUL tristate "CRCT10DIF PCLMULQDQ hardware acceleration" depends on X86 && 64BIT && CRC_T10DIF + depends on !KMSAN # avoid false positives from assembly select CRYPTO_HASH help For x86_64 processors with SSE4.2 and PCLMULQDQ supported, @@ -831,6 +840,7 @@ config CRYPTO_POLY1305 config CRYPTO_POLY1305_X86_64 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_LIB_POLY1305_GENERIC select CRYPTO_ARCH_HAVE_LIB_POLY1305 help @@ -920,6 +930,7 @@ config CRYPTO_SHA1 config CRYPTO_SHA1_SSSE3 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SHA1 select CRYPTO_HASH help @@ -931,6 +942,7 @@ config CRYPTO_SHA1_SSSE3 config CRYPTO_SHA256_SSSE3 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SHA256 select CRYPTO_HASH help @@ -943,6 +955,7 @@ config CRYPTO_SHA256_SSSE3 config CRYPTO_SHA512_SSSE3 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SHA512 select CRYPTO_HASH help @@ -1168,6 +1181,7 @@ config CRYPTO_WP512 config CRYPTO_GHASH_CLMUL_NI_INTEL tristate "GHASH hash function (CLMUL-NI accelerated)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_CRYPTD help This is the x86_64 CLMUL-NI accelerated implementation of @@ -1228,6 +1242,7 @@ config CRYPTO_AES_TI config CRYPTO_AES_NI_INTEL tristate "AES cipher algorithms (AES-NI)" depends on X86 + depends on !KMSAN # avoid false positives from assembly select CRYPTO_AEAD select CRYPTO_LIB_AES select CRYPTO_ALGAPI @@ -1369,6 +1384,7 @@ config CRYPTO_BLOWFISH_COMMON config CRYPTO_BLOWFISH_X86_64 tristate "Blowfish cipher algorithm (x86_64)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SKCIPHER select CRYPTO_BLOWFISH_COMMON imply CRYPTO_CTR @@ -1399,6 +1415,7 @@ config CRYPTO_CAMELLIA config CRYPTO_CAMELLIA_X86_64 tristate "Camellia cipher algorithm (x86_64)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SKCIPHER imply CRYPTO_CTR help @@ -1415,6 +1432,7 @@ config CRYPTO_CAMELLIA_X86_64 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SKCIPHER select CRYPTO_CAMELLIA_X86_64 select CRYPTO_SIMD @@ -1433,6 +1451,7 @@ config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 help Camellia cipher algorithm module (x86_64/AES-NI/AVX2). @@ -1478,6 +1497,7 @@ config CRYPTO_CAST5 config CRYPTO_CAST5_AVX_X86_64 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SKCIPHER select CRYPTO_CAST5 select CRYPTO_CAST_COMMON @@ -1501,6 +1521,7 @@ config CRYPTO_CAST6 config CRYPTO_CAST6_AVX_X86_64 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SKCIPHER select CRYPTO_CAST6 select CRYPTO_CAST_COMMON @@ -1534,6 +1555,7 @@ config CRYPTO_DES_SPARC64 config CRYPTO_DES3_EDE_X86_64 tristate "Triple DES EDE cipher algorithm (x86-64)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SKCIPHER select CRYPTO_LIB_DES imply CRYPTO_CTR @@ -1604,6 +1626,7 @@ config CRYPTO_CHACHA20 config CRYPTO_CHACHA20_X86_64 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SKCIPHER select CRYPTO_LIB_CHACHA_GENERIC select CRYPTO_ARCH_HAVE_LIB_CHACHA @@ -1674,6 +1697,7 @@ config CRYPTO_SERPENT config CRYPTO_SERPENT_SSE2_X86_64 tristate "Serpent cipher algorithm (x86_64/SSE2)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SKCIPHER select CRYPTO_SERPENT select CRYPTO_SIMD @@ -1693,6 +1717,7 @@ config CRYPTO_SERPENT_SSE2_X86_64 config CRYPTO_SERPENT_SSE2_586 tristate "Serpent cipher algorithm (i586/SSE2)" depends on X86 && !64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SKCIPHER select CRYPTO_SERPENT select CRYPTO_SIMD @@ -1712,6 +1737,7 @@ config CRYPTO_SERPENT_SSE2_586 config CRYPTO_SERPENT_AVX_X86_64 tristate "Serpent cipher algorithm (x86_64/AVX)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SKCIPHER select