/* * Based on linux/arch/arm/mm/nommu.c * * ARM PMSAv7 supporting functions. */ #include #include #include #include #include #include #include #include "mm.h" struct region { phys_addr_t base; phys_addr_t size; unsigned long subreg; }; static struct region __initdata mem[MPU_MAX_REGIONS]; #ifdef CONFIG_XIP_KERNEL static struct region __initdata xip[MPU_MAX_REGIONS]; #endif static unsigned int __initdata mpu_min_region_order; static unsigned int __initdata mpu_max_regions; static int __init __mpu_min_region_order(void); static int __init __mpu_max_regions(void); #ifndef CONFIG_CPU_V7M #define DRBAR __ACCESS_CP15(c6, 0, c1, 0) #define IRBAR __ACCESS_CP15(c6, 0, c1, 1) #define DRSR __ACCESS_CP15(c6, 0, c1, 2) #define IRSR __ACCESS_CP15(c6, 0, c1, 3) #define DRACR __ACCESS_CP15(c6, 0, c1, 4) #define IRACR __ACCESS_CP15(c6, 0, c1, 5) #define RNGNR __ACCESS_CP15(c6, 0, c2, 0) /* Region number */ static inline void rgnr_write(u32 v) { write_sysreg(v, RNGNR); } /* Data-side / unified region attributes */ /* Region access control register */ static inline void dracr_write(u32 v) { write_sysreg(v, DRACR); } /* Region size register */ static inline void drsr_write(u32 v) { write_sysreg(v, DRSR); } /* Region base address register */ static inline void drbar_write(u32 v) { write_sysreg(v, DRBAR); } static inline u32 drbar_read(void) { return read_sysreg(DRBAR); } /* Optional instruction-side region attributes */ /* I-side Region access control register */ static inline void iracr_write(u32 v) { write_sysreg(v, IRACR); } /* I-side Region size register */ static inline void irsr_write(u32 v) { write_sysreg(v, IRSR); } /* I-side Region base address register */ static inline void irbar_write(u32 v) { write_sysreg(v, IRBAR); } static inline u32 irbar_read(void) { return read_sysreg(IRBAR); } #else static inline void rgnr_write(u32 v) { writel_relaxed(v, BASEADDR_V7M_SCB + MPU_RNR); } /* Data-side / unified region attributes */ /* Region access control register */ static inline void dracr_write(u32 v) { u32 rsr = readl_relaxed(BASEADDR_V7M_SCB + MPU_RASR) & GENMASK(15, 0); writel_relaxed((v << 16) | rsr, BASEADDR_V7M_SCB + MPU_RASR); } /* Region size register */ static inline void drsr_write(u32 v) { u32 racr = readl_relaxed(BASEADDR_V7M_SCB + MPU_RASR) & GENMASK(31, 16); writel_relaxed(v | racr, BASEADDR_V7M_SCB + MPU_RASR); } /* Region base address register */ static inline void drbar_write(u32 v) { writel_relaxed(v, BASEADDR_V7M_SCB + MPU_RBAR); } static inline u32 drbar_read(void) { return readl_relaxed(BASEADDR_V7M_SCB + MPU_RBAR); } /* ARMv7-M only supports a unified MPU, so I-side operations are nop */ static inline void iracr_write(u32 v) {} static inline void irsr_write(u32 v) {} static inline void irbar_write(u32 v) {} static inline unsigned long irbar_read(void) {return 0;} #endif static int __init mpu_present(void) { return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7); } static bool __init try_split_region(phys_addr_t base, phys_addr_t size, struct region *region) { unsigned long subreg, bslots, sslots; phys_addr_t abase = base & ~(size - 1); phys_addr_t asize = base + size - abase; phys_addr_t p2size = 1 << __fls(asize); phys_addr_t bdiff, sdiff; if (p2size != asize) p2size *= 2; bdiff = base - abase; sdiff = p2size - asize; subreg = p2size / MPU_NR_SUBREGS; if ((bdiff % subreg) || (sdiff % subreg)) return false; bslots = bdiff / subreg; sslots = sdiff / subreg; if (bslots || sslots) { int i; if (subreg < MPU_MIN_SUBREG_SIZE) return false; if (bslots + sslots > MPU_NR_SUBREGS) return false; for (i = 0; i < bslots; i++) _set_bit(i, ®ion->subreg); for (i = 1; i <= sslots; i++) _set_bit(MPU_NR_SUBREGS - i, ®ion->subreg); } region->base = abase; region->size = p2size; return true; } static int __init allocate_region(phys_addr_t base, phys_addr_t size, unsigned int limit, struct region *regions) { int count = 0; phys_addr_t diff = size; int attempts = MPU_MAX_REGIONS; while (diff) { /* Try cover region as is (maybe with help of subregions) */ if (try_split_region(base, size, ®ions[count])) { count++; base += size; diff -= size; size = diff; } else { /* * Maximum aligned region might overflow phys_addr_t * if "base" is 0. Hence we keep everything below 4G * until we take the smaller of the aligned region * size ("asize") and rounded region size ("p2size"), * one of which is guaranteed to be smaller than the * maximum physical address. */ phys_addr_t asize = (base - 1) ^ base; phys_addr_t p2size = (1 << __fls(diff)) - 1; size = asize < p2size ? asize + 1 : p2size + 1; } if (count > limit) break; if (!attempts) break; attempts--; } return count; } /* MPU initialisation functions */ void __init adjust_lowmem_bounds_mpu(void) { phys_addr_t specified_mem_size = 0, total_mem_size = 0; struct memblock_region *reg; bool first = true; phys_addr_t mem_start; phys_addr_t mem_end; unsigned int mem_max_regions; int num, i; if (!mpu_present()) return; /* Free-up MPU_PROBE_REGION */ mpu_min_region_order = __mpu_min_region_order(); /* How many regions are supported */ mpu_max_regions = __mpu_max_regions(); mem_max_regions = min((unsigned int)MPU_MAX_REGIONS, mpu_max_regions); /* We need to keep one slot for background region */ mem_max_regions--; #ifndef CONFIG_CPU_V7M /* ... and one for vectors */ mem_max_regions--; #endif #ifdef CONFIG_XIP_KERNEL /* plus some regions to cover XIP ROM */ num = allocate_region(CONFIG_XIP_PHYS_ADDR, __pa(_exiprom) - CONFIG_XIP_PHYS_ADDR, mem_max_regions, xip); mem_max_regions -= num; #endif for_each_memblock(memory, reg) { if (first) { phys_addr_t phys_offset = PHYS_OFFSET; /* * Initially only use memory continuous from * PHYS_OFFSET */ if (reg->base != phys_offset) panic("First memory bank must be contiguous from PHYS_OFFSET"); mem_start = reg->base; mem_end = reg->base + reg->size; specified_mem_size = reg->size; first = false; } else { /* * memblock auto merges contiguous blocks, remove * all blocks afterwards in one go (we can't remove * blocks separately while iterating) */ pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n", &mem_end, ®->base); memblock_remove(reg->base, 0 - reg->base); break; } } num = allocate_region(mem_start, specified_mem_size, mem_max_regions, mem); for (i = 0; i < num; i++) { unsigned long subreg = mem[i].size / MPU_NR_SUBREGS; total_mem_size += mem[i].size - subreg * hweight_long(mem[i].subreg); pr_debug("MPU: base %pa size %pa disable subregions: %*pbl\n", &mem[i].base, &mem[i].size, MPU_NR_SUBREGS, &mem[i].subreg); } if (total_mem_size != specified_mem_size) { pr_warn("Truncating memory from %pa to %pa (MPU region constraints)", &specified_mem_size, &total_mem_size); memblock_remove(mem_start + total_mem_size, specified_mem_size - total_mem_size); } } static int __init __mpu_max_regions(void) { /* * We don't support a different number of I/D side regions so if we * have separate instruction and data memory maps then return * whichever side has a smaller number of supported regions. */ u32 dregions, iregions, mpuir; mpuir = read_cpuid_mputype(); dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION; /* Check for separate d-side and i-side memory maps */ if (mpuir & MPUIR_nU) iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION; /* Use