/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Author: Christoffer Dall */ #ifndef __ARM_KVM_HOST_H__ #define __ARM_KVM_HOST_H__ #include #include #include #include #include #include #include #include #include #define __KVM_HAVE_ARCH_INTC_INITIALIZED #define KVM_USER_MEM_SLOTS 32 #define KVM_HAVE_ONE_REG #define KVM_HALT_POLL_NS_DEFAULT 500000 #define KVM_VCPU_MAX_FEATURES 2 #include #ifdef CONFIG_ARM_GIC_V3 #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS #else #define KVM_MAX_VCPUS VGIC_V2_MAX_CPUS #endif #define KVM_REQ_SLEEP \ KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2) #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3) DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use); static inline int kvm_arm_init_sve(void) { return 0; } u32 *kvm_vcpu_reg(struct kvm_vcpu *vcpu, u8 reg_num, u32 mode); int __attribute_const__ kvm_target_cpu(void); int kvm_reset_vcpu(struct kvm_vcpu *vcpu); void kvm_reset_coprocs(struct kvm_vcpu *vcpu); struct kvm_vmid { /* The VMID generation used for the virt. memory system */ u64 vmid_gen; u32 vmid; }; struct kvm_arch { /* The last vcpu id that ran on each physical CPU */ int __percpu *last_vcpu_ran; /* * Anything that is not used directly from assembly code goes * here. */ /* The VMID generation used for the virt. memory system */ struct kvm_vmid vmid; /* Stage-2 page table */ pgd_t *pgd; phys_addr_t pgd_phys; /* Interrupt controller */ struct vgic_dist vgic; int max_vcpus; /* Mandated version of PSCI */ u32 psci_version; /* * If we encounter a data abort without valid instruction syndrome * information, report this to user space. User space can (and * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is * supported. */ bool return_nisv_io_abort_to_user; }; #define KVM_NR_MEM_OBJS 40 /* * We don't want allocation failures within the mmu code, so we preallocate * enough memory for a single page fault in a cache. */ struct kvm_mmu_memory_cache { int nobjs; void *objects[KVM_NR_MEM_OBJS]; }; struct kvm_vcpu_fault_info { u32 hsr; /* Hyp Syndrome Register */ u32 hxfar; /* Hyp Data/Inst. Fault Address Register */ u32 hpfar; /* Hyp IPA Fault Address Register */ }; /* * 0 is reserved as an invalid value. * Order should be kept in sync with the save/restore code. */ enum vcpu_sysreg { __INVALID_SYSREG__, c0_MPIDR, /* MultiProcessor ID Register */ c0_CSSELR, /* Cache Size Selection Register */ c1_SCTLR, /* System Control Register */ c1_ACTLR, /* Auxiliary Control Register */ c1_CPACR, /* Coprocessor Access Control */ c2_TTBR0, /* Translation Table Base Register 0 */ c2_TTBR0_high, /* TTBR0 top 32 bits */ c2_TTBR1, /* Translation Table Base Register 1 */ c2_TTBR1_high, /* TTBR1 top 32 bits */ c2_TTBCR, /* Translation Table Base Control R. */ c3_DACR, /* Domain Access Control Register */ c5_DFSR, /* Data Fault Status Register */ c5_IFSR, /* Instruction Fault Status Register */ c5_ADFSR, /* Auxilary Data Fault Status R */ c5_AIFSR, /* Auxilary Instrunction Fault Status R */ c6_DFAR, /* Data Fault Address Register */ c6_IFAR, /* Instruction Fault Address Register */ c7_PAR, /* Physical Address Register */ c7_PAR_high, /* PAR top 32 bits */ c9_L2CTLR, /* Cortex A15/A7 L2 Control Register */ c10_PRRR, /* Primary Region Remap Register */ c10_NMRR, /* Normal Memory Remap Register */ c12_VBAR, /* Vector Base Address Register */ c13_CID, /* Context ID Register */ c13_TID_URW, /* Thread ID, User R/W */ c13_TID_URO, /* Thread ID, User R/O */ c13_TID_PRIV, /* Thread ID, Privileged */ c14_CNTKCTL, /* Timer Control Register (PL1) */ c10_AMAIR0, /* Auxilary Memory Attribute Indirection Reg0 */ c10_AMAIR1, /* Auxilary Memory Attribute Indirection Reg1 */ NR_CP15_REGS /* Number of regs (incl. invalid) */ }; struct kvm_cpu_context { struct kvm_regs gp_regs; struct vfp_hard_struct vfp; u32 cp15[NR_CP15_REGS]; }; struct kvm_host_data { struct kvm_cpu_context host_ctxt; }; typedef struct kvm_host_data kvm_host_data_t; static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt) { /* The host's MPIDR is immutable, so let's set it up at boot time */ cpu_ctxt->cp15[c0_MPIDR] = read_cpuid_mpidr(); } struct vcpu_reset_state { unsigned long pc; unsigned long r0; bool be; bool reset; }; struct kvm_vcpu_arch { struct kvm_cpu_context ctxt; int target; /* Processor target */ DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES); /* The CPU type we expose to the VM */ u32 midr; /* HYP trapping configuration */ u32 hcr; /* Exception Information */ struct kvm_vcpu_fault_info fault; /* Host FP context */ struct kvm_cpu_context *host_cpu_context; /* VGIC state */ struct vgic_cpu vgic_cpu; struct arch_timer_cpu timer_cpu; /* * Anything that is not used directly from assembly code goes * here. */ /* vcpu power-off state */ bool power_off; /* Don't run the guest (internal implementation need) */ bool pause; /* Cache some mmu pages needed inside spinlock regions */ struct kvm_mmu_memory_cache mmu_page_cache; struct vcpu_reset_state reset_state; /* Detect first run of a vcpu */ bool has_run_once; }; struct kvm_vm_stat { ulong remote_tlb_flush; }; struct kvm_vcpu_stat { u64 halt_successful_poll; u64 halt_attempted_poll; u64 halt_poll_invalid; u64 halt_wakeup; u64 hvc_exit_stat; u64 wfe_exit_stat; u64 wfi_exit_stat; u64 mmio_exit_user; u64 mmio_exit_kernel; u64 exits; }; #define vcpu_cp15(v,r) (v)->arch.ctxt.cp15[r] int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init); unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); unsigned long __kvm_call_hyp(void *hypfn, ...); /* * The has_vhe() part doesn't get emitted, but is used for type-checking. */ #define kvm_call_hyp(f, ...) \ do { \ if (has_vhe()) { \ f(__VA_ARGS__); \ } else { \ __kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__); \ } \ } while(0) #define kvm_call_hyp_ret(f, ...) \ ({ \ typeof(f(__VA_ARGS__)) ret; \ \ if (has_vhe()) { \ ret = f(__VA_ARGS__); \ } else { \ ret = __kvm_call_hyp(kvm_ksym_ref(f), \ ##__VA_ARGS__); \ } \ \ ret; \ }) void force_vm_exit(const cpumask_t *mask); int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events); int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events); #define KVM_ARCH_WANT_MMU_NOTIFIER int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end); int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); void kvm_arm_halt_guest(struct kvm *kvm); void kvm_arm_resume_guest(struct kvm *kvm); int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices); unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu); int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *); int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *); int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run, int exception_index); static inline void handle_exit_early(struct kvm_vcpu *vcpu, struct kvm_run *run, int exception_index) {} /* MMIO helpers */ void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data); unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len); int kvm_handle_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run); int io_mem_abort(struct kvm_vcpu *vcpu, struct kvm_run *run, phys_addr_t fault_ipa); static inline void __cpu_init_hyp_mode(phys_addr_t pgd_ptr, unsigned long hyp_stack_ptr, unsigned long vector_ptr) { /* * Call initialization code, and switch to the full blown HYP * code. The init code doesn't need to preserve these * registers as r0-r3 are already callee saved according to * the AAPCS. * Note that we slightly misuse the prototype by casting the * stack pointer to a void *. * The PGDs are always passed as the third argument, in order * to be passed into r2-r3 to the init code (yes, this is * compliant with the PCS!). */ __kvm_call_hyp((void*)hyp_stack_ptr, vector_ptr, pgd_ptr); } static inline void __cpu_init_stage2(void) { kvm_call_hyp(__init_stage2_translation); } static inline int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext) { return 0; } int kvm_perf_init(void); int kvm_perf_teardown(void); static inline long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu) { return SMCCC_RET_NOT_SUPPORTED; } static inline gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu) { return GPA_INVALID; } static inline void kvm_update_stolen_time(struct kvm_vcpu *vcpu) { } static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch) { } static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch) { return false; } void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot); struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); static inline bool kvm_arch_requires_vhe(void) { return false; } static inline void kvm_arch_hardware_unsetup(void) {} static inline void kvm_arch_sync_events(struct kvm *kvm) {} static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {} static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {} static inline void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu) {} static inline void kvm_arm_init_debug(void) {} static inline void kvm_arm_setup_debug(struct kvm_vcpu *vcpu) {} static inline void kvm_arm_clear_debug(struct kvm_vcpu *vcpu) {} static inline void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu) {} int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr); int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr); int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr); /* * VFP/NEON switching is all done by the hyp switch code, so no need to * coordinate with host context handling for this state: */ static inline void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu) {} static inline void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu) {} static inline void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu) {} static inline void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu) {} static inline void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu) {} #define KVM_BP_HARDEN_UNKNOWN -1 #define KVM_BP_HARDEN_WA_NEEDED 0 #define KVM_BP_HARDEN_NOT_REQUIRED 1 static inline int kvm_arm_harden_branch_predictor(void) { switch(read_cpuid_part()) { #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR case ARM_CPU_PART_BRAHMA_B15: case ARM_CPU_PART_CORTEX_A12: case ARM_CPU_PART_CORTEX_A15: case ARM_CPU_PART_CORTEX_A17: return KVM_BP_HARDEN_WA_NEEDED; #endif case ARM_CPU_PART_CORTEX_A7: return KVM_BP_HARDEN_NOT_REQUIRED; default: return KVM_BP_HARDEN_UNKNOWN; } } #define KVM_SSBD_UNKNOWN -1 #define KVM_SSBD_FORCE_DISABLE 0 #define KVM_SSBD_KERNEL 1 #define KVM_SSBD_FORCE_ENABLE 2 #define KVM_SSBD_MITIGATED 3 static inline int kvm_arm_have_ssbd(void) { /* No way to detect it yet, pretend it is not there. */ return KVM_SSBD_UNKNOWN; } static inline void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu) {} static inline void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu) {} #define __KVM_HAVE_ARCH_VM_ALLOC struct kvm *kvm_arch_alloc_vm(void); void kvm_arch_free_vm(struct kvm *kvm); static inline int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type) { /* * On 32bit ARM, VMs get a static 40bit IPA stage2 setup, * so any non-zero value used as type is illegal. */ if (type) return -EINVAL; return 0; } static inline int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature) { return -EINVAL; } static inline bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu) { return true; } #endif /* __ARM_KVM_HOST_H__ */