CRYPTO_SERPENT select CRYPTO_SIMD @@ -1732,6 +1758,7 @@ config CRYPTO_SERPENT_AVX_X86_64 config CRYPTO_SERPENT_AVX2_X86_64 tristate "Serpent cipher algorithm (x86_64/AVX2)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SERPENT_AVX_X86_64 help Serpent cipher algorithm, by Anderson, Biham & Knudsen. @@ -1876,6 +1903,7 @@ config CRYPTO_TWOFISH_586 config CRYPTO_TWOFISH_X86_64 tristate "Twofish cipher algorithm (x86_64)" depends on (X86 || UML_X86) && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_ALGAPI select CRYPTO_TWOFISH_COMMON imply CRYPTO_CTR @@ -1893,6 +1921,7 @@ config CRYPTO_TWOFISH_X86_64 config CRYPTO_TWOFISH_X86_64_3WAY tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SKCIPHER select CRYPTO_TWOFISH_COMMON select CRYPTO_TWOFISH_X86_64 @@ -1913,6 +1942,7 @@ config CRYPTO_TWOFISH_X86_64_3WAY config CRYPTO_TWOFISH_AVX_X86_64 tristate "Twofish cipher algorithm (x86_64/AVX)" depends on X86 && 64BIT + depends on !KMSAN # avoid false positives from assembly select CRYPTO_SKCIPHER select CRYPTO_SIMD select CRYPTO_TWOFISH_COMMON -- cgit From 81895a65ec63ee1daec3255dc1a06675d2fbe915 Mon Sep 17 00:00:00 2001 From: "Jason A. Donenfeld" Date: Wed, 5 Oct 2022 16:43:38 +0200 Subject: treewide: use prandom_u32_max() when possible, part 1 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Rather than incurring a division or requesting too many random bytes for the given range, use the prandom_u32_max() function, which only takes the minimum required bytes from the RNG and avoids divisions. This was done mechanically with this coccinelle script: @basic@ expression E; type T; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u64; @@ ( - ((T)get_random_u32() % (E)) + prandom_u32_max(E) | - ((T)get_random_u32() & ((E) - 1)) + prandom_u32_max(E * XXX_MAKE_SURE_E_IS_POW2) | - ((u64)(E) * get_random_u32() >> 32) + prandom_u32_max(E) | - ((T)get_random_u32() & ~PAGE_MASK) + prandom_u32_max(PAGE_SIZE) ) @multi_line@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; identifier RAND; expression E; @@ - RAND = get_random_u32(); ... when != RAND - RAND %= (E); + RAND = prandom_u32_max(E); // Find a potential literal @literal_mask@ expression LITERAL; type T; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; position p; @@ ((T)get_random_u32()@p & (LITERAL)) // Add one to the literal. @script:python add_one@ literal << literal_mask.LITERAL; RESULT; @@ value = None if literal.startswith('0x'): value = int(literal, 16) elif literal[0] in '123456789': value = int(literal, 10) if value is None: print("I don't know how to handle %s" % (literal)) cocci.include_match(False) elif value == 2**32 - 1 or value == 2**31 - 1 or value == 2**24 - 1 or value == 2**16 - 1 or value == 2**8 - 1: print("Skipping 0x%x for cleanup elsewhere" % (value)) cocci.include_match(False) elif value & (value + 1) != 0: print("Skipping 0x%x because it's not a power of two minus one" % (value)) cocci.include_match(False) elif literal.startswith('0x'): coccinelle.RESULT = cocci.make_expr("0x%x" % (value + 1)) else: coccinelle.RESULT = cocci.make_expr("%d" % (value + 1)) // Replace the literal mask with the calculated result. @plus_one@ expression literal_mask.LITERAL; position literal_mask.p; expression add_one.RESULT; identifier FUNC; @@ - (FUNC()@p & (LITERAL)) + prandom_u32_max(RESULT) @collapse_ret@ type T; identifier VAR; expression E; @@ { - T VAR; - VAR = (E); - return VAR; + return E; } @drop_var@ type T; identifier VAR; @@ { - T VAR; ... when != VAR } Reviewed-by: Greg Kroah-Hartman Reviewed-by: Kees Cook Reviewed-by: Yury Norov Reviewed-by: KP Singh Reviewed-by: