/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2012,2013 - ARM Ltd * Author: Marc Zyngier */ #ifndef __ARM64_KVM_ARM_H__ #define __ARM64_KVM_ARM_H__ #include #include #include /* Hyp Configuration Register (HCR) bits */ #define HCR_TID5 (UL(1) << 58) #define HCR_DCT (UL(1) << 57) #define HCR_ATA_SHIFT 56 #define HCR_ATA (UL(1) << HCR_ATA_SHIFT) #define HCR_AMVOFFEN (UL(1) << 51) #define HCR_FIEN (UL(1) << 47) #define HCR_FWB (UL(1) << 46) #define HCR_API (UL(1) << 41) #define HCR_APK (UL(1) << 40) #define HCR_TEA (UL(1) << 37) #define HCR_TERR (UL(1) << 36) #define HCR_TLOR (UL(1) << 35) #define HCR_E2H (UL(1) << 34) #define HCR_ID (UL(1) << 33) #define HCR_CD (UL(1) << 32) #define HCR_RW_SHIFT 31 #define HCR_RW (UL(1) << HCR_RW_SHIFT) #define HCR_TRVM (UL(1) << 30) #define HCR_HCD (UL(1) << 29) #define HCR_TDZ (UL(1) << 28) #define HCR_TGE (UL(1) << 27) #define HCR_TVM (UL(1) << 26) #define HCR_TTLB (UL(1) << 25) #define HCR_TPU (UL(1) << 24) #define HCR_TPC (UL(1) << 23) /* HCR_TPCP if FEAT_DPB */ #define HCR_TSW (UL(1) << 22) #define HCR_TACR (UL(1) << 21) #define HCR_TIDCP (UL(1) << 20) #define HCR_TSC (UL(1) << 19) #define HCR_TID3 (UL(1) << 18) #define HCR_TID2 (UL(1) << 17) #define HCR_TID1 (UL(1) << 16) #define HCR_TID0 (UL(1) << 15) #define HCR_TWE (UL(1) << 14) #define HCR_TWI (UL(1) << 13) #define HCR_DC (UL(1) << 12) #define HCR_BSU (3 << 10) #define HCR_BSU_IS (UL(1) << 10) #define HCR_FB (UL(1) << 9) #define HCR_VSE (UL(1) << 8) #define HCR_VI (UL(1) << 7) #define HCR_VF (UL(1) << 6) #define HCR_AMO (UL(1) << 5) #define HCR_IMO (UL(1) << 4) #define HCR_FMO (UL(1) << 3) #define HCR_PTW (UL(1) << 2) #define HCR_SWIO (UL(1) << 1) #define HCR_VM (UL(1) << 0) #define HCR_RES0 ((UL(1) << 48) | (UL(1) << 39)) /* * The bits we set in HCR: * TLOR: Trap LORegion register accesses * RW: 64bit by default, can be overridden for 32bit VMs * TACR: Trap ACTLR * TSC: Trap SMC * TSW: Trap cache operations by set/way * TWE: Trap WFE * TWI: Trap WFI * TIDCP: Trap L2CTLR/L2ECTLR * BSU_IS: Upgrade barriers to the inner shareable domain * FB: Force broadcast of all maintenance operations * AMO: Override CPSR.A and enable signaling with VA * IMO: Override CPSR.I and enable signaling with VI * FMO: Override CPSR.F and enable signaling with VF * SWIO: Turn set/way invalidates into set/way clean+invalidate * PTW: Take a stage2 fault if a stage1 walk steps in device memory */ #define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \ HCR_BSU_IS | HCR_FB | HCR_TACR | \ HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \ HCR_FMO | HCR_IMO | HCR_PTW ) #define HCR_VIRT_EXCP_MASK (HCR_VSE | HCR_VI | HCR_VF) #define HCR_HOST_NVHE_FLAGS (HCR_RW | HCR_API | HCR_APK | HCR_ATA) #define HCR_HOST_NVHE_PROTECTED_FLAGS (HCR_HOST_NVHE_FLAGS | HCR_TSC) #define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H) /* TCR_EL2 Registers bits */ #define TCR_EL2_RES1 ((1U << 31) | (1 << 23)) #define TCR_EL2_TBI (1 << 20) #define TCR_EL2_PS_SHIFT 16 #define TCR_EL2_PS_MASK (7 << TCR_EL2_PS_SHIFT) #define TCR_EL2_PS_40B (2 << TCR_EL2_PS_SHIFT) #define TCR_EL2_TG0_MASK TCR_TG0_MASK #define TCR_EL2_SH0_MASK TCR_SH0_MASK #define TCR_EL2_ORGN0_MASK TCR_ORGN0_MASK #define TCR_EL2_IRGN0_MASK TCR_IRGN0_MASK #define TCR_EL2_T0SZ_MASK 0x3f #define TCR_EL2_MASK (TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \ TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK | TCR_EL2_T0SZ_MASK) /* VTCR_EL2 Registers bits */ #define VTCR_EL2_RES1 (1U << 31) #define VTCR_EL2_HD (1 << 22) #define VTCR_EL2_HA (1 << 21) #define VTCR_EL2_PS_SHIFT TCR_EL2_PS_SHIFT #define VTCR_EL2_PS_MASK TCR_EL2_PS_MASK #define VTCR_EL2_TG0_MASK TCR_TG0_MASK #define VTCR_EL2_TG0_4K TCR_TG0_4K #define VTCR_EL2_TG0_16K TCR_TG0_16K #define VTCR_EL2_TG0_64K TCR_TG0_64K #define VTCR_EL2_SH0_MASK TCR_SH0_MASK #define VTCR_EL2_SH0_INNER TCR_SH0_INNER #define VTCR_EL2_ORGN0_MASK TCR_ORGN0_MASK #define VTCR_EL2_ORGN0_WBWA TCR_ORGN0_WBWA #define VTCR_EL2_IRGN0_MASK TCR_IRGN0_MASK #define VTCR_EL2_IRGN0_WBWA TCR_IRGN0_WBWA #define VTCR_EL2_SL0_SHIFT 6 #define VTCR_EL2_SL0_MASK (3 << VTCR_EL2_SL0_SHIFT) #define VTCR_EL2_T0SZ_MASK 0x3f #define VTCR_EL2_VS_SHIFT 19 #define VTCR_EL2_VS_8BIT (0 << VTCR_EL2_VS_SHIFT) #define VTCR_EL2_VS_16BIT (1 << VTCR_EL2_VS_SHIFT) #define VTCR_EL2_T0SZ(x) TCR_T0SZ(x) /* * We configure the Stage-2 page tables to always restrict the IPA space to be * 40 bits wide (T0SZ = 24). Systems with a PARange smaller than 40 bits are * not known to exist and will break with this configuration. * * The VTCR_EL2 is configured per VM and is initialised in kvm_arm_setup_stage2(). * * Note that when using 4K pages, we concatenate two first level page tables * together. With 16K pages, we concatenate 16 first level page tables. * */ #define VTCR_EL2_COMMON_BITS (VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \ VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1) /* * VTCR_EL2:SL0 indicates the entry level for Stage2 translation. * Interestingly, it depends on the page size. * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a * * ----------------------------------------- * | Entry level | 4K | 16K/64K | * ------------------------------------------ * | Level: 0 | 2 | - | * ------------------------------------------ * | Level: 1 | 1 | 2 | * ------------------------------------------ * | Level: 2 | 0 | 1 | * ------------------------------------------ * | Level: 3 | - | 0 | * ------------------------------------------ * * The table roughly translates to : * * SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level * * Where TGRAN_SL0_BASE is a magic number depending on the page size: * TGRAN_SL0_BASE(4K) = 2 * TGRAN_SL0_BASE(16K) = 3 * TGRAN_SL0_BASE(64K) = 3 * provided we take care of ruling out the unsupported cases and * Entry_Level = 4 - Number_of_levels. * */ #ifdef CONFIG_ARM64_64K_PAGES #define VTCR_EL2_TGRAN VTCR_EL2_TG0_64K #define VTCR_EL2_TGRAN_SL0_BASE 3UL #elif defined(CONFIG_ARM64_16K_PAGES) #define VTCR_EL2_TGRAN VTCR_EL2_TG0_16K #define VTCR_EL2_TGRAN_SL0_BASE 3UL #else /* 4K */ #define VTCR_EL2_TGRAN VTCR_EL2_TG0_4K #define VTCR_EL2_TGRAN_SL0_BASE 2UL #endif #define VTCR_EL2_LVLS_TO_SL0(levels) \ ((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT) #define VTCR_EL2_SL0_TO_LVLS(sl0) \ ((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE) #define VTCR_EL2_LVLS(vtcr) \ VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT) #define VTCR_EL2_FLAGS (VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN) #define VTCR_EL2_IPA(vtcr) (64 - ((vtcr) & VTCR_EL2_T0SZ_MASK)) /* * ARM VMSAv8-64 defines an algorithm for finding the translation table * descriptors in section D4.2.8 in ARM DDI 0487C.a. * * The algorithm defines the expectations on the translation table * addresses for each level, based on PAGE_SIZE, entry level * and the translation table size (T0SZ). The variable "x" in the * algorithm determines the alignment of a table base address at a given * level and thus determines the alignment of VTTBR:BADDR for stage2 * page table entry level. * Since the number of bits resolved at the entry level could vary * depending on the T0SZ, the value of "x" is defined based on a * Magic constant for a given PAGE_SIZE and Entry Level. The * intermediate levels must be always aligned to the PAGE_SIZE (i.e, * x = PAGE_SHIFT). * * The value of "x" for entry level is calculated as : * x = Magic_N - T0SZ * * where Magic_N is an integer depending on the page size and the entry * level of the page table as below: * * -------------------------------------------- * | Entry level | 4K 16K 64K | * -------------------------------------------- * | Level: 0 (4 levels) | 28 | - | - | * -------------------------------------------- * | Level: 1 (3 levels) | 37 | 31 | 25 | * -------------------------------------------- * | Level: 2 (2 levels) | 46 | 42 | 38 | * -------------------------------------------- * | Level: 3 (1 level) | - | 53 | 51 | * -------------------------------------------- * * We have a magic formula for the Magic_N below: * * Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels) * * where Number_of_levels = (4 - Level). We are only interested in the * value for Entry_Level for the stage2 page table. * * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows: * * x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT) * = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels) * * Here is one way to explain the Magic Formula: * * x = log2(Size_of_Entry_Level_Table) * * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another * PAGE_SHIFT bits in the PTE, we have : * * Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT) * = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3 * where n = number of levels, and since each pointer is 8bytes, we have: * * x = Bits_Entry_Level + 3 * = IPA_SHIFT - (PAGE_SHIFT - 3) * n * * The only constraint here is that, we have to find the number of page table * levels for a given IPA size (which we do, see stage2_pt_levels()) */ #define ARM64_VTTBR_X(ipa, levels) ((ipa) - ((levels) * (PAGE_SHIFT - 3))) #define VTTBR_CNP_BIT (UL(1)) #define VTTBR_VMID_SHIFT (UL(48)) #define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT) /* Hyp System Trap Register */ #define HSTR_EL2_T(x) (1 << x) /* Hyp Coprocessor Trap Register Shifts */ #define CPTR_EL2_TFP_SHIFT 10 /* Hyp Coprocessor Trap Register */ #define CPTR_EL2_TCPAC (1U << 31) #define CPTR_EL2_TAM (1 << 30) #define CPTR_EL2_TTA (1 << 20) #define CPTR_EL2_TFP (1 << CPTR_EL2_TFP_SHIFT) #define CPTR_EL2_TZ (1 << 8) #define CPTR_NVHE_EL2_RES1 0x000032ff /* known RES1 bits in CPTR_EL2 (nVHE) */ #define CPTR_EL2_DEFAULT CPTR_NVHE_EL2_RES1 #define CPTR_NVHE_EL2_RES0 (GENMASK(63, 32) | \ GENMASK(29, 21) | \ GENMASK(19, 14) | \ BIT(11)) /* Hyp Debug Configuration Register bits */ #define MDCR_EL2_E2TB_MASK (UL(0x3)) #define MDCR_EL2_E2TB_SHIFT (UL(24)) #define MDCR_EL2_HPMFZS (UL(1) << 36) #define MDCR_EL2_HPMFZO (UL(1) << 29) #define MDCR_EL2_MTPME (UL(1) << 28) #define MDCR_EL2_TDCC (UL(1) << 27) #define MDCR_EL2_HLP (UL(1) << 26) #define MDCR_EL2_HCCD (UL(1) << 23) #define MDCR_EL2_TTRF (UL(1) << 19) #define MDCR_EL2_HPMD (UL(1) << 17) #define MDCR_EL2_TPMS (UL(1) << 14) #define MDCR_EL2_E2PB_MASK (UL(0x3)) #define MDCR_EL2_E2PB_SHIFT (UL(12)) #define MDCR_EL2_TDRA (UL(1) << 11) #define MDCR_EL2_TDOSA (UL(1) << 10) #define MDCR_EL2_TDA (UL(1) << 9) #define MDCR_EL2_TDE (UL(1) << 8) #define MDCR_EL2_HPME (UL(1) << 7) #define MDCR_EL2_TPM (UL(1) << 6) #define MDCR_EL2_TPMCR (UL(1) << 5) #define MDCR_EL2_HPMN_MASK (UL(0x1F)) #define MDCR_EL2_RES0 (GENMASK(63, 37) | \ GENMASK(35, 30) | \ GENMASK(25, 24) | \ GENMASK(22, 20) | \ BIT(18) | \ GENMASK(16, 15)) /* For compatibility with fault code shared with 32-bit */ #define FSC_FAULT ESR_ELx_FSC_FAULT #define FSC_ACCESS ESR_ELx_FSC_ACCESS #define FSC_PERM ESR_ELx_FSC_PERM #define FSC_SEA ESR_ELx_FSC_EXTABT #define FSC_SEA_TTW0 (0x14) #define FSC_SEA_TTW1 (0x15) #define FSC_SEA_TTW2 (0x16) #define FSC_SEA_TTW3 (0x17) #define FSC_SECC (0x18) #define FSC_SECC_TTW0 (0x1c) #define FSC_SECC_TTW1 (0x1d) #define FSC_SECC_TTW2 (0x1e) #define FSC_SECC_TTW3 (0x1f) /* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */ #define HPFAR_MASK (~UL(0xf)) /* * We have * PAR [PA_Shift - 1 : 12] = PA [PA_Shift - 1 : 12] * HPFAR [PA_Shift - 9 : 4] = FIPA [PA_Shift - 1 : 12] */ #define PAR_TO_HPFAR(par) \ (((par) & GENMASK_ULL(PHYS_MASK_SHIFT - 1, 12)) >> 8) #define ECN(x) { ESR_ELx_EC_##x, #x } #define kvm_arm_exception_class \ ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \ ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(PAC), ECN(CP14_64), \ ECN(SVC64), ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(SVE), \ ECN(IMP_DEF), ECN(IABT_LOW), ECN(IABT_CUR), \ ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \ ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \ ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \ ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \ ECN(BKPT32), ECN(VECTOR32), ECN(BRK64) #define CPACR_EL1_FPEN (3 << 20) #define CPACR_EL1_TTA (1 << 28) #define CPACR_EL1_DEFAULT (CPACR_EL1_FPEN | CPACR_EL1_ZEN_EL1EN) #endif /* __ARM64_KVM_ARM_H__ */