# SPDX-License-Identifier: GPL-2.0 menu "Accelerated Cryptographic Algorithms for CPU (arm)" config CRYPTO_CURVE25519_NEON tristate "Public key crypto: Curve25519 (NEON)" depends on KERNEL_MODE_NEON select CRYPTO_LIB_CURVE25519_GENERIC select CRYPTO_ARCH_HAVE_LIB_CURVE25519 help Curve25519 algorithm Architecture: arm with - NEON (Advanced SIMD) extensions config CRYPTO_GHASH_ARM_CE tristate "Hash functions: GHASH (PMULL/NEON/ARMv8 Crypto Extensions)" depends on KERNEL_MODE_NEON select CRYPTO_AEAD select CRYPTO_HASH select CRYPTO_CRYPTD select CRYPTO_LIB_AES select CRYPTO_LIB_GF128MUL help GCM GHASH function (NIST SP800-38D) Architecture: arm using - PMULL (Polynomial Multiply Long) instructions - NEON (Advanced SIMD) extensions - ARMv8 Crypto Extensions Use an implementation of GHASH (used by the GCM AEAD chaining mode) that uses the 64x64 to 128 bit polynomial multiplication (vmull.p64) that is part of the ARMv8 Crypto Extensions, or a slower variant that uses the vmull.p8 instruction that is part of the basic NEON ISA. config CRYPTO_NHPOLY1305_NEON tristate "Hash functions: NHPoly1305 (NEON)" depends on KERNEL_MODE_NEON select CRYPTO_NHPOLY1305 help NHPoly1305 hash function (Adiantum) Architecture: arm using: - NEON (Advanced SIMD) extensions config CRYPTO_POLY1305_ARM tristate "Hash functions: Poly1305 (NEON)" select CRYPTO_HASH select CRYPTO_ARCH_HAVE_LIB_POLY1305 help Poly1305 authenticator algorithm (RFC7539) Architecture: arm optionally using - NEON (Advanced SIMD) extensions config CRYPTO_BLAKE2S_ARM bool "Hash functions: BLAKE2s" select CRYPTO_ARCH_HAVE_LIB_BLAKE2S help BLAKE2s cryptographic hash function (RFC 7693) Architecture: arm This is faster than the generic implementations of BLAKE2s and BLAKE2b, but slower than the NEON implementation of BLAKE2b. There is no NEON implementation of BLAKE2s, since NEON doesn't really help with it. config CRYPTO_BLAKE2B_NEON tristate "Hash functions: BLAKE2b (NEON)" depends on KERNEL_MODE_NEON select CRYPTO_BLAKE2B help BLAKE2b cryptographic hash function (RFC 7693) Architecture: arm using - NEON (Advanced SIMD) extensions BLAKE2b digest algorithm optimized with ARM NEON instructions. On ARM processors that have NEON support but not the ARMv8 Crypto Extensions, typically this BLAKE2b implementation is much faster than the SHA-2 family and slightly faster than SHA-1. config CRYPTO_SHA1_ARM tristate "Hash functions: SHA-1" select CRYPTO_SHA1 select CRYPTO_HASH help SHA-1 secure hash algorithm (FIPS 180) Architecture: arm config CRYPTO_SHA1_ARM_NEON tristate "Hash functions: SHA-1 (NEON)" depends on KERNEL_MODE_NEON select CRYPTO_SHA1_ARM select CRYPTO_SHA1 select CRYPTO_HASH help SHA-1 secure hash algorithm (FIPS 180) Architecture: arm using - NEON (Advanced SIMD) extensions config CRYPTO_SHA1_ARM_CE tristate "Hash functions: SHA-1 (ARMv8 Crypto Extensions)" depends on KERNEL_MODE_NEON select CRYPTO_SHA1_ARM select CRYPTO_HASH help SHA-1 secure hash algorithm (FIPS 180) Architecture: arm using ARMv8 Crypto Extensions config CRYPTO_SHA2_ARM_CE tristate "Hash functions: SHA-224 and SHA-256 (ARMv8 Crypto Extensions)" depends on KERNEL_MODE_NEON select CRYPTO_SHA256_ARM select CRYPTO_HASH help SHA-224 and SHA-256 secure hash algorithms (FIPS 180) Architecture: arm using - ARMv8 Crypto Extensions config CRYPTO_SHA256_ARM