/* * Glue code for the SHA256 Secure Hash Algorithm assembly implementation * using NEON instructions. * * Copyright © 2015 Google Inc. * * This file is based on sha512_neon_glue.c: * Copyright © 2014 Jussi Kivilinna * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * */ #include #include #include #include #include #include #include #include #include "sha256_glue.h" asmlinkage void sha256_block_data_order_neon(u32 *digest, const void *data, unsigned int num_blks); static int __sha256_neon_update(struct shash_desc *desc, const u8 *data, unsigned int len, unsigned int partial) { struct sha256_state *sctx = shash_desc_ctx(desc); unsigned int done = 0; sctx->count += len; if (partial) { done = SHA256_BLOCK_SIZE - partial; memcpy(sctx->buf + partial, data, done); sha256_block_data_order_neon(sctx->state, sctx->buf, 1); } if (len - done >= SHA256_BLOCK_SIZE) { const unsigned int rounds = (len - done) / SHA256_BLOCK_SIZE; sha256_block_data_order_neon(sctx->state, data + done, rounds); done += rounds * SHA256_BLOCK_SIZE; } memcpy(sctx->buf, data + done, len - done); return 0; } static int sha256_neon_update(struct shash_desc *desc, const u8 *data, unsigned int len) { struct sha256_state *sctx = shash_desc_ctx(desc); unsigned int partial = sctx->count % SHA256_BLOCK_SIZE; int res; /* Handle the fast case right here */ if (partial + len < SHA256_BLOCK_SIZE) { sctx->count += len; memcpy(sctx->buf + partial, data, len); return 0; } if (!may_use_simd()) { res = __sha256_update(desc, data, len, partial); } else { kernel_neon_begin(); res = __sha256_neon_update(desc, data, len, partial); kernel_neon_end(); } return res; } /* Add padding and return the message digest. */ static int sha256_neon_final(struct shash_desc *desc, u8 *out) { struct sha256_state *sctx = shash_desc_ctx(desc); unsigned int i, index, padlen; __be32 *dst = (__be32 *)out; __be64 bits; static const u8 padding[SHA256_BLOCK_SIZE] = { 0x80, }; /* save number of bits */ bits = cpu_to_be64(sctx->count << 3); /* Pad out to 56 mod 64 and append length */ index = sctx->count % SHA256_BLOCK_SIZE; padlen = (index < 56) ? (56 - index) : ((SHA256_BLOCK_SIZE+56)-index); if (!may_use_simd()) { sha256_update(desc, padding, padlen); sha256_update(desc, (const u8 *)&bits, sizeof(bits)); } else { kernel_neon_begin(); /* We need to fill a whole block for __sha256_neon_update() */ if (padlen <= 56) { sctx->count += padlen; memcpy(sctx->buf + index, padding, padlen); } else { __sha256_neon_update(desc, padding, padlen, index); } __sha256_neon_update(desc, (const u8 *)&bits, sizeof(bits), 56); kernel_neon_end(); } /* Store state in digest */ for (i = 0; i < 8; i++) dst[i] = cpu_to_be32(sctx->state[i]); /* Wipe context */ memzero_explicit(sctx, sizeof(*sctx)); return 0; } static int sha224_neon_final(struct shash_desc *desc, u8 *out) { u8 D[SHA256_DIGEST_SIZE]; sha256_neon_final(desc, D); memcpy(out, D, SHA224_DIGEST_SIZE); memzero_explicit(D, SHA256_DIGEST_SIZE); return 0; } struct shash_alg sha256_neon_algs[] = { { .digestsize = SHA256_DIGEST_SIZE, .init = sha256_init, .update = sha256_neon_update, .final = sha256_neon_final, .export = sha256_export, .import = sha256_import, .descsize = sizeof(struct sha256_state), .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha256", .cra_driver_name = "sha256-neon", .cra_priority = 250, .cra_flags = CRYPTO_ALG_TYPE_SHASH, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_module = THIS_MODULE, } }, { .digestsize = SHA224_DIGEST_SIZE, .init = sha224_init, .update = sha256_neon_update, .final = sha224_neon_final, .export = sha256_export, .import = sha256_import, .descsize = sizeof(struct sha256_state), .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha224", .cra_driver_name = "sha224-neon", .cra_priority = 250, .cra_flags = CRYPTO_ALG_TYPE_SHASH, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_module = THIS_MODULE, } } };