/* * arch/arm/mach-at91/pm.c * AT91 Power Management * * Copyright (C) 2005 David Brownell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "generic.h" #include "pm.h" /* * FIXME: this is needed to communicate between the pinctrl driver and * the PM implementation in the machine. Possibly part of the PM * implementation should be moved down into the pinctrl driver and get * called as part of the generic suspend/resume path. */ #ifdef CONFIG_PINCTRL_AT91 extern void at91_pinctrl_gpio_suspend(void); extern void at91_pinctrl_gpio_resume(void); #endif static const match_table_t pm_modes __initconst = { { 0, "standby" }, { AT91_PM_SLOW_CLOCK, "ulp0" }, { AT91_PM_BACKUP, "backup" }, { -1, NULL }, }; static struct at91_pm_data pm_data = { .standby_mode = 0, .suspend_mode = AT91_PM_SLOW_CLOCK, }; #define at91_ramc_read(id, field) \ __raw_readl(pm_data.ramc[id] + field) #define at91_ramc_write(id, field, value) \ __raw_writel(value, pm_data.ramc[id] + field) static int at91_pm_valid_state(suspend_state_t state) { switch (state) { case PM_SUSPEND_ON: case PM_SUSPEND_STANDBY: case PM_SUSPEND_MEM: return 1; default: return 0; } } static int canary = 0xA5A5A5A5; static struct at91_pm_bu { int suspended; unsigned long reserved; phys_addr_t canary; phys_addr_t resume; } *pm_bu; /* * Called after processes are frozen, but before we shutdown devices. */ static int at91_pm_begin(suspend_state_t state) { switch (state) { case PM_SUSPEND_MEM: pm_data.mode = pm_data.suspend_mode; break; case PM_SUSPEND_STANDBY: pm_data.mode = pm_data.standby_mode; break; default: pm_data.mode = -1; } return 0; } /* * Verify that all the clocks are correct before entering * slow-clock mode. */ static int at91_pm_verify_clocks(void) { unsigned long scsr; int i; scsr = readl(pm_data.pmc + AT91_PMC_SCSR); /* USB must not be using PLLB */ if ((scsr & pm_data.uhp_udp_mask) != 0) { pr_err("AT91: PM - Suspend-to-RAM with USB still active\n"); return 0; } /* PCK0..PCK3 must be disabled, or configured to use clk32k */ for (i = 0; i < 4; i++) { u32 css; if ((scsr & (AT91_PMC_PCK0 << i)) == 0) continue; css = readl(pm_data.pmc + AT91_PMC_PCKR(i)) & AT91_PMC_CSS; if (css != AT91_PMC_CSS_SLOW) { pr_err("AT91: PM - Suspend-to-RAM with PCK%d src %d\n", i, css); return 0; } } return 1; } /* * Call this from platform driver suspend() to see how deeply to suspend. * For example, some controllers (like OHCI) need one of the PLL clocks * in order to act as a wakeup source, and those are not available when * going into slow clock mode. * * REVISIT: generalize as clk_will_be_available(clk)? Other platforms have * the very same problem (but not using at91 main_clk), and it'd be better * to add one generic API rather than lots of platform-specific ones. */ int at91_suspend_entering_slow_clock(void) { return (pm_data.mode >= AT91_PM_SLOW_CLOCK); } EXPORT_SYMBOL(at91_suspend_entering_slow_clock); static void (*at91_suspend_sram_fn)(struct at91_pm_data *); extern void at91_pm_suspend_in_sram(struct at91_pm_data *pm_data); extern