the smallest of the two maxima */ return min(dregions, iregions); } static int __init mpu_iside_independent(void) { /* MPUIR.nU specifies whether there is *not* a unified memory map */ return read_cpuid_mputype() & MPUIR_nU; } static int __init __mpu_min_region_order(void) { u32 drbar_result, irbar_result; /* We've kept a region free for this probing */ rgnr_write(MPU_PROBE_REGION); isb(); /* * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum * region order */ drbar_write(0xFFFFFFFC); drbar_result = irbar_result = drbar_read(); drbar_write(0x0); /* If the MPU is non-unified, we use the larger of the two minima*/ if (mpu_iside_independent()) { irbar_write(0xFFFFFFFC); irbar_result = irbar_read(); irbar_write(0x0); } isb(); /* Ensure that MPU region operations have completed */ /* Return whichever result is larger */ return __ffs(max(drbar_result, irbar_result)); } static int __init mpu_setup_region(unsigned int number, phys_addr_t start, unsigned int size_order, unsigned int properties, unsigned int subregions, bool need_flush) { u32 size_data; /* We kept a region free for probing resolution of MPU regions*/ if (number > mpu_max_regions || number >= MPU_MAX_REGIONS) return -ENOENT; if (size_order > 32) return -ENOMEM; if (size_order < mpu_min_region_order) return -ENOMEM; /* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */ size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN; size_data |= subregions << MPU_RSR_SD; if (need_flush) flush_cache_all(); dsb(); /* Ensure all previous data accesses occur with old mappings */ rgnr_write(number); isb(); drbar_write(start); dracr_write(properties); isb(); /* Propagate properties before enabling region */ drsr_write(size_data); /* Check for independent I-side registers */ if (mpu_iside_independent()) { irbar_write(start); iracr_write(properties); isb(); irsr_write(size_data); } isb(); /* Store region info (we treat i/d side the same, so only store d) */ mpu_rgn_info.rgns[number].dracr = properties; mpu_rgn_info.rgns[number].drbar = start; mpu_rgn_info.rgns[number].drsr = size_data; mpu_rgn_info.used++; return 0; } /* * Set up default MPU regions, doing nothing if there is no MPU */ void __init mpu_setup(void) { int i, region = 0, err = 0; if (!mpu_present()) return; /* Setup MPU (order is important) */ /* Background */ err |= mpu_setup_region(region++, 0, 32, MPU_ACR_XN | MPU_RGN_STRONGLY_ORDERED | MPU_AP_PL1RW_PL0NA, 0, false); #ifdef CONFIG_XIP_KERNEL /* ROM */ for (i = 0; i < ARRAY_SIZE(xip); i++) { /* * In case we overwrite RAM region we set earlier in * head-nommu.S (which is cachable) all subsequent * data access till we setup RAM bellow would be done * with BG region (which is uncachable), thus we need * to clean and invalidate cache. */ bool need_flush = region == MPU_RAM_REGION; if (!xip[i].size) continue; err |= mpu_setup_region(region++, xip[i].base, ilog2(xip[i].size), MPU_AP_PL1RO_PL0NA | MPU_RGN_NORMAL, xip[i].subreg, need_flush); } #endif /* RAM */ for (i = 0; i < ARRAY_SIZE(mem); i++) { if (!mem[i].size) continue; err |= mpu_setup_region(region++, mem[i].base, ilog2(mem[i].size), MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL, mem[i].subreg, false); } /* Vectors */ #ifndef CONFIG_CPU_V7M err |= mpu_setup_region(region++, vectors_base, ilog2(2 * PAGE_SIZE), MPU_AP_PL1RW_PL0NA | MPU_RGN_NORMAL, 0, false); #endif if (err) { panic("MPU region initialization failure! %d", err); } else { pr_info("Using ARMv7 PMSA Compliant MPU. " "Region independence: %s, Used %d of %d regions\n", mpu_iside_independent() ? "Yes" : "No", mpu_rgn_info.used, mpu_max_regions); } }