/* * Copyright (C) 2015-2016 Socionext Inc. * Author: Masahiro Yamada * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "uniphier: " fmt #include #include #include #include #include #include #include #include /* control registers */ #define UNIPHIER_SSCC 0x0 /* Control Register */ #define UNIPHIER_SSCC_BST BIT(20) /* UCWG burst read */ #define UNIPHIER_SSCC_ACT BIT(19) /* Inst-Data separate */ #define UNIPHIER_SSCC_WTG BIT(18) /* WT gathering on */ #define UNIPHIER_SSCC_PRD BIT(17) /* enable pre-fetch */ #define UNIPHIER_SSCC_ON BIT(0) /* enable cache */ #define UNIPHIER_SSCLPDAWCR 0x30 /* Unified/Data Active Way Control */ #define UNIPHIER_SSCLPIAWCR 0x34 /* Instruction Active Way Control */ /* revision registers */ #define UNIPHIER_SSCID 0x0 /* ID Register */ /* operation registers */ #define UNIPHIER_SSCOPE 0x244 /* Cache Operation Primitive Entry */ #define UNIPHIER_SSCOPE_CM_INV 0x0 /* invalidate */ #define UNIPHIER_SSCOPE_CM_CLEAN 0x1 /* clean */ #define UNIPHIER_SSCOPE_CM_FLUSH 0x2 /* flush */ #define UNIPHIER_SSCOPE_CM_SYNC 0x8 /* sync (drain bufs) */ #define UNIPHIER_SSCOPE_CM_FLUSH_PREFETCH 0x9 /* flush p-fetch buf */ #define UNIPHIER_SSCOQM 0x248 /* Cache Operation Queue Mode */ #define UNIPHIER_SSCOQM_S_MASK (0x3 << 17) #define UNIPHIER_SSCOQM_S_RANGE (0x0 << 17) #define UNIPHIER_SSCOQM_S_ALL (0x1 << 17) #define UNIPHIER_SSCOQM_CE BIT(15) /* notify completion */ #define UNIPHIER_SSCOQM_CM_INV 0x0 /* invalidate */ #define UNIPHIER_SSCOQM_CM_CLEAN 0x1 /* clean */ #define UNIPHIER_SSCOQM_CM_FLUSH 0x2 /* flush */ #define UNIPHIER_SSCOQAD 0x24c /* Cache Operation Queue Address */ #define UNIPHIER_SSCOQSZ 0x250 /* Cache Operation Queue Size */ #define UNIPHIER_SSCOPPQSEF 0x25c /* Cache Operation Queue Set Complete*/ #define UNIPHIER_SSCOPPQSEF_FE BIT(1) #define UNIPHIER_SSCOPPQSEF_OE BIT(0) #define UNIPHIER_SSCOLPQS 0x260 /* Cache Operation Queue Status */ #define UNIPHIER_SSCOLPQS_EF BIT(2) #define UNIPHIER_SSCOLPQS_EST BIT(1) #define UNIPHIER_SSCOLPQS_QST BIT(0) /* Is the operation region specified by address range? */ #define UNIPHIER_SSCOQM_S_IS_RANGE(op) \ ((op & UNIPHIER_SSCOQM_S_MASK) == UNIPHIER_SSCOQM_S_RANGE) /** * uniphier_cache_data - UniPhier outer cache specific data * * @ctrl_base: virtual base address of control registers * @rev_base: virtual base address of revision registers * @op_base: virtual base address of operation registers * @way_mask: each bit specifies if the way is present * @nsets: number of associativity sets * @line_size: line size in bytes * @range_op_max_size: max size that can be handled by a single range operation * @list: list node to include this level in the whole cache hierarchy */ struct uniphier_cache_data { void __iomem *ctrl_base; void __iomem *rev_base; void __iomem *op_base; void __iomem *way_ctrl_base; u32 way_mask; u32 nsets; u32 line_size; u32 range_op_max_size; struct list_head list; }; /* * List of the whole outer cache hierarchy. This list is only modified during * the early boot stage, so no mutex is taken for the access to the list. */ static LIST_HEAD(uniphier_cache_list); /** * __uniphier_cache_sync - perform a sync point for a particular cache level * * @data: cache controller specific data */ static void __uniphier_cache_sync(struct uniphier_cache_data *data) { /* This sequence need not be atomic. Do not disable IRQ. */ writel_relaxed(UNIPHIER_SSCOPE_CM_SYNC, data->op_base + UNIPHIER_SSCOPE); /* need a read back to confirm */ readl_relaxed(data->op_base + UNIPHIER_SSCOPE); } /** * __uniphier_cache_maint_common - run a queue operation for a particular level * * @data: cache controller specific data * @start: start address of range operation (don't care for "all" operation) * @size: data size of range operation (don't care for "all" operation) * @operation: flags to specify the desired cache operation */ static void __uniphier_cache_maint_common(struct uniphier_cache_data *data, unsigned long start, unsigned long size, u32 operation) { unsigned long flags; /* * No spin lock is necessary here because: * * [1] This outer cache controller is able to accept maintenance * operations from multiple CPUs at a time in an SMP system; if a * maintenance operation is under way and another operation is issued, * the new one is stored in the queue. The controller performs one * operation after another. If the queue is full, the status register, * UNIPHIER_SSCOPPQSEF, indicates that the queue registration has * failed. The status registers, UNIPHIER_{SSCOPPQSEF, SSCOLPQS}, have * different instances for each CPU, i.e. each CPU can track the status * of the maintenance operations triggered by itself. * * [2] The cache command registers, UNIPHIER_{SSCOQM, SSCOQAD, SSCOQSZ, * SSCOQWN}, are shared between multiple CPUs, but the hardware still * guarantees the registration sequence is atomic; the write access to * them are arbitrated by the hardware. The first accessor to the * register, UNIPHIER_SSCOQM, holds the access right and it is released * by reading the status register, UNIPHIER_SSCOPPQSEF. While one CPU * is holding the access right, other CPUs fail to register operations. * One CPU should not hold the access right for a long time, so local * IRQs should be disabled while the following sequence. */ local_irq_save(flags); /* clear the complete notification flag */ writel_relaxed(UNIPHIER_SSCOLPQS_EF, data->op_base + UNIPHIER_SSCOLPQS); do { /* set cache operation */ writel_relaxed(UNIPHIER_SSCOQM_CE | operation, data->op_base + UNIPHIER_SSCOQM); /* set address range if needed */ if (likely(UNIPHIER_SSCOQM_S_IS_RANGE(operation))) { writel_relaxed(start, data->op_base + UNIPHIER_SSCOQAD); writel_relaxed(size, data->op_base + UNIPHIER_SSCOQSZ); } } while (unlikely(readl_relaxed(data->op_base + UNIPHIER_SSCOPPQSEF) & (UNIPHIER_SSCOPPQSEF_FE | UNIPHIER_SSCOPPQSEF_OE))); /* wait until the operation is completed */ while (likely(readl_relaxed(data->op_base + UNIPHIER_SSCOLPQS) != UNIPHIER_SSCOLPQS_EF)) cpu_relax(); local_irq_restore(flags); } static void __uniphier_cache_maint_all(struct uniphier_cache_data *data, u32 operation) { __uniphier_cache_maint_common(data, 0, 0, UNIPHIER_SSCOQM_S_ALL | operation); __uniphier_cache_sync(data); } static void __uniphier_cache_maint_range(struct uniphier_cache_data *data, unsigned long start, unsigned long end, u32 operation) { unsigned long size; /* * If the start address is not aligned, * perform a cache operation for the first cache-line */ start = start & ~(data->line_size - 1); size = end - start; if (unlikely(size >= (unsigned long)(-data->line_size))) { /* this means cache operation for all range */ __uniphier_cache_maint_all(data, operation); return; } /* * If the end address is not aligned, * perform a cache