u32 at91_pm_suspend_in_sram_sz; static int at91_suspend_finish(unsigned long val) { flush_cache_all(); outer_disable(); at91_suspend_sram_fn(&pm_data); return 0; } static void at91_pm_suspend(suspend_state_t state) { if (pm_data.mode == AT91_PM_BACKUP) { pm_bu->suspended = 1; cpu_suspend(0, at91_suspend_finish); /* The SRAM is lost between suspend cycles */ at91_suspend_sram_fn = fncpy(at91_suspend_sram_fn, &at91_pm_suspend_in_sram, at91_pm_suspend_in_sram_sz); } else { at91_suspend_finish(0); } outer_resume(); } /* * STANDBY mode has *all* drivers suspended; ignores irqs not marked as 'wakeup' * event sources; and reduces DRAM power. But otherwise it's identical to * PM_SUSPEND_ON: cpu idle, and nothing fancy done with main or cpu clocks. * * AT91_PM_SLOW_CLOCK is like STANDBY plus slow clock mode, so drivers must * suspend more deeply, the master clock switches to the clk32k and turns off * the main oscillator * * AT91_PM_BACKUP turns off the whole SoC after placing the DDR in self refresh */ static int at91_pm_enter(suspend_state_t state) { #ifdef CONFIG_PINCTRL_AT91 at91_pinctrl_gpio_suspend(); #endif switch (state) { case PM_SUSPEND_MEM: case PM_SUSPEND_STANDBY: /* * Ensure that clocks are in a valid state. */ if ((pm_data.mode >= AT91_PM_SLOW_CLOCK) && !at91_pm_verify_clocks()) goto error; at91_pm_suspend(state); break; case PM_SUSPEND_ON: cpu_do_idle(); break; default: pr_debug("AT91: PM - bogus suspend state %d\n", state); goto error; } error: #ifdef CONFIG_PINCTRL_AT91 at91_pinctrl_gpio_resume(); #endif return 0; } /* * Called right prior to thawing processes. */ static void at91_pm_end(void) { } static const struct platform_suspend_ops at91_pm_ops = { .valid = at91_pm_valid_state, .begin = at91_pm_begin, .enter = at91_pm_enter, .end = at91_pm_end, }; static struct platform_device at91_cpuidle_device = { .name = "cpuidle-at91", }; /* * The AT91RM9200 goes into self-refresh mode with this command, and will * terminate self-refresh automatically on the next SDRAM access. * * Self-refresh mode is exited as soon as a memory access is made, but we don't * know for sure when that happens. However, we need to restore the low-power * mode if it was enabled before going idle. Restoring low-power mode while * still in self-refresh is "not recommended", but seems to work. */ static void at91rm9200_standby(void) { asm volatile( "b 1f\n\t" ".align 5\n\t" "1: mcr p15, 0, %0, c7, c10, 4\n\t" " str %2, [%1, %3]\n\t" " mcr p15, 0, %0, c7, c0, 4\n\t" : : "r" (0), "r" (pm_data.ramc[0]), "r" (1), "r" (AT91_MC_SDRAMC_SRR)); } /* We manage both DDRAM/SDRAM controllers, we need more than one value to * remember. */ static void at91_ddr_standby(void) { /* Those two values allow us to delay self-refresh activation * to the maximum. */ u32 lpr0, lpr1 = 0; u32 mdr, saved_mdr0, saved_mdr1 = 0; u32 saved_lpr0, saved_lpr1 = 0; /* LPDDR1 --> force DDR2 mode during self-refresh */ saved_mdr0 = at91_ramc_read(0, AT91_DDRSDRC_MDR); if ((saved_mdr0 & AT91_DDRSDRC_MD) == AT91_DDRSDRC_MD_LOW_POWER_DDR) { mdr = saved_mdr0 & ~AT91_DDRSDRC_MD; mdr |= AT91_DDRSDRC_MD_DDR2; at91_ramc_write(0, AT91_DDRSDRC_MDR, mdr); } if (pm_data.ramc[1]) { saved_lpr1 = at91_ramc_read(1, AT91_DDRSDRC_LPR); lpr1 = saved_lpr1 & ~AT91_DDRSDRC_LPCB; lpr1 |= AT91_DDRSDRC_LPCB_SELF_REFRESH; saved_mdr1 = at91_ramc_read(1, AT91_DDRSDRC_MDR); if ((saved_mdr1 & AT91_DDRSDRC_MD) == AT91_DDRSDRC_MD_LOW_POWER_DDR) { mdr = saved_mdr1 & ~AT91_DDRSDRC_MD; mdr |= AT91_DDRSDRC_MD_DDR2; at91_ramc_write(1, AT91_DDRSDRC_MDR, mdr); } } saved_lpr0 = at91_ramc_read(0, AT91_DDRSDRC_LPR); lpr0 = saved_lpr0 & ~AT91_DDRSDRC_LPCB; lpr0 |= AT91_DDRSDRC_LPCB_SELF_REFRESH; /* self-refresh mode now */ at91_ramc_write(0, AT91_DDRSDRC_LPR, lpr0); if (pm_data.ramc[1]) at91_ramc_write(1, AT91_DDRSDRC_LPR, lpr1); cpu_do_idle(); at91_ramc_write(0, AT91_DDRSDRC_MDR, saved_mdr0); at91_ramc_write(0, AT91_DDRSDRC_LPR, saved_lpr0); if (pm_data.ramc[1]) { at91_ramc_write(0, AT91_DDRSDRC_MDR, saved_mdr1); at91_ramc_write(1, AT91_DDRSDRC_LPR, saved_lpr1); } } static void sama5d3_ddr_standby(void) { u32 lpr0; u32 saved_lpr0; saved_lpr0 = at91_ramc_read(0, AT91_DDRSDRC_LPR); lpr0 = saved_lpr0 & ~AT91_DDRSDRC_LPCB; lpr0 |= AT91_DDRSDRC_LPCB_POWER_DOWN; at91_ramc_write(0, AT91_DDRSDRC_LPR, lpr0); cpu_do_idle(); at91_ramc_write(0, AT91_DDRSDRC_LPR, saved_lpr0); } /* We manage both DDRAM/SDRAM controllers, we need more than one value to * remember. */ static void at91sam9_sdram_standby(void) { u32 lpr0, lpr1 = 0; u32 saved_lpr0, saved_lpr1 = 0; if (pm_data.ramc[1]) { saved_lpr1 = at91_ramc_read(1, AT91_SDRAMC_LPR); lpr1 = saved_lpr1 & ~AT91_SDRAMC_LPCB; lpr1 |= AT91_SDRAMC_LPCB_SELF_REFRESH; } saved_lpr0 = at91_ramc_read(0, AT91_SDRAMC_LPR); lpr0 = saved_lpr0 & ~AT91_SDRAMC_LPCB; lpr0 |= AT91_SDRAMC_LPCB_SELF_REFRESH; /* self-refresh mode now */ at91_ramc_write(0, AT91_SDRAMC_LPR, lpr0); if (pm_data.ramc[1]) at91_ramc_write(1, AT91_SDRAMC_LPR, lpr1); cpu_do_idle(); at91_ramc_write(0, AT91_SDRAMC_LPR, saved_lpr0); if (pm_data.ramc[1]) at91_ramc_write(1, AT91_SDRAMC_LPR, saved_lpr1); } struct ramc_info { void (*idle)(void); unsigned int memctrl; }; static const struct ramc_info ramc_infos[] __initconst = { { .idle = at91rm9200_standby, .memctrl = AT91_MEMCTRL_MC}, { .idle = at91sam9_sdram_standby, .memctrl = AT91_MEMCTRL_SDRAMC}, { .idle = at91_ddr_standby, .memctrl = AT91_MEMCTRL_DDRSDR}, { .idle = sama5d3_ddr_standby, .memctrl = AT91_MEMCTRL_DDRSDR}, }; static const struct of_device_id ramc_ids[] __initconst = { { .compatible = "atmel,at91rm9200-sdramc", .data = &ramc_infos[0] }, { .compatible = "atmel,at91sam9260-sdramc", .data = &ramc_infos[1] }, { .compatible = "atmel,at91sam9g45-ddramc", .data = &ramc_infos[2] }, { .compatible = "atmel,sama5d3-ddramc", .data = &ramc_infos[3] }, { /*sentinel*/ } }; static __init void at91_dt_ramc(void) { struct device_node *np; const struct of_device_id *of_id; int idx = 0; void *standby = NULL; const struct ramc_info *ramc; for_each_matching_node_and_match(np, ramc_ids, &of_id) { pm_data.ramc[idx] = of_iomap(np, 