tristate "Hash functions: SHA-224 and SHA-256 (NEON)" select CRYPTO_HASH depends on !CPU_V7M help SHA-224 and SHA-256 secure hash algorithms (FIPS 180) Architecture: arm using - NEON (Advanced SIMD) extensions config CRYPTO_SHA512_ARM tristate "Hash functions: SHA-384 and SHA-512 (NEON)" select CRYPTO_HASH depends on !CPU_V7M help SHA-384 and SHA-512 secure hash algorithms (FIPS 180) Architecture: arm using - NEON (Advanced SIMD) extensions config CRYPTO_AES_ARM tristate "Ciphers: AES" select CRYPTO_ALGAPI select CRYPTO_AES help Block ciphers: AES cipher algorithms (FIPS-197) Architecture: arm On ARM processors without the Crypto Extensions, this is the fastest AES implementation for single blocks. For multiple blocks, the NEON bit-sliced implementation is usually faster. This implementation may be vulnerable to cache timing attacks, since it uses lookup tables. However, as countermeasures it disables IRQs and preloads the tables; it is hoped this makes such attacks very difficult. config CRYPTO_AES_ARM_BS tristate "Ciphers: AES, modes: ECB/CBC/CTR/XTS (bit-sliced NEON)" depends on KERNEL_MODE_NEON select CRYPTO_SKCIPHER select CRYPTO_LIB_AES select CRYPTO_AES select CRYPTO_CBC select CRYPTO_SIMD help Length-preserving ciphers: AES cipher algorithms (FIPS-197) with block cipher modes: - ECB (Electronic Codebook) mode (NIST SP800-38A) - CBC (Cipher Block Chaining) mode (NIST SP800-38A) - CTR (Counter) mode (NIST SP800-38A) - XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E and IEEE 1619) Bit sliced AES gives around 45% speedup on Cortex-A15 for CTR mode and for XTS mode encryption, CBC and XTS mode decryption speedup is around 25%. (CBC encryption speed is not affected by this driver.) This implementation does not rely on any lookup tables so it is believed to be invulnerable to cache timing attacks. config CRYPTO_AES_ARM_CE tristate "Ciphers: AES, modes: ECB/CBC/CTS/CTR/XTS (ARMv8 Crypto Extensions)" depends on KERNEL_MODE_NEON select CRYPTO_SKCIPHER select CRYPTO_LIB_AES select CRYPTO_SIMD help Length-preserving ciphers: AES cipher algorithms (FIPS-197) with block cipher modes: - ECB (Electronic Codebook) mode (NIST SP800-38A) - CBC (Cipher Block Chaining) mode (NIST SP800-38A) - CTR (Counter) mode (NIST SP800-38A) - CTS (Cipher Text Stealing) mode (NIST SP800-38A) - XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E and IEEE 1619) Architecture: arm using: - ARMv8 Crypto Extensions config CRYPTO_CHACHA20_NEON tristate "Ciphers: ChaCha20, XChaCha20, XChaCha12 (NEON)" select CRYPTO_SKCIPHER select CRYPTO_ARCH_HAVE_LIB_CHACHA help Length-preserving ciphers: ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms Architecture: arm using: - NEON (Advanced SIMD) extensions config CRYPTO_CRC32_ARM_CE tristate "CRC32C and CRC32" depends on KERNEL_MODE_NEON depends on CRC32 select CRYPTO_HASH help CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720) and CRC32 CRC algorithm (IEEE 802.3) Architecture: arm using: - CRC and/or PMULL instructions Drivers: crc32-arm-ce and crc32c-arm-ce config CRYPTO_CRCT10DIF_ARM_CE tristate "CRCT10DIF" depends on KERNEL_MODE_NEON depends on CRC_T10DIF select CRYPTO_HASH help CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF) Architecture: arm using: - PMULL (Polynomial Multiply Long) instructions endmenu