Jan Kara # for ext4 and sbitmap Reviewed-by: Christoph Böhmwalder # for drbd Acked-by: Jakub Kicinski Acked-by: Heiko Carstens # for s390 Acked-by: Ulf Hansson # for mmc Acked-by: Darrick J. Wong # for xfs Signed-off-by: Jason A. Donenfeld --- crypto/testmgr.c | 86 ++++++++++++++++++++++++++++---------------------------- 1 file changed, 43 insertions(+), 43 deletions(-) (limited to 'crypto') diff --git a/crypto/testmgr.c b/crypto/testmgr.c index e4bb03b8b924..bff4833dbe7c 100644 --- a/crypto/testmgr.c +++ b/crypto/testmgr.c @@ -855,9 +855,9 @@ static int prepare_keybuf(const u8 *key, unsigned int ksize, /* Generate a random length in range [0, max_len], but prefer smaller values */ static unsigned int generate_random_length(unsigned int max_len) { - unsigned int len = prandom_u32() % (max_len + 1); + unsigned int len = prandom_u32_max(max_len + 1); - switch (prandom_u32() % 4) { + switch (prandom_u32_max(4)) { case 0: return len % 64; case 1: @@ -874,14 +874,14 @@ static void flip_random_bit(u8 *buf, size_t size) { size_t bitpos; - bitpos = prandom_u32() % (size * 8); + bitpos = prandom_u32_max(size * 8); buf[bitpos / 8] ^= 1 << (bitpos % 8); } /* Flip a random byte in the given nonempty data buffer */ static void flip_random_byte(u8 *buf, size_t size) { - buf[prandom_u32() % size] ^= 0xff; + buf[prandom_u32_max(size)] ^= 0xff; } /* Sometimes make some random changes to the given nonempty data buffer */ @@ -891,15 +891,15 @@ static void mutate_buffer(u8 *buf, size_t size) size_t i; /* Sometimes flip some bits */ - if (prandom_u32() % 4 == 0) { - num_flips = min_t(size_t, 1 << (prandom_u32() % 8), size * 8); + if (prandom_u32_max(4) == 0) { + num_flips = min_t(size_t, 1 << prandom_u32_max(8), size * 8); for (i = 0; i < num_flips; i++) flip_random_bit(buf, size); } /* Sometimes flip some bytes */ - if (prandom_u32() % 4 == 0) { - num_flips = min_t(size_t, 1 << (prandom_u32() % 8), size); + if (prandom_u32_max(4) == 0) { + num_flips = min_t(size_t, 1 << prandom_u32_max(8), size); for (i = 0; i < num_flips; i++) flip_random_byte(buf, size); } @@ -915,11 +915,11 @@ static void generate_random_bytes(u8 *buf, size_t count) if (count == 0) return; - switch (prandom_u32() % 8) { /* Choose a generation strategy */ + switch (prandom_u32_max(8)) { /* Choose a generation strategy */ case 0: case 1: /* All the same byte, plus optional mutations */ - switch (prandom_u32() % 4) { + switch (prandom_u32_max(4)) { case 0: b = 0x00; break; @@ -959,24 +959,24 @@ static char *generate_random_sgl_divisions(struct test_sg_division *divs, unsigned int this_len; const char *flushtype_str; - if (div == &divs[max_divs - 1] || prandom_u32() % 2 == 0) + if (div == &divs[max_divs - 1] || prandom_u32_max(2) == 0) this_len = remaining; else - this_len = 1 + (prandom_u32() % remaining); + this_len = 1 + prandom_u32_max(remaining); div->proportion_of_total = this_len; - if (prandom_u32() % 4 == 0) - div->offset = (PAGE_SIZE - 128) + (prandom_u32() % 128); - else if (prandom_u32() % 2 == 0) - div->offset = prandom_u32() % 32; + if (prandom_u32_max(4) == 0) + div->offset = (PAGE_SIZE - 128) + prandom_u32_max(128); + else if (prandom_u32_max(2) == 0) + div->offset = prandom_u32_max(32); else - div->offset = prandom_u32() % PAGE_SIZE; - if (prandom_u32() % 8 == 0) + div->offset = prandom_u32_max(PAGE_SIZE); + if (prandom_u32_max(8) == 0) div->offset_relative_to_alignmask = true; div->flush_type = FLUSH_TYPE_NONE; if (gen_flushes) { - switch (prandom_u32() % 4) { + switch (prandom_u32_max(4)) { case 0: div->flush_type = FLUSH_TYPE_REIMPORT; break; @@ -988,7 +988,7 @@ static char *generate_random_sgl_divisions(struct test_sg_division *divs, if (div->flush_type != FLUSH_TYPE_NONE && !