0); if (!pm_data.ramc[idx]) panic(pr_fmt("unable to map ramc[%d] cpu registers\n"), idx); ramc = of_id->data; if (!standby) standby = ramc->idle; pm_data.memctrl = ramc->memctrl; idx++; } if (!idx) panic(pr_fmt("unable to find compatible ram controller node in dtb\n")); if (!standby) { pr_warn("ramc no standby function available\n"); return; } at91_cpuidle_device.dev.platform_data = standby; } static void at91rm9200_idle(void) { /* * Disable the processor clock. The processor will be automatically * re-enabled by an interrupt or by a reset. */ writel(AT91_PMC_PCK, pm_data.pmc + AT91_PMC_SCDR); } static void at91sam9_idle(void) { writel(AT91_PMC_PCK, pm_data.pmc + AT91_PMC_SCDR); cpu_do_idle(); } static void __init at91_pm_sram_init(void) { struct gen_pool *sram_pool; phys_addr_t sram_pbase; unsigned long sram_base; struct device_node *node; struct platform_device *pdev = NULL; for_each_compatible_node(node, NULL, "mmio-sram") { pdev = of_find_device_by_node(node); if (pdev) { of_node_put(node); break; } } if (!pdev) { pr_warn("%s: failed to find sram device!\n", __func__); return; } sram_pool = gen_pool_get(&pdev->dev, NULL); if (!sram_pool) { pr_warn("%s: sram pool unavailable!\n", __func__); return; } sram_base = gen_pool_alloc(sram_pool, at91_pm_suspend_in_sram_sz); if (!sram_base) { pr_warn("%s: unable to alloc sram!\n", __func__); return; } sram_pbase = gen_pool_virt_to_phys(sram_pool, sram_base); at91_suspend_sram_fn = __arm_ioremap_exec(sram_pbase, at91_pm_suspend_in_sram_sz, false); if (!at91_suspend_sram_fn) { pr_warn("SRAM: Could not map\n"); return; } /* Copy the pm suspend handler to SRAM */ at91_suspend_sram_fn = fncpy(at91_suspend_sram_fn, &at91_pm_suspend_in_sram, at91_pm_suspend_in_sram_sz); } static void __init at91_pm_backup_init(void) { struct gen_pool *sram_pool; struct device_node *np; struct platform_device *pdev = NULL; if ((pm_data.standby_mode != AT91_PM_BACKUP) && (pm_data.suspend_mode != AT91_PM_BACKUP)) return; pm_bu = NULL; np = of_find_compatible_node(NULL, NULL, "atmel,sama5d2-shdwc"); if (!np) { pr_warn("%s: failed to find shdwc!\n", __func__); return; } pm_data.shdwc = of_iomap(np, 0); of_node_put(np); np = of_find_compatible_node(NULL, NULL, "atmel,sama5d2-sfrbu"); if (!np) { pr_warn("%s: failed to find sfrbu!\n", __func__); goto sfrbu_fail; } pm_data.sfrbu = of_iomap(np, 0); of_node_put(np); pm_bu = NULL; np = of_find_compatible_node(NULL, NULL, "atmel,sama5d2-securam"); if (!np) goto securam_fail; pdev = of_find_device_by_node(np); of_node_put(np); if (!pdev) { pr_warn("%s: failed to find securam device!\n", __func__); goto securam_fail; } sram_pool = gen_pool_get(&pdev->dev, NULL); if (!sram_pool) { pr_warn("%s: securam pool unavailable!\n", __func__); goto securam_fail; } pm_bu = (void *)gen_pool_alloc(sram_pool, sizeof(struct at91_pm_bu)); if (!pm_bu) { pr_warn("%s: unable to alloc securam!