operation for the last cache-line */ size = ALIGN(size, data->line_size); while (size) { unsigned long chunk_size = min_t(unsigned long, size, data->range_op_max_size); __uniphier_cache_maint_common(data, start, chunk_size, UNIPHIER_SSCOQM_S_RANGE | operation); start += chunk_size; size -= chunk_size; } __uniphier_cache_sync(data); } static void __uniphier_cache_enable(struct uniphier_cache_data *data, bool on) { u32 val = 0; if (on) val = UNIPHIER_SSCC_WTG | UNIPHIER_SSCC_PRD | UNIPHIER_SSCC_ON; writel_relaxed(val, data->ctrl_base + UNIPHIER_SSCC); } static void __init __uniphier_cache_set_active_ways( struct uniphier_cache_data *data) { unsigned int cpu; for_each_possible_cpu(cpu) writel_relaxed(data->way_mask, data->way_ctrl_base + 4 * cpu); } static void uniphier_cache_maint_range(unsigned long start, unsigned long end, u32 operation) { struct uniphier_cache_data *data; list_for_each_entry(data, &uniphier_cache_list, list) __uniphier_cache_maint_range(data, start, end, operation); } static void uniphier_cache_maint_all(u32 operation) { struct uniphier_cache_data *data; list_for_each_entry(data, &uniphier_cache_list, list) __uniphier_cache_maint_all(data, operation); } static void uniphier_cache_inv_range(unsigned long start, unsigned long end) { uniphier_cache_maint_range(start, end, UNIPHIER_SSCOQM_CM_INV); } static void uniphier_cache_clean_range(unsigned long start, unsigned long end) { uniphier_cache_maint_range(start, end, UNIPHIER_SSCOQM_CM_CLEAN); } static void uniphier_cache_flush_range(unsigned long start, unsigned long end) { uniphier_cache_maint_range(start, end, UNIPHIER_SSCOQM_CM_FLUSH); } static void __init uniphier_cache_inv_all(void) { uniphier_cache_maint_all(UNIPHIER_SSCOQM_CM_INV); } static void uniphier_cache_flush_all(void) { uniphier_cache_maint_all(UNIPHIER_SSCOQM_CM_FLUSH); } static void uniphier_cache_disable(void) { struct uniphier_cache_data *data; list_for_each_entry_reverse(data, &uniphier_cache_list, list) __uniphier_cache_enable(data, false); uniphier_cache_flush_all(); } static void __init uniphier_cache_enable(void) { struct uniphier_cache_data *data; uniphier_cache_inv_all(); list_for_each_entry(data, &uniphier_cache_list, list) { __uniphier_cache_enable(data, true); __uniphier_cache_set_active_ways(data); } } static void uniphier_cache_sync(void) { struct uniphier_cache_data *data; list_for_each_entry(data, &uniphier_cache_list, list) __uniphier_cache_sync(data); } static const struct of_device_id uniphier_cache_match[] __initconst = { { .compatible = "socionext,uniphier-system-cache" }, { /* sentinel */ } }; static int __init __uniphier_cache_init(struct device_node *np, unsigned int *cache_level) { struct uniphier_cache_data *data; u32 level, cache_size; struct device_node *next_np; int ret = 0; if (!of_match_node(uniphier_cache_match, np)) { pr_err("L%d: not compatible with uniphier cache\n", *cache_level); return -EINVAL; } if (of_property_read_u32(np, "cache-level", &level)) { pr_err("L%d: cache-level is not specified\n", *cache_level); return -EINVAL; } if (level != *cache_level) { pr_err("L%d: cache-level is unexpected value %d\n", *cache_level, level); return -EINVAL; } if (!of_property_read_bool(np, "cache-unified")) { pr_err("L%d: cache-unified is not specified\n", *cache_level); return -EINVAL; } data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; if (of_property_read_u32(np, "cache-line-size", &data->line_size) || !is_power_of_2(data->line_size)) { pr_err("L%d: cache-line-size is unspecified or invalid\n", *cache_level); ret = -EINVAL; goto err; } if (of_property_read_u32(np, "cache-sets", &data->nsets) || !is_power_of_2(data->nsets)) { pr_err("L%d: cache-sets is unspecified or invalid\n", *cache_level); ret = -EINVAL; goto err; } if (of_property_read_u32(np, "cache-size", &cache_size) || cache_size == 0 || cache_size % (data->nsets * data->line_size)) { pr_err("L%d: cache-size is unspecified or invalid\n", *cache_level); ret = -EINVAL; goto err; } data->way_mask = GENMASK(cache_size / data->nsets / data->line_size - 1, 0); data->ctrl_base = of_iomap(np, 0); if (!data->ctrl_base) { pr_err("L%d: failed to map control register\n", *cache_level); ret = -ENOMEM; goto err; } data->rev_base = of_iomap(np, 1); if (!data->rev_base) { pr_err("L%d: failed to map revision register\n", *cache_level); ret = -ENOMEM; goto err; } data->op_base = of_iomap(np, 2); if (!data->op_base) { pr_err("L%d: failed to map operation register\n", *cache_level); ret = -ENOMEM; goto err; } data->way_ctrl_base = data->ctrl_base + 0xc00; if (*cache_level == 2) { u32 revision = readl(data->rev_base + UNIPHIER_SSCID); /* * The size of range operation is limited to (1 << 22) or less * for PH-sLD8 or older SoCs. */ if (revision <= 0x16) data->range_op_max_size = (u32)1 << 22; /* * Unfortunatly, the offset address of active way control base * varies from SoC to SoC. */ switch (revision) { case 0x11: /* sLD3 */ data->way_ctrl_base = data->ctrl_base + 0x870; break; case 0x12: /* LD4 */ case 0x16: /* sld8 */ data->way_ctrl_base = data->ctrl_base + 0x840; break; default: break; } } data->range_op_max_size -= data->line_size; INIT_LIST_HEAD(&data->list); list_add_tail(&data->list, &uniphier_cache_list); /* no mutex */ /* * OK, this level has been successfully initialized. Look for the next * level cache. Do not roll back even if the initialization of the * next level cache fails because we want to continue with available * cache levels. */ next_np = of_find_next_cache_node(np); if (next_np) { (*cache_level)++; ret = __uniphier_cache_init(next_np, cache_level); } of_node_put(next_np); return ret; err: iounmap(data->op_base); iounmap(data->rev_base); iounmap(data->ctrl_base); kfree(data); return ret; } int __init uniphier_cache_init(void) { struct device_node *np = NULL; unsigned int cache_level; int ret = 0; /* look for level 2 cache */ while ((np = of_find_matching_node(np, uniphier_cache_match))) if (!of_property_read_u32(np, "cache-level", &cache_level) && cache_level == 2) break; if (!np) return -ENODEV; ret = __uniphier_cache_init(np, &cache_level); of_node_put(np); if (ret) { /* * Error out iif L2 initialization fails. Continue with any * error on L3 or outer because they are optional. */ if (cache_level == 2) { pr_err("failed to initialize L2 cache\n"); return ret; } cache_level--; ret = 0; } outer_cache.inv_range = uniphier_cache_inv_range; outer_cache.clean_range = uniphier_cache_clean_range; outer_cache.flush_range = uniphier_cache_flush_range; outer_cache.flush_all = uniphier_cache_flush_all; outer_cache.disable = uniphier_cache_disable; outer_cache.sync = uniphier_cache_sync; uniphier_cache_enable(); pr_info("enabled outer cache (cache level: %d)\n", cache_level); return ret; }