(req_flags & CRYPTO_TFM_REQ_MAY_SLEEP) && - prandom_u32() % 2 == 0) + prandom_u32_max(2) == 0) div->nosimd = true; switch (div->flush_type) { @@ -1035,7 +1035,7 @@ static void generate_random_testvec_config(struct testvec_config *cfg, p += scnprintf(p, end - p, "random:"); - switch (prandom_u32() % 4) { + switch (prandom_u32_max(4)) { case 0: case 1: cfg->inplace_mode = OUT_OF_PLACE; @@ -1050,12 +1050,12 @@ static void generate_random_testvec_config(struct testvec_config *cfg, break; } - if (prandom_u32() % 2 == 0) { + if (prandom_u32_max(2) == 0) { cfg->req_flags |= CRYPTO_TFM_REQ_MAY_SLEEP; p += scnprintf(p, end - p, " may_sleep"); } - switch (prandom_u32() % 4) { + switch (prandom_u32_max(4)) { case 0: cfg->finalization_type = FINALIZATION_TYPE_FINAL; p += scnprintf(p, end - p, " use_final"); @@ -1071,7 +1071,7 @@ static void generate_random_testvec_config(struct testvec_config *cfg, } if (!(cfg->req_flags & CRYPTO_TFM_REQ_MAY_SLEEP) && - prandom_u32() % 2 == 0) { + prandom_u32_max(2) == 0) { cfg->nosimd = true; p += scnprintf(p, end - p, " nosimd"); } @@ -1084,7 +1084,7 @@ static void generate_random_testvec_config(struct testvec_config *cfg, cfg->req_flags); p += scnprintf(p, end - p, "]"); - if (cfg->inplace_mode == OUT_OF_PLACE && prandom_u32() % 2 == 0) { + if (cfg->inplace_mode == OUT_OF_PLACE && prandom_u32_max(2) == 0) { p += scnprintf(p, end - p, " dst_divs=["); p = generate_random_sgl_divisions(cfg->dst_divs, ARRAY_SIZE(cfg->dst_divs), @@ -1093,13 +1093,13 @@ static void generate_random_testvec_config(struct testvec_config *cfg, p += scnprintf(p, end - p, "]"); } - if (prandom_u32() % 2 == 0) { - cfg->iv_offset = 1 + (prandom_u32() % MAX_ALGAPI_ALIGNMASK); + if (prandom_u32_max(2) == 0) { + cfg->iv_offset = 1 + prandom_u32_max(MAX_ALGAPI_ALIGNMASK); p += scnprintf(p, end - p, " iv_offset=%u", cfg->iv_offset); } - if (prandom_u32() % 2 == 0) { - cfg->key_offset = 1 + (prandom_u32() % MAX_ALGAPI_ALIGNMASK); + if (prandom_u32_max(2) == 0) { + cfg->key_offset = 1 + prandom_u32_max(MAX_ALGAPI_ALIGNMASK); p += scnprintf(p, end - p, " key_offset=%u", cfg->key_offset); } @@ -1652,8 +1652,8 @@ static void generate_random_hash_testvec(struct shash_desc *desc, vec->ksize = 0; if (maxkeysize) { vec->ksize = maxkeysize; - if (prandom_u32() % 4 == 0) - vec->ksize = 1 + (prandom_u32() % maxkeysize); + if (prandom_u32_max(4) == 0) + vec->ksize = 1 + prandom_u32_max(maxkeysize); generate_random_bytes((u8 *)vec->key, vec->ksize); vec->setkey_error = crypto_shash_setkey(desc->tfm, vec->key, @@ -2218,13 +2218,13 @@ static void mutate_aead_message(struct aead_testvec *vec, bool aad_iv, const unsigned int aad_tail_size = aad_iv ? ivsize : 0; const unsigned int authsize = vec->clen - vec->plen; - if (prandom_u32() % 2 == 0 && vec->alen > aad_tail_size) { + if (prandom_u32_max(2) == 0 && vec->alen > aad_tail_size) { /* Mutate the AAD */ flip_random_bit((u8 *)vec->assoc, vec->alen - aad_tail_size); - if (prandom_u32() % 2 == 0) + if (prandom_u32_max(2) == 0) return; } - if (prandom_u32() % 2 == 0) { + if (prandom_u32_max(2) == 0) { /* Mutate auth tag (assuming it's at the end of ciphertext) */ flip_random_bit((u8 *)vec->ctext + vec->plen, authsize); } else { @@ -2249,7 +2249,7 @@ static void generate_aead_message(struct aead_request *req, const unsigned int ivsize = crypto_aead_ivsize(tfm); const unsigned int authsize = vec->clen - vec->plen; const bool inauthentic = (authsize >= MIN_COLLISION_FREE_AUTHSIZE) && - (prefer_inauthentic || prandom_u32() % 4 == 