// SPDX-License-Identifier: GPL-2.0-only /* * This file contains kasan initialization code for ARM. * * Copyright (c) 2018 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin * Author: Linus Walleij */ #define pr_fmt(fmt) "kasan: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mm.h" static pgd_t tmp_pgd_table[PTRS_PER_PGD] __initdata __aligned(PGD_SIZE); pmd_t tmp_pmd_table[PTRS_PER_PMD] __page_aligned_bss; static __init void *kasan_alloc_block(size_t size) { return memblock_alloc_try_nid(size, size, __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_KASAN, NUMA_NO_NODE); } static void __init kasan_pte_populate(pmd_t *pmdp, unsigned long addr, unsigned long end, bool early) { unsigned long next; pte_t *ptep = pte_offset_kernel(pmdp, addr); do { pte_t entry; void *p; next = addr + PAGE_SIZE; if (!early) { if (!pte_none(READ_ONCE(*ptep))) continue; p = kasan_alloc_block(PAGE_SIZE); if (!p) { panic("%s failed to allocate shadow page for address 0x%lx\n", __func__, addr); return; } memset(p, KASAN_SHADOW_INIT, PAGE_SIZE); entry = pfn_pte(virt_to_pfn(p), __pgprot(pgprot_val(PAGE_KERNEL))); } else if (pte_none(READ_ONCE(*ptep))) { /* * The early shadow memory is mapping all KASan * operations to one and the same page in memory, * "kasan_early_shadow_page" so that the instrumentation * will work on a scratch area until we can set up the * proper KASan shadow memory. */ entry = pfn_pte(virt_to_pfn(kasan_early_shadow_page), __pgprot(_L_PTE_DEFAULT | L_PTE_DIRTY | L_PTE_XN)); } else { /* * Early shadow mappings are PMD_SIZE aligned, so if the * first entry is already set, they must all be set. */ return; } set_pte_at(&init_mm, addr, ptep, entry); } while (ptep++, addr = next, addr != end); } /* * The pmd (page middle directory) is only used on LPAE */ static void __init kasan_pmd_populate(pud_t *pudp, unsigned long addr, unsigned long end, bool early) { unsigned long next; pmd_t *pmdp = pmd_offset(pudp, addr); do { if (pmd_none(*pmdp)) { /* * We attempt to allocate a shadow block for the PMDs * used by the PTEs for this address if it isn't already * allocated. */ void *p = early ? kasan_early_shadow_pte : kasan_alloc_block(PAGE_SIZE); if (!p) { panic("%s failed to allocate shadow block for address 0x%lx\n", __func__, addr); return; } pmd_populate_kernel(&init_mm, pmdp, p); flush_pmd_entry(pmdp); } next = pmd_addr_end(addr, end); kasan_pte_populate(pmdp, addr, next, early); } while (pmdp++, addr = next, addr != end); } static void __init kasan_pgd_populate(unsigned long addr, unsigned long end, bool early) { unsigned long next; pgd_t *pgdp; p4d_t *p4dp; pud_t *pudp; pgdp = pgd_offset_k(addr); do { /* * Allocate and populate the shadow block of p4d folded into * pud folded into pmd if it doesn't already exist */ if (!early && pgd_none(*pgdp)) { void *p = kasan_alloc_block(PAGE_SIZE); if (!p) { panic("%s failed to allocate shadow block for address 0x%lx\n", __func__, addr); return; } pgd_populate(&init_mm, pgdp, p); } next = pgd_addr_end(addr, end); /* * We just immediately jump over the p4d and pud page * directories since we believe ARM32 will never gain four * nor five level page tables. */ p4dp = p4d_offset(pgdp, addr); pudp = pud_offset(p4dp, addr); kasan_pmd_populate(pudp, addr, next, early); } while (pgdp++, addr = next, addr != end); } extern struct proc_info_list *lookup_processor_type(unsigned int); void __init kasan_early_init(void) { struct proc_info_list *list; /* * locate processor in the list of supported processor * types. The linker builds this table for us from the * entries in arch/arm/mm/proc-*.S */ list = lookup_processor_type(read_cpuid_id()); if (list) { #ifdef MULTI_CPU processor = *list->proc; #endif } BUILD_BUG_ON((KASAN_SHADOW_END - (1UL << 29)) != KASAN_SHADOW_OFFSET); /* * We walk the page table and set all of the shadow memory to point * to the scratch page. */ kasan_pgd_populate(KASAN_SHADOW_START, KASAN_SHADOW_END, true); } static void __init clear_pgds(unsigned long start, unsigned long end) { for (; start && start < end; start += PMD_SIZE) pmd_clear(pmd_off_k(start)); } static int __init create_mapping(void *start, void *end) { void *shadow_start, *shadow_end; shadow_start = kasan_mem_to_shadow(start); shadow_end = kasan_mem_to_shadow(end); pr_info("Mapping kernel virtual memory block: %px-%px at shadow: %px-%px\n", start, end, shadow_start, shadow_end); kasan_pgd_populate((unsigned long)shadow_start & PAGE_MASK, PAGE_ALIGN((unsigned long)shadow_end), false); return 0; } void __init kasan_init(void) { phys_addr_t pa_start, pa_end; u64 i; /* * We are going to perform proper setup of shadow memory. * * At first we should unmap early shadow (clear_pgds() call bellow). * However, instrumented code can't execute without shadow memory. * * To keep the early shadow memory MMU tables around while setting up * the proper shadow memory, we copy swapper_pg_dir (the initial page * table) to tmp_pgd_table and use that to keep the early shadow memory * mapped until the full shadow setup is finished. Then we swap back * to the proper swapper_pg_dir. */ memcpy(tmp_pgd_table, swapper_pg_dir, sizeof(tmp_pgd_table)); #ifdef CONFIG_ARM_LPAE /* We need to be in the same PGD or this won't work */ BUILD_BUG_ON(pgd_index(KASAN_SHADOW_START) != pgd_index(KASAN_SHADOW_END)); memcpy(tmp_pmd_table, pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_START)), sizeof(tmp_pmd_table)); set_pgd(&tmp_pgd_table[pgd_index(KASAN_SHADOW_START)], __pgd(__pa(tmp_pmd_table) | PMD_TYPE_TABLE | L_PGD_SWAPPER)); #endif cpu_switch_mm(tmp_pgd_table, &init_mm); local_flush_tlb_all(); clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END); kasan_populate_early_shadow(kasan_mem_to_shadow((void *)VMALLOC_START), kasan_mem_to_shadow((void *)-1UL) + 1); for_each_mem_range(i, &pa_start, &pa_end) { void *start = __va(pa_start); void *end = __va(pa_end); /* Do not attempt to shadow highmem */ if (pa_start >= arm_lowmem_limit) { pr_info("Skip highmem block at %pa-%pa\n", &pa_start, &pa_end); continue; } if (pa_end > arm_lowmem_limit) { pr_info("Truncating shadow for memory block at %pa-%pa to lowmem region at %pa\n", &pa_start, &pa_end, &arm_lowmem_limit); end = __va(arm_lowmem_limit); } if (start >= end) { pr_info("Skipping invalid memory block %pa-%pa (virtual %p-%p)\n", &pa_start, &pa_end, start, end); continue; } create_mapping(start, end); } /* * 1. The module global variables are in MODULES_VADDR ~ MODULES_END, * so we need to map this area. * 2. PKMAP_BASE ~ PKMAP_BASE+PMD_SIZE's shadow and MODULES_VADDR * ~ MODULES_END's shadow is in the same PMD_SIZE, so we can't * use kasan_populate_zero_shadow. */ create_mapping((void *)MODULES_VADDR, (void *)(PKMAP_BASE + PMD_SIZE)); /* * KAsan may reuse the contents of kasan_early_shadow_pte directly, so * we should make sure that it maps the zero page read-only. */ for (i = 0; i < PTRS_PER_PTE; i++) set_pte_at(&init_mm, KASAN_SHADOW_START + i*PAGE_SIZE, &kasan_early_shadow_pte[i], pfn_pte(virt_to_pfn(kasan_early_shadow_page), __pgprot(pgprot_val(PAGE_KERNEL) | L_PTE_RDONLY))); cpu_switch_mm(swapper_pg_dir, &init_mm); local_flush_tlb_all(); memset(kasan_early_shadow_page, 0, PAGE_SIZE); pr_info("Kernel address sanitizer initialized\n"); init_task.kasan_depth = 0; }