\n", __func__); goto securam_fail; } pm_bu->suspended = 0; pm_bu->canary = __pa_symbol(&canary); pm_bu->resume = __pa_symbol(cpu_resume); return; sfrbu_fail: iounmap(pm_data.shdwc); pm_data.shdwc = NULL; securam_fail: iounmap(pm_data.sfrbu); pm_data.sfrbu = NULL; if (pm_data.standby_mode == AT91_PM_BACKUP) pm_data.standby_mode = AT91_PM_SLOW_CLOCK; if (pm_data.suspend_mode == AT91_PM_BACKUP) pm_data.suspend_mode = AT91_PM_SLOW_CLOCK; } struct pmc_info { unsigned long uhp_udp_mask; }; static const struct pmc_info pmc_infos[] __initconst = { { .uhp_udp_mask = AT91RM9200_PMC_UHP | AT91RM9200_PMC_UDP }, { .uhp_udp_mask = AT91SAM926x_PMC_UHP | AT91SAM926x_PMC_UDP }, { .uhp_udp_mask = AT91SAM926x_PMC_UHP }, }; static const struct of_device_id atmel_pmc_ids[] __initconst = { { .compatible = "atmel,at91rm9200-pmc", .data = &pmc_infos[0] }, { .compatible = "atmel,at91sam9260-pmc", .data = &pmc_infos[1] }, { .compatible = "atmel,at91sam9g45-pmc", .data = &pmc_infos[2] }, { .compatible = "atmel,at91sam9n12-pmc", .data = &pmc_infos[1] }, { .compatible = "atmel,at91sam9x5-pmc", .data = &pmc_infos[1] }, { .compatible = "atmel,sama5d3-pmc", .data = &pmc_infos[1] }, { .compatible = "atmel,sama5d2-pmc", .data = &pmc_infos[1] }, { /* sentinel */ }, }; static void __init at91_pm_init(void (*pm_idle)(void)) { struct device_node *pmc_np; const struct of_device_id *of_id; const struct pmc_info *pmc; if (at91_cpuidle_device.dev.platform_data) platform_device_register(&at91_cpuidle_device); pmc_np = of_find_matching_node_and_match(NULL, atmel_pmc_ids, &of_id); pm_data.pmc = of_iomap(pmc_np, 0); if (!pm_data.pmc) { pr_err("AT91: PM not supported, PMC not found\n"); return; } pmc = of_id->data; pm_data.uhp_udp_mask = pmc->uhp_udp_mask; if (pm_idle) arm_pm_idle = pm_idle; at91_pm_sram_init(); if (at91_suspend_sram_fn) { suspend_set_ops(&at91_pm_ops); pr_info("AT91: PM: standby: %s, suspend: %s\n", pm_modes[pm_data.standby_mode].pattern, pm_modes[pm_data.suspend_mode].pattern); } else { pr_info("AT91: PM not supported, due to no SRAM allocated\n"); } } void __init at91rm9200_pm_init(void) { if (!IS_ENABLED(CONFIG_SOC_AT91RM9200)) return; at91_dt_ramc(); /* * AT91RM9200 SDRAM low-power mode cannot be used with self-refresh. */ at91_ramc_write(0, AT91_MC_SDRAMC_LPR, 0); at91_pm_init(at91rm9200_idle); } void __init at91sam9_pm_init(void) { if (!IS_ENABLED(CONFIG_SOC_AT91SAM9)) return; at91_dt_ramc(); at91_pm_init(at91sam9_idle); } void __init sama5_pm_init(void) { if (!IS_ENABLED(CONFIG_SOC_SAMA5)) return; at91_dt_ramc(); at91_pm_init(NULL); } void __init sama5d2_pm_init(void) { if (!IS_ENABLED(CONFIG_SOC_SAMA5D2)) return; at91_pm_backup_init(); sama5_pm_init(); } static int __init at91_pm_modes_select(char *str) { char *s; substring_t args[MAX_OPT_ARGS]; int standby, suspend; if (!str) return 0; s = strsep(&str, ","); standby = match_token(s, pm_modes, args); if (standby < 0) return 0; suspend = match_token(str, pm_modes, args); if (suspend < 0) return 0; pm_data.standby_mode = standby; pm_data.suspend_mode = suspend; return 0; } early_param("atmel.pm_modes", at91_pm_modes_select);