0); + (prefer_inauthentic || prandom_u32_max(4) == 0); /* Generate the AAD. */ generate_random_bytes((u8 *)vec->assoc, vec->alen); @@ -2257,7 +2257,7 @@ static void generate_aead_message(struct aead_request *req, /* Avoid implementation-defined behavior. */ memcpy((u8 *)vec->assoc + vec->alen - ivsize, vec->iv, ivsize); - if (inauthentic && prandom_u32() % 2 == 0) { + if (inauthentic && prandom_u32_max(2) == 0) { /* Generate a random ciphertext. */ generate_random_bytes((u8 *)vec->ctext, vec->clen); } else { @@ -2321,8 +2321,8 @@ static void generate_random_aead_testvec(struct aead_request *req, /* Key: length in [0, maxkeysize], but usually choose maxkeysize */ vec->klen = maxkeysize; - if (prandom_u32() % 4 == 0) - vec->klen = prandom_u32() % (maxkeysize + 1); + if (prandom_u32_max(4) == 0) + vec->klen = prandom_u32_max(maxkeysize + 1); generate_random_bytes((u8 *)vec->key, vec->klen); vec->setkey_error = crypto_aead_setkey(tfm, vec->key, vec->klen); @@ -2331,8 +2331,8 @@ static void generate_random_aead_testvec(struct aead_request *req, /* Tag length: in [0, maxauthsize], but usually choose maxauthsize */ authsize = maxauthsize; - if (prandom_u32() % 4 == 0) - authsize = prandom_u32() % (maxauthsize + 1); + if (prandom_u32_max(4) == 0) + authsize = prandom_u32_max(maxauthsize + 1); if (prefer_inauthentic && authsize < MIN_COLLISION_FREE_AUTHSIZE) authsize = MIN_COLLISION_FREE_AUTHSIZE; if (WARN_ON(authsize > maxdatasize)) @@ -2342,7 +2342,7 @@ static void generate_random_aead_testvec(struct aead_request *req, /* AAD, plaintext, and ciphertext lengths */ total_len = generate_random_length(maxdatasize); - if (prandom_u32() % 4 == 0) + if (prandom_u32_max(4) == 0) vec->alen = 0; else vec->alen = generate_random_length(total_len); @@ -2958,8 +2958,8 @@ static void generate_random_cipher_testvec(struct skcipher_request *req, /* Key: length in [0, maxkeysize], but usually choose maxkeysize */ vec->klen = maxkeysize; - if (prandom_u32() % 4 == 0) - vec->klen = prandom_u32() % (maxkeysize + 1); + if (prandom_u32_max(4) == 0) + vec->klen = prandom_u32_max(maxkeysize + 1); generate_random_bytes((u8 *)vec->key, vec->klen); vec->setkey_error = crypto_skcipher_setkey(tfm, vec->key, vec->klen); -- cgit From 7e3cf0843fe505491baa05e355e83e6997e089dd Mon Sep 17 00:00:00 2001 From: "Jason A. Donenfeld" Date: Wed, 5 Oct 2022 17:23:53 +0200 Subject: treewide: use get_random_{u8,u16}() when possible, part 1 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Rather than truncate a 32-bit value to a 16-bit value or an 8-bit value, simply use the get_random_{u8,u16}() functions, which are faster than wasting the additional bytes from a 32-bit value. This was done mechanically with this coccinelle script: @@ expression E; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u16; typedef __be16; typedef __le16; typedef u8; @@ ( - (get_random_u32() & 0xffff) + get_random_u16() | - (get_random_u32() & 0xff) + get_random_u8() | - (get_random_u32() % 65536) + get_random_u16() | - (get_random_u32() % 256) + get_random_u8() | - (get_random_u32() >> 16) + get_random_u16() | - (get_random_u32() >> 24) + get_random_u8() | - (u16)get_random_u32() + get_random_u16() | - (u8)get_random_u32() + get_random_u8() | - (__be16)get_random_u32() + (__be16)get_random_u16() | - (__le16)get_random_u32() + (__le16)get_random_u16() | - prandom_u32_max(65536) + get_random_u16() | - prandom_u32_max(256) + get_random_u8() | - E->inet_id = get_random_u32() + E->inet_id = get_random_u16() ) @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u16; identifier v; @@ - u16 v = get_random_u32(); + u16 v = get_random_u16(); @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u8; identifier v; @@ - u8 v = get_random_u32(); + u8 v = get_random_u8(); @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u16; u16 v; @@ - v = get_random_u32(); + v = get_random_u16(); @@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u8; u8 v; @@ - v = get_random_u32(); + v = get_random_u8(); // Find a potential literal @literal_mask@ expression LITERAL; type T; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; position p; @@ ((T)get_random_u32()@p & (LITERAL)) // Examine limits @script:python add_one@ literal << literal_mask.LITERAL; RESULT; @@ value = None if literal.startswith('0x'): value = int(literal, 16) elif literal[0] in '123456789': value = int(literal, 10) if value is None: print("I don't know how to handle %s" % (literal)) cocci.include_match(False) elif value < 256: coccinelle.RESULT = cocci.make_ident("get_random_u8") elif value < 65536: coccinelle.RESULT = cocci.make_ident("get_random_u16") else: print("Skipping large mask of %s" % (literal)) cocci.include_match(False) // Replace the literal mask with the calculated result. @plus_one@ expression literal_mask.LITERAL; position literal_mask.p; identifier add_one.RESULT; identifier FUNC; @@ - (FUNC()@p & (LITERAL)) + (RESULT() & LITERAL) Reviewed-by: Greg Kroah-Hartman Reviewed-by: Kees Cook Reviewed-by: Yury Norov Acked-by: Jakub Kicinski Acked-by: Toke Høiland-Jørgensen # for sch_cake Signed-off-by: Jason A. Donenfeld --- crypto/testmgr.c | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'crypto') diff --git a/crypto/testmgr.c b/crypto/testmgr.c index bff4833dbe7c..bcd059caa1c8 100644 --- a/crypto/testmgr.c +++ b/crypto/testmgr.c @@ -927,7 +927,7 @@ static void generate_random_bytes(u8 *buf, size_t count) b = 0xff; break; default: - b = (u8)prandom_u32(); + b = get_random_u8(); break; } memset(buf, b, count); @@ -935,8 +935,8 @@ static void generate_random_bytes(u8 *buf, size_t count) break; case 2: /* Ascending or descending bytes, plus optional mutations */ - increment = (u8)prandom_u32(); - b = (u8)prandom_u32(); + increment = get_random_u8(); + b = get_random_u8(); for (i = 0; i < count; i++, b += increment) buf[i] = b; mutate_buffer(buf, count); @@ -944,7 +944,7 @@ static void generate_random_bytes(u8 *buf, size_t count) default: /* Fully random bytes */ for (i = 0; i < count; i++) - buf[i] = (u8)prandom_u32(); + buf[i] = get_random_u8(); } } -- cgit From 197173db990cad244221ba73c43b1df6170ae278 Mon Sep 17 00:00:00 2001 From: "Jason A. Donenfeld" Date: Wed, 5 Oct 2022 17:49:46 +0200 Subject: treewide: use get_random_bytes() when possible The prandom_bytes() function has been a deprecated inline wrapper around get_random_bytes() for several releases now, and compiles down to the exact same code. Replace the deprecated wrapper with a direct call to the real function. This was done as a basic find and replace. Reviewed-by: Greg Kroah-Hartman Reviewed-by: Kees Cook Reviewed-by: Yury Norov Reviewed-by: Christophe Leroy # powerpc Acked-by: Jakub Kicinski Signed-off-by: Jason A. Donenfeld --- crypto/async_tx/raid6test.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'crypto') diff --git a/crypto/async_tx/raid6test.c b/crypto/async_tx/raid6test.c index 9719c7520661..d3fbee1e03e5 100644 --- a/crypto/async_tx/raid6test.c +++ b/crypto/async_tx/raid6test.c @@ -37,7 +37,7 @@ static void makedata(int disks) int i; for (i = 0; i < disks; i++) { - prandom_bytes(page_address(data[i]), PAGE_SIZE); + get_random_bytes(page_address(data[i]), PAGE_SIZE); dataptrs[i] = data[i]; dataoffs[i] = 0; } -- cgit